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1General introduction and thesis outline

Epidemiology of lung cancer
Lung cancer constitutes a significant global health challenge, with an estimated 
2.2 million new cancer cases and 1.8 million deaths reported worldwide in 2020. It 
stands as the second most frequently diagnosed cancer and is the leading cause of 
cancer-related mortality1. In the Netherlands, approximately 14.000 new cases of 
lung cancer were diagnosed in the year 2019, and the mortality rate exceeded 10.000 
deaths attributed to lung cancer during the same period2. Tobacco smoking has been 
associated to the development of lung cancer in 80% of cases3. Over the decades, 
trends in smoking have influenced the incidence rates on different continents. 
For example, in the United States, the incidence rate declined from its peak of 67 
per 100.000 individuals in 1992 to 43.2 per 100.000 in 20184, primarily due to increased 
smoking cessation efforts. Approximately 85% of lung cancer patients form a 
group of histological subtypes collectively known as non-small cell lung cancer 
(NSCLC)2. The two most common subtypes are adenocarcinoma (AD) and squamous 
cell carcinoma (SCC)5. In cases where the morphology of the tumor does not show 
evidence for either AD or SCC, a positive P40 (>50% of tumor cells) and negative TTF1 
immunohistochemical (IHC) staining can confirm squamous cell differentiation. 
Otherwise, the tumor is classified as NSCLC, not otherwise specified (NOS)5. Almost 
50% of patients are diagnosed with advanced stage disease2 that is not curable by 
surgery alone, leaving systemic therapies as treatment of choice.

Treatment of advanced NSCLC
Historically, the treatment of advanced stage NSCLC has been chemotherapy 
consisting of a platinum doublet with either carboplatin or cisplatin with 
gemcitabine, pemetrexed, vinorelbine, or taxanes (paclitaxel or docetaxel). No 
clinically meaningful differences in outcome have been found among these 
cytotoxic regimens6, with the exception of the combination pemetrexed-cisplatin 
which showed shorter overall survival (OS) compared to the gemcitabine-cisplatin 
combination in SCC7. The treatment landscape of NSCLC dramatically changed after 
the development of specific targeted therapies for the treatment of e.g., EGFR-mutant, 
ALK-rearranged, ROS1-rearranged or BRAFV600E-mutant advanced-stage NSCLC. 
Several tyrosine kinase inhibitors (TKIs) targeting these molecular alterations have 
led to remarkable responses in selected patients8.

More recently, immunotherapy, particularly immune checkpoint blockade (ICB), has 
introduced a new era in lung cancer care. In the tumor microenvironment (TME), 
activated T cells express a protein called programmed cell death 1 (PD-1). When a T 
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cell recognizes a specific tumor antigen presented by the major histocompatibility 
complex (MHC), it triggers the production of inflammatory cytokines. These cytokines 
can induce overexpression of programmed cell death 1 ligand 1 (PD-L1) within the 
tumor. The interaction between PD-L1 and the PD-1 receptor on T cells results in T 
cell dysfunction and subsequently immunotolerance. Consequently, tumors can 
protect themselves from cytotoxic (CD8+) T cell-mediated cell killing. Blocking 
the interaction between PD-1 and PD-L1 can offer an approach to restore T cell-
mediated antitumor immunity9. The first evidence demonstrating the effectiveness 
of anti-PD-(L)1 antibodies in treating NSCLC came from studies involving patients 
with previously treated advanced NSCLC10–12. Since then, these treatments rapidly 
transitioned to the first-line treatment setting, as multiple clinical trials showed 
a significant improvement in survival when compared to chemotherapy alone13–16. 
Unfortunately, approximately 60-70% of patients experience disease progression 
within six months after initiating treatment14–16, underscoring the need for 
biomarkers to support shared decision-making for therapeutic strategies. Such 
biomarkers are essential to improve personalized medicine, to minimize patient 
exposure to potential adverse effects and to reduce healthcare costs.

Biomarkers for predicting response to systemic therapy in advanced NSCLC
Although long-lasting clinical responses have been observed for patients treated 
with TKIs or PD-(L)1 blockade, this only accounts for a minority of patients. Therefore, 
biomarkers are urgently needed to estimate the probability of response to specific 
systemic therapeutic regimens, herein referred to as predictive biomarkers. For 
TKIs, most predictive biomarkers are characterized by specific genomic alterations 
associated with the mode of action of the involved TKIs. As a result, comprehensive 
molecular profiling of tumors is now routinely advised for all newly diagnosed 
advanced-stage NSCLC patients. This practice allows personalized therapeutic 
strategies tailored to patients whose tumors harbor targetable oncogenes. However, in 
the case of immunotherapy, which serves to restore anti-tumor immunity, potential 
predictive biomarkers differ fundamentally from driver oncogene biomarkers. They 
exhibit a continuous spectrum rather than a binary categorization, display spatial 
and temporal variability, and arise from multiple determinants rather than a single 
dominant determinant. Therefore, biomarker development is more challenging 
within the context of immunotherapies. The anti-tumor immune response is a 
complex process, requiring several steps for effective priming, activation, trafficking, 
and recognition of T cells to eradicate cancer cells, a process known as the cancer-
immunity cycle17. Therefore, it is unlikely to find one single biomarker that 
effectively predicts response18. In addition to predicting which patient will respond 
to treatment, it is also highly relevant to predict which patients will not respond to 
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1treatment. Biomarkers with a high negative predictive value can reliably predict 
this lack of therapeutic benefit, thus holding paramount significance for preventing 
overtreatment. As described earlier, this type of biomarker not only minimizes the 
risk of unnecessary side effects but also serves to reduce health care costs. Moreover, 
it offers the possibility of providing patients with alternative treatment options at 
an early stage.

The initial biomarker examined for its predictive potential in advanced NSCLC 
patients treated with PD-(L)1 blockade was the assessment of PD-L1 expression in 
tumor tissue. This was done due to its function in the inhibitory PD-L1/PD-1 pathway 
that is targeted by this treatment. Several studies have shown a positive correlation 
between high PD-L1 expression and improved response rates and survival13,19,20. 
For example, the results of the phase III KEYNOTE-024 study demonstrated that 
pembrolizumab led to significantly prolonged progression-free and overall survival 
compared to platinum-based chemotherapy in patients with PD-L1 expression levels 
of ≥50%13,20. Subsequently, PD-L1 assessment via IHC received clinical approval as a 
predictive biomarker test. However, different studies have published conflicting 
results, as some patients with PD-L1 low or PD-L1 negative tumors have also shown 
long-term disease control with ICB agents14–16. Furthermore, PD-L1 expression levels 
can vary due to factors such as interassay variability21, intratumor heterogeneity22–25 
and sample characteristics including age, biopsy site, and timing26,27. Another 
common hurdle is obtaining sufficient tumor tissue samples for PD-L1 testing, as 
the tumor site is often difficult to reach and invasive procedures are needed.

Tumor Mutation Burden (TMB), defined as the total number of nonsynonymous 
mutations per sequenced coding area of a tumor genome, has subsequently been 
studied as predictive biomarker for PD-(L)1 blockade monotherapy. It is thought 
that a higher TMB increases the likelihood of tumor neoantigen production and 
therefore, potential immunogenicity and the killing of cancer cells28. While TMB has 
shown predictive potential, no universally applicable TMB threshold has consistently 
demonstrated the ability to predict overall survival. Also, technical challenges have 
been reported due to variation across different sequencing platforms29.

As PD-(L)1 blockade is thought to reinvigorate dysfunctional T cells30, the presence 
of tumor-infiltrating lymphocytes (TILs) has been investigated as a predictive 
biomarker. Although TIL density has shown predictive potential31,32, increasing 
evidence suggests that not all TILs are in a state to recognize and eliminate tumor 
cells33,34. Therefore, general TIL density is not an accurate predictive biomarker for ICB 
response. Previous work showed that CD8+ TILs with high PD-1 expression, referred 
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to as PD-1T TILs, positively correlated to treatment outcome in a small cohort of 
NSCLC patients treated with PD-1 blockade monotherapy35. These TILs display a high 
capacity for tumor recognition, and express and secrete CXCL13, a B cell attractant 
essential for the formation of tertiary lymphoid structures (TLS). Notably, PD-1T 
TILs predominantly localize within TLS35. TLS and B cells, a critical TLS component, 
have been correlated with clinical responses in other tumor types36–39, although 
comprehensive data from larger NSCLC patient cohorts is currently lacking.

The clinical implementation of the aforementioned biomarkers presents challenges 
due to their continuous nature. Hence, reliable and automated methods are 
preferred for the assessment and the definition of cut-off values. For example, digital 
quantification methods have been described for TILs and PD-L140–42. Furthermore, 
robust platforms such as the Nanostring nCounter platform43 enable the development 
of predictive mRNA signatures capable of extracting the immune phenotype from 
the TME. One example of such a signature is the tumor inflammation signature 
(TIS)44–47. In addition, the combination of biomarkers could be an approach to 
improve predictive accuracy, as demonstrated in studies combining TMB with PD-
L148,49 and CD8 with PD-L118,31.

Alternative bio-sources for biomarker development
One of the predominant challenges in biomarker testing is the availability of 
sufficient tumor tissue, frequently necessitating invasive procedures. Furthermore, 
local tissue sampling can introduce biases due to tumor heterogeneity. Notably, 
more and more tissue material is required to comply to the increasing number 
of diagnostic biomarker tests. In addition to tumor tissue, blood serves as a viable 
source for biomarkers. The liquid biopsy method that analyzes cell-free DNA in 
plasma can detect circulating tumor DNA (ctDNA). This method is minimally 
invasive and, in contrast to tissue biopsy, can provide a molecular profile of the 
tumor as well as real-time insights into tumor response dynamics during treatment. 
Nonetheless, sensitivity challenges persist, primarily because of the often limited 
fraction of plasma ctDNA available for analysis50. In addition, ctDNA biomarkers 
are less suitable for predicting responses to immunotherapy, as they do not capture 
characteristics of the immune infiltrate.

A variety of highly sensitive and specific technologies have been rapidly developed, 
primarily based on multiplex PCR (mPCR) or next-generation sequencing (NGS). 
These advancements enable the detection of genetic alterations in circulating 
nucleic acids, encompassing gene mutations, fusions, deletions, amplifications, 
translocations and epigenetic changes51. Beyond nucleic acid-based approaches, 
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1proteomic-based profiling in liquid biopsies holds significant promise. Given that 
proteins represent the direct drug targets of many cancer therapies, including ICB, 
high dimensional proteomic data can be used for biomarker discovery.

Furthermore, other body fluids, such as pleural effusion, ascites and cerebrospinal 
fluid, can also serve as alternative source for biomarker identification52. Among these, 
pleural effusion stands out as an attractive bio-source for molecular profiling in 
NSCLC, particularly considering that approximately 30% of NSCLC patients develop 
malignant pleural effusion (MPE)53. Unfortunately, the quantity of tumor cells or 
the tumor cell percentage in MPE often proves insufficient for molecular analysis. 
Other studies have shown promising results by using cell-free DNA (cfDNA) from 
the supernatant of MPE54-59.
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Outline of this thesis

In spite of the impressive results observed with checkpoint inhibitor-based 
immunotherapies in a small subset of patients with advanced NSCLC, robust 
predictive biomarkers are still lacking. Notably, there are no predictive biomarkers 
capable of accurately identifying patients who do not derive clinical benefit to ICB 
treatment. In this thesis, we examined direct effectors of the anti-tumor immune 
response as potential biomarkers to predict response and non-response to PD-1 
blockade monotherapy in advanced NSCLC. Additionally, we explored alternative 
bio-sources for biomarker assessment to avoid the need for invasive and complicated 
biopsy procedures, particularly in cases where tumor tissue is not available.

In Chapter 2 we examine the accuracy of a tumor-reactive TIL population, known as 
PD-1T TILs, as predictive biomarker in a cohort of 120 advanced stage NSCLC patients 
treated with PD-1 blockade. The frequency of PD-1T TILs was quantified using digital 
image analysis. Additional exploratory analyses addressed the impact of lesion-
specific responses, tissue sample properties, and the combination of PD-1T TILs with 
other biomarkers on their predictive value.

Chapter 3 describes a study that investigates whether the predictive performance of 
biomarkers can be improved by combining them in pairs. The assessed biomarkers 
included both well-established ones, such as PD-L1, CD8/CD3 TILs and TIS, as well 
as recently developed biomarkers like PD-1T TILs, CD20+ B cells and TLS. All these 
biomarkers are known for their pivotal roles in the anti-tumor immune response 
upon PD-1 blockade monotherapy.

In Chapter 4 we investigate whether a tumor’s PD-1T TIL status can be translated 
into an mRNA signature using the Nanostring nCounter platform. As digital 
quantification of PD-1T TILs requires a substantial user interaction, a PD-1T 
mRNA signature, developed on a robust clinical grade platform, will facilitates its 
implementation in a clinical setting. This study develops and validates a PD-1T mRNA 
signature using gene expression data from 100 advanced NSCLC patients treated 
with PD-1 blockade from two independent cohorts.

In Chapter 5 we highlight the use of liquid biopsies as an alternative bio-source, 
obviating the need for tissue biopsies. This study develops and validates a serum-
derived protein signature designed to predict durable clinical benefit in 289 advanced 
stage NSCLC patients treated with PD-1 blockade.
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1In Chapter 6 we describe the diagnostic yield of cell free DNA (cfDNA) extracted 
from pleural effusion as an alternative bio-source for molecular profiling of tumors. 
Currently, molecular analysis has become the mainstay in diagnostics to guide 
treatment selection and monitoring in advanced NSCLC. This study highlights the 
potential of cfDNA analysis in pleural effusion, even when tumor cell purity is low.

Last, chapter 7 presents a general discussion of all chapters, providing a holistic view 
of the research findings and their implications.
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Chapter 2
PD-1T TILs as a predictive biomarker 
for clinical benefit to PD-1 blockade 
in patients with advanced NSCLC
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Translational relevance

Despite the clinical success of anti-PD-1 treatment, robust predictive biomarkers are 
still lacking. As PD-1 blockade can reinvigorate dysfunctional T cells, we hypothesized 
that new biomarkers could be developed by assessing such direct effectors of the 
anti-tumor immune response. We previously identified a tumor-reactive T cell 
population, termed PD-1T TILs, with predictive potential in a small cohort of non-
small cell lung cancer (NSCLC) patients. In this study, PD-1T TILs were assessed as a 
predictive biomarker for durable clinical benefit in two NSCLC cohorts treated with 
PD-1 blockade, reaching high sensitivity and high negative predictive value. The 
predictive performance was superior compared to PD-L1 and TLS. Therefore, this 
biomarker may positively impact treatment decision making in clinical practice, 
as it improves patient stratification. Importantly, it specifically identifies a patient 
group that is unlikely to benefit from PD-1 blockade, thereby providing a tool to 
reduce overtreatment.
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Abstract

Purpose
Durable clinical benefit to PD-1 blockade in NSCLC is currently limited to a small 
fraction of patients, underlining the need for predictive biomarkers. We recently 
identified a tumor-reactive tumor-infiltrating T lymphocyte (TIL) pool, termed PD-1T 
TILs, with predictive potential in NSCLC. Here, we examined PD-1T TILs as biomarker 
in NSCLC.

Methods
PD-1T TILs were digitally quantified in 120 baseline samples from advanced NSCLC 
patients treated with PD-1 blockade. Primary outcome was Disease Control (DC) 
at 6 months. Secondary outcomes were DC at 12 months and survival. Exploratory 
analyses addressed the impact of lesion-specific responses, tissue sample properties 
and combination with other biomarkers on the predictive value of PD-1T TILs.

Results
PD-1T TILs as a biomarker reached 77% sensitivity and 67% specificity at 6 months, 
and 93% and 65% at 12 months, respectively. Particularly, a patient group without 
clinical benefit was reliably identified, indicated by a high negative predictive value 
(NPV) (88% at 6 months, 98% at 12 months). High PD-1T TILs related to significantly 
longer progression-free (HR 0.39, 95% CI: 0.24-0.63, P<0.0001) and overall survival (HR 
0.46, 95% CI: 0.28-0.76, P<0.01). Predictive performance was increased when lesion-
specific responses and samples obtained immediately before treatment were 
assessed. Notably, the predictive performance of PD-1T TILs was superior to PD-L1 
and TLS in the same cohort.

Conclusion
This study established PD-1T TILs as predictive biomarker for clinical benefit to PD-1 
blockade in advanced NSCLC patients. Most importantly, the high NPV demonstrates 
an accurate identification of a patient group without benefit.
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Introduction

Immune checkpoint blockade (ICB) targeting the programmed cell death-1 
(PD-1)/PD-ligand 1 (PD-L1) pathway has dramatically changed the treatment 
of advanced stage non-small cell lung cancer (NSCLC) patients. Significant 
improvement in survival, quality of life and a favorable safety profile compared 
to chemotherapy has led to the rapid and broad clinical implementation of this 
treatment modality1–6. However, approximately 60 to 70% of patients progress 
within 6 months after treatment initiation3,5,6. Hence, predictive biomarkers are 
needed, in particular to identify patients that are less likely to benefit to reduce 
overtreatment.

In analogy to molecular biomarkers that have been used for identification of 
patients with targetable oncogenes7, it has been assumed that PD-L1 expression in 
tumors could predict benefit of anti-PD-1/PD-L1 therapy. Previous studies indeed 
have shown that pretreatment stratification based on high expression of PD-L1 
can identify patient subgroups with improved response rates and survival1,2,8, 
leading to the approval of PD-L1 testing for newly diagnosed advanced NSCLC. 
However, PD-L1 is not a perfect biomarker since multiple studies have shown 
conflicting results with regard to its predictive potential3,5,6.

As PD-1/PD-L1 blockade is thought to reactivate dysfunctional T cells9, an 
alternative strategy may be to develop biomarkers that reflect the capacity of a 
tumor to mount an anti-tumor immune response. We previously showed that the 
presence of a specific CD8+ tumor-infiltrating lymphocyte (TIL) subpopulation, 
termed PD-1T TILs, correlated with response and survival in a small cohort of 
NSCLC patients treated with PD-1 blockade10. PD-1T TILs are a subset of PD-1+ 
T cells characterized by high, tumor-associated expression levels of PD-1, and 
are transcriptionally and functionally distinct from other TIL populations with 
lower or no PD-1 expression. Importantly, PD-1T TILs show high tumor reactivity10 
consistent with subsequent work in other tumor types demonstrating that the 
capacity for tumor recognition is strongly enriched in the dysfunctional T cell 
population that expresses high levels of PD-111,12. Moreover, tumor infiltration by 
PD-1T lymphocytes was recently associated with immunological response to PD-1 
blockade in a number of other tumor types13. Finally, PD-1T TILs predominantly 
localize in tertiary lymphoid structures (TLS)10, which have been correlated with 
clinical and immunological response to ICB in other cancer types13–16. Collectively, 
these observations suggest that the presence of PD-1T TILs in a tumor may indicate 
that a tumor-specific T cell response has been mounted, and thereby represent 
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a potential biomarker to preselect patients for treatment with PD-1 blockade. 
Particularly, the absence of PD-1T TILs in a tumor may signify the lack of a tumor-
reactive T cell population and hence identify patients that are unlikely to benefit.

In this retrospective observational study we analyzed pretreatment samples from 
two independent cohorts of NSCLC patients treated with PD-1 blockade to (1) train 
and validate PD-1T TILs as a predictive biomarker, (2) explore whether certain sample 
characteristics such as sample type, sample location or time of sampling influence 
the predictive value of this biomarker, and (3) evaluate the potential for clinical 
implementation, by comparing and combining PD-1T TILs with other predictive 
markers such as PD-L1 and TLS.
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Methods

Patient enrollment and study endpoints
In this study, 164 stage IV NSCLC patients were identified from two independent 
cohorts who started second or later line monotherapy with nivolumab (n=128) 
or pembrolizumab (n=36) between March 2015 and April 2018 at the Netherlands 
Cancer Institute/Antoni van Leeuwenhoek hospital (NKI-AVL), The Netherlands. All 
patients had pathologically confirmed stage IV NSCLC. Absence of sensitizing EGFR 
mutations or ALK translocations was confirmed in 145 patients, while in 19 patients 
the mutation status was unknown. Patients received single agent nivolumab 3 mg/
kg, administered as an IV infusion, every two weeks for at least one dose or single 
agent pembrolizumab 200 mg as an IV infusion every 3 weeks. Nivolumab was 
provided within the Expanded Access Programme (EAP) from Bristol Myers Squibb 
or in regular care after the drug was registered. Pembrolizumab treated patients 
were part of the control arm in the PEMBRO-RT study (NCT02492568)17. Patients were 
randomized into a training and validation set. Randomization was stratified by type 
of treatment (nivolumab vs pembrolizumab) and treatment outcome at 6 months.

Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was used to assess 
efficacy. Patients with progressive disease (PD) who were not evaluable for response 
by RECIST were determined by the treating physician as PD. Disease Control (DC) 
(complete response (CR)/partial response (PR) or stable disease (SD)) at 6 months 
following initiation of treatment was used as the primary clinical outcome measure. 
We assessed DC at 12 months (CR/PR/SD that lasted ≥12 months), progression-free 
survival (PFS) and overall survival (OS) as secondary outcome measures to predict 
long-term efficacy to PD-1 blockade. PFS and OS were defined as the time from the 
date of initiation of treatment with PD-1 blockade to the date of progression or death 
(for PFS) or death (for OS). Patients who had not progressed or died were censored 
at the date of their last follow-up.

Pretreatment formalin-fixed paraffin embedded (FFPE) tumor tissue samples were 
collected from all patients. Written informed consent was obtained from all patients 
for research usage of material not required for diagnostic use by institutionally 
implemented opt-out procedure. The study was conducted in accordance with 
the Declaration of Helsinki and approved by the Institutional Research Board of 
NKI (CFMPB586). 44 patients (27%) were excluded based on the following criteria: 
samples contained less than 10,000 cells in the tumor area on a single cross-sectional 
slide (n=15), were obtained more than 2 years before start of PD-1 blockade (n=14), 
were obtained from endobronchial lesions (n=8), contained normal lymphoid 
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tissue (n=3), showed fixation and/or staining artefacts (n=3), or were non-NSCLC 
histology (n=1) (Fig. 1A, Table S1). We excluded bronchial biopsies as they frequently 
showed unspecific antibody staining due to mechanical damage, and lymph node 
resections due to the presence of PD-1 bright T cells in normal lymphoid tissue, 
which could potentially lead to false positive results. Prespecified subgroup analyses 
were performed to compare (i) samples derived from tumor resections and biopsies, 
(ii) samples from primary and metastatic sites, and (iii) samples that were obtained 
either directly before the start of nivolumab or pembrolizumab or before any prior 
line of systemic treatment.

Fresh tumor samples were collected from 16 patients with NSCLC undergoing primary 
surgical treatment between July 2017 and February 2019 at NKI-AVL. The study was 
approved by the Institutional Research Board of NKI-AVL (CFMPB484). All patients 
consented to research usage of material not required for diagnostic use either by 
opt-out procedure or via prior informed consent (after May 23, 2018). Representative 
tumor tissue samples were procured from surgical resection specimens by a 
pathologist. Half of each sample was formalin fixed and embedded in paraffin for 
further histological analysis, the other half was immediately processed into tumor 
fragments that were cryopreserved until further usage (see sample processing and 
flow cytometry analysis).

Sample processing and flow cytometry analysis
For flow cytometry analysis, cryopreserved tissue fragments were thawed and 
processed into single-cell suspensions by enzymatic digestion using RPMI1640 
medium (Thermo Fisher) supplemented with 1% Penicillin-Streptomycin (Roche), 
12.6µg/ml Pulmozyme (Roche) and 1mg/ml Collagenase type IV (Sigma), as described 
previously14. Samples were then washed in PBS (Sigma), filtered over a 150µM filter 
mesh, resuspended in 50µL PBS, and incubated with Fc receptor blocking agent 
(eBioscience) and with live/dead Zombie UV (Biolegend) for 20 min at 4°C. Cells 
were washed, resuspended in 50µl of staining buffer (PBS (Sigma), 0.5% bovine 
serum albumin (Sigma), 0.1% NaN3 (Invitrogen)) containing the below-described 
antibodies, and incubated for 20 min at 4°C. After washing twice, cells were taken 
up in 200µl IC Fixation Buffer (eBioscience) and incubated for 20 min. Subsequently, 
samples were washed twice before data acquisition.

For staining the following antibodies were used: anti-CD45 PerCP Cy5.5 (2D1, 
RRID:AB_1548697) from Invitrogen; anti-CD8 BUV563 (RPA-T8, RRID:AB_2870199), -PD-1 
PE-Cy7 (EH12.1, RRID:AB_10611585), all from BD Biosciences; anti-CD3 FITC (SK7, RRID_
AB2043993), -CD4 BV421 (SK3 RRID:AB_2566015), all from Biolegend. PD-1T lymphocytes 
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were identified by using peripheral blood T cells from healthy donors as external 
reference to establish the cut-off as described previously10. Data acquisition was carried 
out on a BD LSR II SORP cell analyzer (BD Biosciences). Data was collected using the BD 
FACS Diva Software version 8.0.1, and further analyzed with FlowJo v10.6.1 (Tree Star 
Inc.) and GraphPad Prism v8.0e (GraphPad Software Inc.).

Immunohistochemistry
Separate immunohistochemistry (IHC) stainings of consecutive FFPE tumor 
tissue sections were performed on a BenchMark Ultra autostainer Instrument 
(Ventana Medical Systems). Paraffin sections were cut at 3 µm. Sections for PD-1 
staining were dried overnight at room temperature and stained within 48 hours 
to reduce background staining. Prior to staining, sections were initially baked at 
75°C for 28 minutes and deparaffinised in the instrument with EZ prep solution 
(Ventana Medical Systems). Heat-induced antigen retrieval was carried out using 
Cell Conditioning 1 (CC1, Ventana Medical Systems) for 32 minutes (CD68 and CD20-
CD3 double staining) or 48 minutes (PD-1 and PD-L1) at 95°C.

PD-1 was detected using clone NAT105 (Lot number V0002089, Ready-to-Use, 16 minutes 
at RT, Roche Diagnostics (Cat. # 7099029001). PD-L1 was detected using clone 22C3 (1/40 
dilution, 1 hour at RT, Agilent/DAKO) and CD68 was detected using clone KP1 (1/10000 
dilution, 32 minutes at 37°C, Agilent/DAKO). Bound antibody was detected using the 
OptiView DAB Detection Kit (Ventana Medical Systems). Slides were counterstained 
with Hematoxylin and Bluing Reagent (Ventana Medical Systems).

For double staining of CD20 (Yellow) and CD3 (Purple), CD20 was detected in the first 
sequence using clone L26 (1/800 dilution, 32 minutes at 37°C, Agilent/DAKO). CD20 
bound antibody was visualized using anti-Mouse NP (Ventana Medical systems) for 
12 minutes at 37°C followed by anti-NP AP (Ventana Medical systems) for 12 minutes 
at 37°C, followed by the Discovery Yellow detection kit (Ventana Medical Systems). In 
the second sequence of the double staining procedure CD3 was detected using clone 
SP7 (1:100 dilution, 32 minutes at 37°C, Thermo Scientific). CD3 was visualized using 
anti-Rabbit HQ (Ventana Medical systems) for 12 minutes at 37°C followed by anti-
HQ HRP (Ventana Medical systems) for 12 minutes at 37°C, followed by the Discovery 
Purple Detection Kit (Ventana Medical Systems). Slides were counterstained with 
Hematoxylin and Bluing Reagent (Ventana Medical Systems).

PD-1T, PD-L1 and CD68 immunostainings were scanned at x20 magnification with 
a resolution of 0.50 per µm2 using an Aperio slide AT2 scanner (Leica Biosystems). 
CD20-CD3 immunostaining was scanned at x20 magnification with a resolution of 
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0.24 per µm2 using a 3DHistech P1000 scanner. For manual scoring, PD-L1 and CD68 
IHC images were uploaded on Slidescore, a digital pathology slide web platform that 
integrates a slide viewer with a scoring sheet (https://www.slidescore.com). PD-1T 
TILs, CD20 and TLS were digitally scored as described below.

Digital quantification of PD-1T TILs
PD-1T TILs are a subset of PD-1+ T cells in the tumor tissue that can be identified 
both by flow cytometry and by immunohistochemistry (IHC). To quantify PD-1T 
TILs in FFPE tissue, a digital workflow using a PD-1T IHC scoring algorithm was 
previously established10. For the current study, the automated detection of PD-1T 
TILs was recalibrated using the Multiplex IHC v1.2 module of the HALO™ software, 
v2.3.2089.69 (Indica Labs). To this end, an independent set of 16 NSCLC tumor 
samples was used to perform flow cytometry and IHC analysis in parallel. PD-1T 
TILs are defined by bright, tumor-associated PD-1 expression at levels that exceed 
those observed on peripheral blood T cells10. Hence, to determine the frequency of 
PD-1T TILs in the NSCLC samples, PD-1 expression on intratumoral lymphocytes 
was assessed by flow cytometry and compared to peripheral blood T cells as 
external reference to establish the threshold for tumor-associated PD-1 expression 
(Fig. S1A). Next, a digital IHC algorithm to quantify PD-1+ lymphocytes in matched 
FFPE samples was generated (Fig. S1B). The optical density (OD) measured by this 
approach is reflective of staining intensity and thereby PD-1 levels. To identify 
the optimal OD cut-off resulting in similar frequencies of PD-1T TILs by IHC as by 
flow cytometry, Pearson correlation coefficients were determined using thresholds 
varying from 0.2 to 0.5 OD. The percentage PD-1 bright lymphocytes obtained for 
each OD threshold in FFPE samples were normalized to total lymphocyte counts 
and compared to the flow cytometry-guided annotation of PD-1T lymphocytes. An 
OD of 0.25 showed the highest Pearson correlation coefficient (R2=0.615, P<0.001) 
(Fig.  S1C,D) and was selected as the threshold for further automated PD-1T 

quantification in FFPE tumor tissue.

For prediction of clinical benefit to PD-1 blockade, the tumor areas were measured 
and the number of PD-1T TILs per mm2 tumor area was determined (Table S2). To 
this end, tumor areas were annotated with a 0.5 mm margin from the tumor border 
and necrotic areas were excluded with a 0.5 mm margin. Digital image analysis was 
carried out by a trained MD (K.H.) and supervised by an experienced pathologist 
(K.M.), blinded for clinical outcome. Receiver operator characteristic (ROC) curves 
were used in the training set to establish an optimal cut-off of 90 PD-1T TILs per mm2 
for discriminating patients with and without clinical benefit (see Results).
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PD-L1 scoring
Tumor PD-L1 expression was assessed according to the instruction manual of the 
qualitative, clinical grade LDT IHC assay (22C3 pharmDx, Dako) as used in routine 
clinical practice at NKI-AVL. As high concordance between the 22C3 and 22-8 PD-L1 
antibodies has been reported18,19, the 22C3 clone was also used to assess the predictive 
value of PD-L1 for nivolumab. PD-L1 expression levels were manually scored by a trained 
MD (K.H.) under the supervision of an experienced pathologist (K.M.) blinded for clinical 
outcome. The PD-L1 Tumor Proportion Score (TPS) was determined by calculating the 
percentage of PD-L1+ tumor cells of total viable tumor cells (Table S2). PD-L1 positivity 
was defined as tumor cells showing circumferential and/or partial linear expression 
(at any intensity) of PD-L1 on the plasma cell membrane. A CD68 staining was manually 
evaluated and compared with PD-L1 stained slides to avoid false positive results due to 
PD-L1 expressing macrophages in between tumor cells. PD-L1 IC was manually scored 
as the proportion of tumor area that is occupied by PD-L1+ immune cells (ICs) of any 
intensity (IC0: <1%, IC1: ≥1% and <5%, IC2: ≥5% and <10% and IC3: ≥10%) as described20,21.

Scoring of tertiary lymphoid structures
A CD20 (yellow)/CD3 (purple) double staining was used to identify tertiary lymphoid 
structures (TLS). CD20-CD3 IHC images were scanned and analyzed using HALO™. 
Lymphoid niches were manually identified based on the presence of B cell (CD20+) 
clusters and T cell (CD3+) zones as described22,23. Next, areas were measured in 
HALOTM and assigned as TLS (>60,000 µm2) or lymphoid aggregate (LA) (10,000-60,000 
µm2)16. Finally, tumor areas were digitally annotated as described above and the 
number of TLS per mm2 and the combined number of TLS and LA (TLS+LA) per 
mm2 tumor area were determined (Table S2).

CD20 quantification by digital image analysis
The Area Quantification v1.0 module of the HALOTM software was used to generate 
an analysis algorithm to measure the total area with CD20 expression on the CD20/
CD3 images. The total CD20 positive area was selected because the dense clustering 
of CD20+ cells in TLS precluded the setup of a reliable algorithm to quantify cell 
numbers. Tumor areas were digitally annotated as described above and the CD20-
positive area was normalized per mm2 tumor area (Table S2).

Statistical analysis
Patient characteristics were descriptively reported using mean ±s.d., interquartile 
range (IQR) or frequencies (percentages). Differences in patient and sample 
characteristics between cohorts (training and validation), between outcome groups 
(disease control vs PD) and between groups created by the biomarker were assessed 
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using the Mann-Whitney test for continuous data, Fisher's exact test for categorical 
data, the linear-by-linear association test for ordinal variables, the unpaired t-test 
for variables with two levels and the Kruskal-Wallis test for variables with more 
than two levels. Differences were considered statistically significant if *P<0.05, 
**P<0.01, ***P<0.001 or ****P<0.0001.

Calculation of the area under the ROC curve (AUC) was used as a measure of 
discriminatory ability for the biomarkers considered. The predictive performance 
of different biomarkers or biomarker combinations on the same patient population 
was described in terms of sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV) and compared using the McNemar test. The 
predictive accuracy of the same biomarker on different samples (e.g. resections 
vs. biopsies) was assessed using AUCs and compared in a one-sided permutation 
test. Survival curves were plotted using the Kaplan-Meier method and compared 
between groups identified by the various biomarkers using the log-rank test.

To assess the predictive performance of PD-1T TILs (discretized at 90 per mm2) and 
PD-L1 (discretized at either 1% or 50%) in combination, bivariate models were 
constructed using the validation cohort. We considered two types of models: in 
one case, patients were considered to have clinical benefit if both (PD-L1 and PD-
1T TILs), or one of the two markers were above their respective threshold. Patients 
were considered to experience disease progression if both markers were below their 
respective threshold. In the other case, patients were considered to have clinical 
benefit only if both markers (PD-L1 and PD-1T TILs) were above their respective 
threshold. Patients were considered to experience disease progression if both, or 
one of the two markers were below their respective threshold. As the first model 
yielded the better predictive performance, we used this model to test the two choices 
for the PD-L1 threshold. Bivariate models of PD-L1 TPS (discretized at either 1% and 
50%) and PD-L1 IC (discretized at a score of 2) were constructed using all nivolumab 
treated patients (n=94). The same type of model was used as described for PD-1T and 
PD-L1 TPS above. Correlations between PD-L1 TPS and PD-L1 IC or PD-1T TILs and PD-
L1 TPS, respectively, were evaluated using linear regression analysis.
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Results

PD-1T TILs as biomarker in NSCLC
To assess their predictive potential, we quantified PD-1T TILs in pretreatment samples 
from 120 patients with advanced stage NSCLC treated with either pembrolizumab 
(n=26) or nivolumab (n=94). Since the pembrolizumab treated cohort was 
substantially smaller, we randomized half of the pembrolizumab treated and one 
third of the nivolumab treated patients in a training set (n=43). The remainder of the 
patients was included in a validation set (n=77) (Fig. 1A). Each sample set consisted 
of 30% of patients that obtained disease control (DC) at 6 months of treatment with 
PD-1 blockade. Clinicopathological characteristics and treatment outcomes are 
summarized in Table S3. Sample characteristics are shown in Table S4. None of 
these characteristics differed significantly among the training and validation set.

PD-1T TILs are a subpopulation of PD-1+ T cells defined by a bright, tumor-specific 
PD-1 expression level. To quantify the PD-1T TIL subset in FFPE tissue, we established 
an automated digital quantification workflow as described previously10, allowing to 
reliably distinguish these cells from other PD-1+ cells (Fig. 1B, Fig. S1 and methods). 
Next, we determined the frequency of PD-1T TILs per mm2 tumor area that best 
discriminated patients with or without DC at 6 months (DC 6m) in the training set 
(n=43). To minimize the risk of undertreatment due to misclassification of patients 
with clinical benefit, we aimed for a sensitivity and negative predictive value (NPV) 
of ≥90%, and a specificity of the biomarker of at least 50% to limit overtreatment. 
Sensitivity and specificity reflect the predictive accuracy of identifying patients 
with DC 6m and with PD, respectively. The NPV reflects the probability of having 
no benefit to PD-1 blockade for patients with a biomarker result below threshold.

In the training set, the median number of PD-1T TILs per mm2 was 255 with an 
interquartile range (IQR) between 86 and 356 in the DC 6m group versus 51 (IQR: 
28-84) in the PD group (P<0.01) (Fig. 1C). To select the optimal biomarker cut-off, we 
performed a receiver operator characteristic (ROC) analysis. The area under the ROC 
curve (AUC) was 0.79 (95% CI 0.61-0.98), demonstrating a good discriminatory ability of 
the biomarker (Fig. 1D). As cut-offs reaching the intended sensitivity and NPV ≥90% 
had a very low specificity (10%), we decided to select the cut-off matching the highest 
sensitivity as well as a specificity of at least 50% in order to reduce overtreatment. 
This resulted in a cut-off of 90 PD-1T TILs per mm2, reaching a sensitivity of 79% and 
a specificity of 83% (Table 1). The chosen cut-off had a high NPV of 89% as indicated 
by the large fraction of patients with PD in the group with less than 90 PD-1T TILs 
per mm2 (Fig. 1E).
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To validate our findings, we next assessed the frequency of PD-1T TILs per mm2 in 
the validation set (n=77). The median number of PD-1T TILs per mm2 was 150 (IQR: 
89-231) in patients with DC 6m versus 49 (IQR: 15-152) with PD (p<0.01) (Fig. 1F). The 
AUC of the ROC curve was 0.72 (CI: 0.60-0.84), indicating a similar performance as 
in the training set (Fig. 1G). The biomarker also reached a comparable sensitivity 
(77%) and NPV (88%), but somewhat lower specificity (67%) (Table 1). Importantly, 
we still observed a substantial enrichment of non-responding patients in the PD-1T 

low group (Fig. 1H).

Assessment of secondary endpoints: DC at 12 months and survival
Since approximately 60-70% of patients treated in 2nd line with PD-(L)1 blockade 
progress within 6 months, and an additional 10-20% progress within 12 months3,5,6, 
we also assessed the value of PD-1T TILs to predict DC at 12 months (DC 12m). Two 
patients in the training and eight patients in the validation set experienced disease 
progression between 6 and 12 months, and were therefore included the PD group 
in this analysis (Fig. 1A). Median PD-1T TIL numbers were comparable to the DC 6m 
analysis (training set, DC 12m: 282 (IQR: 192-363), PD 44 (IQR: 27-83), P<0.0001; validation 
set, DC 12m: 202 (IQR: 114-312), PD: 49 (IQR: 17-160) P<0.001, Fig. S2A,B). Using the same 
cut-off of 90 PD-1T TILs per mm2 the ROC curve yielded a high AUC in both data sets 
of 0.89 (CI: 0.73-1.00) (Fig. 2A, training set) and 0.78 (CI: 0.68-0.88) (Fig. 2B, validation 
set). Importantly, in the DC 12m analysis our predefined cut-off reached the intended 
criteria with a sensitivity of 92% and an NPV of 96% in the training set, and of 93% 
and 98%, respectively, in the validation set. In both cohorts a specificity of >50% was 
maintained (84% in the training set, 65% in the validation set) (Table 1). Notably, in 
both data sets only 1/43 (2%) and 1/77 (1%) samples from patients with DC 12m showed 
a low frequency of PD-1T TILs <90 per mm2, suggesting a reliable identification of a 
patient group with no long-term benefit from PD-1 blockade (Fig. 2C,D).

As additional secondary endpoints, we assessed progression-free survival (PFS) 
and overall survival (OS) for patients with more or less than 90 PD-1T TILs per mm2. 
Since this cut-off was trained for prediction of DC at 6 months, PFS was significantly 
longer in PD-1T high patients in the training set (HR 0.30; 95% CI: 0.16-0.58, P<0.001) 
(Fig. S2C). Notably, PFS was also significantly increased in the validation set (HR 
0.39; 95% CI: 0.24-0.63, P<0.0001) in PD-1T high patients (Fig. 2E). Likewise, OS was 
significantly longer in both the training (HR 0.27; 95% CI: 0.14-0.53, P<0.0001) (Fig. S2D) 
and validation set (HR 0.46; 95% CI: 0.28-0.76, P< 0.01) (Fig. 2F).
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◀ Figure 1. PD-1T TILs as biomarker for clinical outcome to PD-1 blockade in NSCLC.

(A) Study design for analysis of PD-1T TILs in pretreatment samples from two retrospective 
stage IV NSCLC patient cohorts treated with PD-1 blockade. The training (n=43) and validation 
set (n=77) consisted each of 30% of patients with disease control at 6 months (DC 6m) of 
treatment. Researchers were blinded for clinical outcome. (B) Representative PD-1 IHC and 
digital mark-ups showing PD-1T TILs (brown) in a PD-1T TIL high and PD-1T TIL low tumor 
sample, respectively. (C) PD-1T TILs per mm2 in pretreatment samples from patients with DC 
6m (n=14) and progressive disease (PD) (n=29) in the training set (n=43). Dashed line indicates 
a cut-off of 90 PD-1T TILs per mm2. Medians, interquartile ranges and minimum/maximum 
shown in boxplots, **P<0.01 by Mann Whitney U-test. (D) Receiver operating characteristic 
(ROC) curve for predictive value of PD-1T TILs for DC 6m (AUC 0.79; 95% CI: 0.61-0.98) in the 
training set (n=43). (E) Percentage of patients with PD-1T high (≥90 per mm2) (n=16) and PD-1T 
low (<90 per mm2) (n=27) pretreatment samples showing DC 6m or PD. (F-G) Same plots as 
shown in C and D for patients with DC 6m (n=22) and PD (n=55) in the validation set, ** P<0.01 
(AUC: 0.72; 95% CI: 0.60-0.84). (H) Same plot as shown in E for patients with PD-1T high (n=35) 
and PD-1T low (n=42) pretreatment samples in the validation set (n=77).

Differences between lesion-specific and overall response
While the presence of <90 PD-1T TILs per mm2 was strongly associated with lack of 
benefit to PD-1 blockade, the PD-1T high group was more heterogeneous with 27/51 
patients showing progressive disease within 12 months. It is known that progression 
can occur heterogeneously across metastases upon PD-1 blockade24. In addition, 
response assessment by RECIST criteria is based on the change in the sum of target 
lesion(s) and the development of new lesions25. Thus, patients can be classified as PD 
based on the progression of some lesions while other lesions are stable or regress. 
To explore whether such mixed responses occur in PD-1T high patients with PD, we 
assessed responses to PD-1 blockade in a lesion-specific manner. To this end, the 
percent increase or decrease in diameter of the biopsied lesion during treatment 
was determined using RECIST criteria. All patients showing PD within 12 months, 
and with at least two CT response assessments in which the biopsied lesion could 
be measured, were included in this analysis. In total, 11 PD patients in the PD-1T high 
group and 14 PD patients in the PD-1T low group could be evaluated. Interestingly, we 
observed that only 27% (3/11) of the biopsied lesions in the PD-1T high group showed 
confirmed progression of the biopsied lesion (defined as ≥20% growth compared to 
smallest diameter during treatment) compared to 71% (10/14) in the PD-1T low group. 
This indicates that the PD-1T TIL biomarker correlates better with lesion-specific 
response than with overall radiological response according to RECIST, and that 
this could account for at least part of the PD-1T high patients with PD (Fig. 3A). For 
comparison we also performed the same analysis in patients with DC at 12 months 
and found that 92% of the evaluable lesions (11/12) in the PD-1T high group showed a 
durable response after a follow-up of 12 months.
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Table 1. Predictive accuracy of PD-1T TILs and PD-L1, summary of training and validation 
results.

Clinical outcome Biomarker AUC Cut-off Sensitivity Specificity NPV PPV

Training (n=43) DC 6m PD-1T TILs per mm2 0.79 95% CI: 0.61-0.98 <90 vs ≥90 79% 83% 89% 69%

Validation (n=77) DC 6m PD-1T TILs per mm2 0.72 95% CI: 0.60-0.84 <90 vs ≥90 77% 67% 88% 49%

    % PD-L1 TPS 0.58 95% CI: 0.43-0.74 <1 vs ≥1 41% 67% 74% 33%

        <50 vs ≥50 23% 95% 75% 63%

Training (n=43) DC 12m PD-1T TILs per mm2 0.89 95% CI: 0.73-1.00 <90 vs ≥90 92% 84% 96% 69%

Validation (n=77) DC 12m PD-1T TILs per mm2 0.78 95% CI: 0.68-0.88 <90 vs ≥90 93% 65% 98% 37%

    % PD-L1 TPS 0.68 95% CI: 0.51-0.86 <1 vs ≥1 57% 70% 88% 30%

        <50 vs ≥50 29% 94% 86% 50%

Influence of patient and tissue sample characteristics on predictive potential
Several factors including tissue and patient characteristics or prior therapy can 
impact the predictive performance of biomarkers, as has for instance been shown 
for PD-L126–28. We therefore explored whether clinicopathologic characteristics, 
intratumoral heterogeneity, sample type, sampling site or the time of sampling 
influence the predictive performance of PD-1T TILs as a biomarker. First, we examined 
a potential relationship of PD-1T TILs with clinicopathologic characteristics. No 
significant differences were however observed between the <90 and ≥90 per mm2 
groups (Tables S5,S6). As heterogeneity of PD-L1 expression within lesions has 
been found to limit the predictive performance of this marker, we next assessed 
the heterogeneity of PD-1T TILs in five resection samples of which two were PD-1T 
low (<90 per mm2) and three were PD-1T high (≥90 per mm2). We randomly selected 
10 intratumoral areas of 1 mm2 per sample and quantified PD-1T TILs in each area 
(Fig. 3B,C). While PD-1T TIL frequencies varied within a sample, the vast majority of 
areas reflected the overall score of the sample as either PD-1T TILs high or low. Thus, 
while PD-1T TILs showed some intratumoral heterogeneity, the overall distribution 
could be captured by assessing relatively a small area of the tumor.



PD-1T TILs as precision biomarker in NSCLC

41

2

Table 1. Predictive accuracy of PD-1T TILs and PD-L1, summary of training and validation 
results.

Clinical outcome Biomarker AUC Cut-off Sensitivity Specificity NPV PPV

Training (n=43) DC 6m PD-1T TILs per mm2 0.79 95% CI: 0.61-0.98 <90 vs ≥90 79% 83% 89% 69%

Validation (n=77) DC 6m PD-1T TILs per mm2 0.72 95% CI: 0.60-0.84 <90 vs ≥90 77% 67% 88% 49%

    % PD-L1 TPS 0.58 95% CI: 0.43-0.74 <1 vs ≥1 41% 67% 74% 33%

        <50 vs ≥50 23% 95% 75% 63%

Training (n=43) DC 12m PD-1T TILs per mm2 0.89 95% CI: 0.73-1.00 <90 vs ≥90 92% 84% 96% 69%

Validation (n=77) DC 12m PD-1T TILs per mm2 0.78 95% CI: 0.68-0.88 <90 vs ≥90 93% 65% 98% 37%

    % PD-L1 TPS 0.68 95% CI: 0.51-0.86 <1 vs ≥1 57% 70% 88% 30%

        <50 vs ≥50 29% 94% 86% 50%

Influence of patient and tissue sample characteristics on predictive potential
Several factors including tissue and patient characteristics or prior therapy can 
impact the predictive performance of biomarkers, as has for instance been shown 
for PD-L126–28. We therefore explored whether clinicopathologic characteristics, 
intratumoral heterogeneity, sample type, sampling site or the time of sampling 
influence the predictive performance of PD-1T TILs as a biomarker. First, we examined 
a potential relationship of PD-1T TILs with clinicopathologic characteristics. No 
significant differences were however observed between the <90 and ≥90 per mm2 
groups (Tables S5,S6). As heterogeneity of PD-L1 expression within lesions has 
been found to limit the predictive performance of this marker, we next assessed 
the heterogeneity of PD-1T TILs in five resection samples of which two were PD-1T 
low (<90 per mm2) and three were PD-1T high (≥90 per mm2). We randomly selected 
10 intratumoral areas of 1 mm2 per sample and quantified PD-1T TILs in each area 
(Fig. 3B,C). While PD-1T TIL frequencies varied within a sample, the vast majority of 
areas reflected the overall score of the sample as either PD-1T TILs high or low. Thus, 
while PD-1T TILs showed some intratumoral heterogeneity, the overall distribution 
could be captured by assessing relatively a small area of the tumor.

Next, we compared the potential of PD-1T TILs to predict DC at 6 and 12 months in 
samples derived from either tumor resections or biopsies. Performing ROC analysis, 
we observed that the AUC for resected samples was higher than for biopsy samples 
though without reaching significance, in line with the notion that biopsies may 
be more prone to sampling errors (Fig. 3D,E). Next, we compared samples from 
primary and metastatic sites which performed similarly with respect to prediction 
of treatment outcome (Fig. 3D,E). Finally, we compared samples that were taken 
either directly before start of anti-PD-1 treatment or before prior systemic treatment. 
Samples that were taken directly before anti-PD-1 treatment showed better predictive 
value, reaching significance in the DC 12m subgroup (AUC 0.91; 95% CI: 0.82-0.99 
versus 0.74; 95% CI: 0.61-0.88, P=0.04) for samples taken prior to at least one other 
systemic treatment (Fig. 3D,E). In summary, these explorative analyses suggest that 
the predictive performance of PD-1T TILs is even higher when assessed in a lesion-
specific manner and in samples that were taken shortly before start of PD-1 blockade.



Chapter 2

42

Figure 2. PD-1T TILs can effectively discriminate patients with long-term benefit from 
patients with progressive disease. (A) ROC curve for predictive value of PD-1T TILs for DC 
12m in the training set (n=43) (AUC 0.89; 95% CI: 0.73-1.00) and (B) in the validation set (n=77) 
(AUC 0.78; 95% CI: 0.68-0.88). (C) Percentage of patients with PD-1T high (≥90 per mm2) (n=16) 
and PD-1T low (<90 per mm2) (n=27) pretreatment samples in the training set showing DC 12m 
or PD. (D) Same plot as in C for PD-1T high (n=35) and PD-1T low (n=42) pretreatment samples 
in the validation set (n=77). (E) Progression-free survival (PFS) of patients with PD-1T high 
versus PD-1T low pretreatment samples (median 5.7 versus 2.2 months, HR 0.39; 95% CI: 0.24-
0.63, **** P<0.0001) in the validation set (n=77). (F) Overall survival (OS) (median 10.7 versus 
6.5 month, HR 0.46; 95% CI: 0.28-0.76, ** P<0.01). Tick marks represent data censored at the last 
time the patient was known to be alive and without disease progression or death. P-value 
was determined by log-rank test.
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Figure 3. Impact of lesion-specific response and tissue sample properties on the predictive 
accuracy of PD-1T TILs. (A) Percentage of responsive versus progressive lesions during 
treatment in the PD-1T high (≥90 per mm2) (n=11) and PD-1T low (<90 per mm2) (n=14) group 
of patients with PD within 12 months. A lesion was defined progressive when ≥20% growth 
was seen compared to the smallest diameter during treatment. (B) Example of a PD-1T high 
IHC staining with 10 individually annotated tumor areas of 1 mm2. (C) Quantification of 
PD-1T TILs per each mm2 area in five resection specimens. Each dot indicates an individual 
measurement. Two tumors are PD-1T low (grey shades), three tumors are PD-1T high (red 
shades). The cross indicates PD-1T TILs per mm2 normalized per total tumor area. (D-E) The 
predictive value of PD-1T TILs in the total cohort and different subgroups. Each comparison 
is marked in a grey square. Shown is the area under the curve (AUC) for DC 6m (D) and 12m 
(E) with 95% CI interval. P-value was determined by one-sided permutation test.

Comparison with PD-L1 as established biomarker
Pretreatment patient selection based on ≥50% or ≥1% tumor PD-L1 expression 
has been extensively studied, with contradictory results1–3,5,6. However, improved 
outcomes in the KEYNOTE-024 study for patients with ≥50% PD-L1 expression have 
led to the implementation of PD-L1 testing in routine diagnostics2. Therefore, we 
compared the predictive value of PD-1T TILs to the PD-L1 tumor proportion score (TPS) 
in the validation set (Fig. 4A). The fraction of disease control and PD for patients 
with tumors expressing ≥50%, 1-50% or no PD-L1 are shown in Fig. S3A (DC 6m) and 
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Fig. 4B (DC 12m). ROC analysis of PD-L1 TPS to predict DC 6m and DC 12m showed a 
lower AUC compared to PD-1T TILs (0.58; 95% CI: 0.43-0.74, and 0.68; 95% CI: 0.51-0.86) 
(Fig. S3B, Fig. 4C, Table 1). A cut-off using 50% PD-L1 TPS showed a substantially 
lower sensitivity (23-29%) and lower NPV (75-86%) compared to PD-1T TILs (Fig. 4D, 
Table 1). Both sensitivity and NPV were slightly higher using a cut-off of 1% PD-L1 TPS 
(41-57% and 74-88%, respectively), but still below the values observed for PD-1T TILs 
(Fig. 4D, Table 1). Also, additional cut-offs using 5% and 10% PD-L1 TPS, which have 
previously been evaluated as biomarker cut-offs for treatment with nivolumab3,6, 
did not improve prediction compared to PD-1T TILs (Table S7). Notably, when the 
predictive performance of PD-L1 TPS was assessed in the different subgroups using 
the full dataset as done for PD-1T TILs, we observed a similar trend towards a higher 
AUC in tumor resections and in samples taken directly before start of PD-1 blockade. 
However, even after adjusting for these potential confounders, PD-1T TILs remained 
superior to PD-L1 TPS in predicting clinical benefit (Fig. S3C,D).

Next, we evaluated PFS and OS for PD-L1 TPS ≥50% and ≥1% in the validation set. 
Similar to reports from previous trials1,2,8, PD-L1 TPS ≥50% enriched for patients 
demonstrating improved PFS and OS (HR 0.36; median PFS 30.3 vs 2.4 months, and HR 
0.40; median OS 32.2 vs 7.2 months), of which only PFS reached significance. However, 
this finding was based on only 8 patients in the PD-L1 ≥50% subgroup and may 
therefore been prone to sample size error (Fig. 4E,F). Patients with PD-L1 TPS ≥1% 
showed slightly better PFS and OS in the validation set though without reaching 
significance which is comparable to other studies3,5,6 (Fig. 4G,H).

We noticed that the fraction of patients with PD-L1 TPS <1% observed here was higher 
than in previous studies (60% as compared to app. 30%), which could be caused by 
our more stringent scoring method using CD68 staining to avoid false positive PD-
L1 levels. Therefore, we assessed whether the combination of PD-L1 TPS and PD-L1 
expression on immune cells (PD-L1 IC) could improve prediction. The correlation of 
PD-L1 TPS and PD-L1 IC was low (Fig. S4A,B). Combining PD-L1 TPS at either 50% or 
1% cut-off and PD-L1 IC≥2 indeed improved predictive accuracy, that is, compared to 
PD-L1 TPS≥50%, by reaching a similar sensitivity as PD-1T TILs but still substantially 
lower specificity (Fig. S4C,D, Table S8).

Previous studies have evaluated the combination of PD-L1 TPS with other biomarkers 
such as TMB or CD8 and CD4 T cell infiltration to increase predictive accuracy29–33. 
Therefore, we investigated whether the combination with PD-L1 TPS could further 
improve the predictive value of PD-1T TILs. The correlation between PD-1T TILs 
and PD-L1 TPS was low (Fig. S5A). Combination of the two biomarkers naturally 
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partitioned the patient population into four groups: (1) PD-L1 low (<50% or <1%)+PD-
1T low, (2) PD-L1 low+PD-1T high, (3) PD-L1 high (≥50% or ≥1%)+PD-1T low and (4) PD-L1 
high+PD-1T high (Fig. S5B). We observed an enrichment of PD patients in the <50% 
PD-L1+PD-1T low group (35/38 when assessing DC 6m as clinical outcome, 38/38 for 
DC 12m). Patients with DC 6m or 12m were distributed over all 4 groups and 3 out of 
4 groups, respectively (Fig. S5C,D). A similar patient distribution was found for the 
combination with 1% PD-L1 TPS (Fig. S5E,F). The predictive value of PD-1T+PD-L1 at 
50% cut-off was comparable to PD-1T alone with a few percent increase in sensitivity 
at the cost of a slightly lower specificity (Fig. S5G, Table S9, for details on prediction 
model see Methods section). The sensitivity of PD-1T+PD-L1 at 1% cut-off was similar 
to PD-1T+PD-L1 50%, but the specificity of this combination was below 50% (Fig. S5G, 
Table S9). Thus, the predictive accuracy of PD-1T alone is not increased by parallel 
quantification of PD-L1 levels.

PD-1T TILs and tertiary lymphoid structures
Tertiary lymphoid structures (TLS) are immune cell aggregates that form in the 
context of chronic inflammation and have been described in many cancer types, 
including NSCLC34–36. A number of recent studies have shown that TLS and B cells 
as one of their main cellular components are associated with response to ICB in 
melanoma, renal cell carcinoma and sarcoma14–16. Moreover, we previously showed 
in a small number of NSCLC samples that PD-1T TILs appear to predominantly 
localize in TLS and constitutively secrete CXCL13, a chemoattractant that is crucial 
for the formation of TLS10. For 91 of our pretreatment samples for which additional 
FFPE material was available, we assessed whether TLS and B cells were present. 
To this end, CD20/CD3 double IHC staining were performed to identify TLS by 
the presence of B cell clusters and T cell zones, as described previously10,16,22,23,35. A 
CD3+CD20+ area was defined as TLS when its size was more than 60,000 µm2 in the 
annotated tumor area, and as lymphoid aggregate (LA) when between 10,000 and 
60,000 µm2. To estimate the presence of B cells, we quantified the CD20-positive area 
per mm2 (Fig. S6A). This analysis revealed that TLS and TLS and/or LA (referred 
as TLS+LA) were present in 30/91 (33%) and 46/91 (51%) of tumors, respectively. B 
cells were found in 86/91 (95%) of tumors, suggesting that the presence of these 
cells does not always relate to TLS and LA (Fig. 5A). However, in most of the 40 
samples without TLS+LA, CD20-positive area per mm2 was low (Fig. S6B). Next, 
we wanted to assess the localization of PD-1T TILs in relation to TLS. To improve 
the accuracy of this analysis we focused on tumor resections (n=32), for which 
the annotated TLS areas based on the CD20/CD3 double staining were copied to a 
consecutive slide stained for PD-1 to calculate the frequency of PD-1T TILs inside 
TLS (Fig. 5B-C). The frequency of PD-1T TILs per mm2 was significantly higher inside 
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TLS compared to tumor areas outside of TLS (P<0.0001) (Fig. 5D). We found similar 
results when performing the same analysis including TLS+LA (Fig. S6C). Of note, 
samples without TLS or LA showed only very low frequencies of PD-1T TILs (Fig. 5D, 
Fig. S6C).

Next, we investigated whether the number of TLS was associated with clinical benefit 
to PD-1 blockade in NSCLC as has been shown in other tumor types14–16. The ranges of 
TLS and TLS+LA per mm2 are shown in Fig. 5E and Fig. S6D (DC 12m) and Fig. S6E,F 
(DC 6m). The AUC of TLS per mm2 was 0.62 (95% CI: 0.47-0.76) for DC 12m (Fig. 5F) and 
0.62 (95% CI: 0.49-0.76) for DC 6m (Fig. S6G), respectively, indicating a lower predictive 
performance than PD-1T TILs in the same sample set. Similar results were observed 
for TLS+LA per mm2 and CD20-positive area per mm2 (Fig. 5F, Fig. S6G). As PD-1T 
TILs predominantly localize in TLS, this observation would possibly be consistent 
with subtypes of TLS that differ in the number of PD-1T TILs. To investigate this, we 
quantified the frequency of TLS and of PD-1T TILs inside and outside TLS in PD-1T 
high (n=13) and PD-1T low resected samples (n=10). Resected samples with no TLS were 
excluded from this analysis (n=9). We found that TLS numbers did not significantly 
differ between both groups (Fig. 5G). However, tumors in the PD-1T high group had 
significantly higher numbers of PD-1T TILs inside TLS (Fig. 5H). In addition, in PD-1T 
high tumors also significantly more PD-1T TILs were present outside of TLS (Fig. 5I) 
compared to the PD-1T low group. Notably, PD-1T lymphocytes were only sparsely 
present in the tumor parenchyma of PD-1T low tumors (Fig. 5I). Altogether, these data 
suggest that in tumors responding to PD-1 blockade PD-1T TILs not only infiltrate TLS 
in higher numbers, but also expand in the tumor parenchyma.

Figure 4. Association of PD-L1 with long-term benefit and survival compared to PD-1T TILs. 
(A) Immunohistochemical (IHC) analysis of PD-L1. Example of NSCLC tumors with ≥50%, 
≥1% and 0% PD-L1 expression (PD-L1 TPS), respectively. (B) Percentage of patients with ≥50% 
(n=8), 1-50% (n=19) and 0% PD-L1 TPS (n=50) in pretreatment samples showing DC 12m or 
PD in the validation set (n=77). (C) ROC curve for predictive value of PD-L1 TPS for DC 12m 
(AUC 0.68; 95% CI: 0.51-0.86) in the validation set (n=77). (D) Sensitivity and specificity of PD-L1 
TPS 50% and 1% for DC 6m and 12m in comparison to PD-1T 90 per mm2 in the validation set 
(n=77). (E) PFS (HR 0.36; 95% CI: 0.18-0.70, * P=0.03) and (F) OS (HR 0.40; 95% CI: 0.20-0.80, P=0.06) 
of patients with ≥50% versus <50% PD-L1 TPS in pretreatment samples in the validation set 
(n=77). (G) PFS (HR 0.63; 95% CI: 0.38-1.03, P=0.08) and (H) OS (HR 0.67; 95% CI: 0.40-1.11, P=0.14) of 
patients with ≥1% versus <1% PD-L1 TPS in pretreatment samples in the validation set (n=77). 
Tick marks represent data censored at the last time the patient was known to be alive and 
without disease progression or death. P-value was determined by log-rank test. ▶
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◀ Figure 5. PD-1T high samples contain a higher density of PD-1T TILs inside and outside TLS. 
(A) Percentage of pretreatment samples containing tertiary lymphoid structures (TLS) (n=30), 
TLS and/or lymphoid aggregates (LA) (referred as TLS+LA, n=46) and CD20+ B cells (n=86) in 
the remaining cohort (n=91). (B) Top: Example of a CD20-CD3 IHC double staining with the 
black square showing CD20+ B cells (in yellow) and CD3+ T cells (in purple) localizing in a 
TLS. Arrows indicate LA. Bottom: Example of a consecutive PD-1 IHC staining with the black 
square showing PD-1T TILs inside TLS. (C) Digital markup showing the spatial distribution 
of CD20+ B cells (in green) and CD3+ T cells (in light-blue), and digital markup of PD-1T 
TILs (in red) and all other cells (in grey). (D) PD-1T TILs per mm2 inside and outside TLS in 
resected samples (n=23), and of total tumor area for resected samples with no TLS (n=9). 
Medians, interquartile ranges and minimum/maximum shown in boxplots, **** P<0.0001 by 
Mann-Whitney test. (E) TLS per mm2 in pretreatment samples from patients with DC 12m 
(n=20) and PD (n=71). Shown is the mean, P=0.054 by Mann-Whitney test. (F) The predictive 
value of PD-1T TILs, TLS, TLS+LA and CD20-positive area per mm2 for DC 12m (n=91, note that 
this cohort is smaller due to the availability of FFPE material). Shown are AUCs with 95% CI 
interval. (G) TLS per mm2 in PD-1T low (<90 per mm2 of total tumor area) (n=10) and PD-1T high 
(≥90 per mm2 of total tumor area) (n=13) resected samples. Medians, interquartile ranges and 
minimum/maximum shown in boxplots, P=0.18 by Mann-Whitney test. (H) PD-1T TILs per 
mm2 inside TLS and (I) outside TLS in PD-1T low (n=10) and PD-1T high (n=13) resected samples. 
Medians, interquartile ranges and minimum/maximum shown in boxplots, ** P<0.01 and 
**** P<0.0001 by Mann-Whitney test.



Chapter 2

50

Discussion

Monoclonal antibodies that block the PD-1–PD-L1 axis have transformed the 
therapeutic arsenal of advanced stage NSCLC. Nevertheless, most patients still do not 
benefit from PD-1 blockade, while they are exposed to the risk of treatment-related 
toxicity. Because of this, there is an evident clinical need for predictive biomarkers 
that can help reduce overtreatment. Based on the rationale that the presence 
of tumor-reactive PD-1T T lymphocytes is indicative of an ongoing anti-tumor 
response10, we here assess the predictive value of PD-1T TILs using an algorithm-
based quantitative PD-1 IHC assay in FFPE tissue sections. We establish PD-1T TILs 
as predictive marker in two independent advanced stage NSCLC cohorts treated 
with PD-1 blockade. Our data show that particularly low numbers of PD-1T TILs 
accurately identify a patient group with no clinical benefit. Furthermore, high PD-
1T TIL infiltration was observed in >90% of patients with DC 12m. The high sensitivity 
and NPV of our biomarker of more than 90% with a specificity of more than 50% 
should thus allow to reduce overtreatment while minimizing undertreatment.

Interobserver variability in the assessment of biomarkers often affects their 
predictive value. Here, we report a reliable and automated method to perform 
digital quantification of PD-1T TILs, based on an approach established in our earlier 
work10. Previous studies have shown the advantage of digital quantification by 
improving accuracy and standardization of biomarkers37–39. While our method 
allows automated quantification of PD-1T TILs, it still requires a substantial user 
interaction, for instance as tumor areas need to be manually annotated. Hence, for 
implementation into clinical practice further studies are required to assess methods 
that could improve standardization across centers, for instance using artificial 
intelligence (AI) solutions.

Another common hurdle for biomarker development is caused by tumor 
heterogeneity. Therefore, we aimed to understand whether heterogeneity in PD-1T 
TILs occurs within and across lesions and whether the presence of PD-1T TILs may 
thus be predictive for the capacity of locally residing T cells to mediate anti-tumor 
immunity upon PD-1 blockade. To this end, we first assessed responses at lesion-
level in patients defined as clinical progressors by RECIST criteria. Importantly, 
we observed that only a minority of the assessed lesions in the PD-1T high group 
progressed as compared to the PD-1T low group, indicating a good correlation between 
the biomarker and lesion-specific response. To assess the impact of intratumoral 
heterogeneity, we quantified PD-1T TILs in multiple randomly selected small tumor 
areas. Despite some level of variation, the vast majority of individual measurements 
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allowed to correctly classify a sample as PD-1T high or low, suggesting that PD-1T 
TIL infiltration can be reliably captured in a relatively small area of the tumor. 
An additional level of heterogeneity may result from, for instance, sample type, 
sampling site and/or the time between sampling and initiation of treatment. Thus, 
we explored the impact of these potential confounding factors on the predictive 
value of PD-1T TILs as a biomarker. We observed a trend towards increased predictive 
accuracy of PD-1T TILs when measured in tumor resections as compared to biopsies. 
In contrast, no difference in predictive value of the biomarker was found between 
primary tumors and metastases. Hong and colleagues previously observed differences 
in PD-L1 expression levels in distinct anatomical sites and showed that high PD-L1 
was associated with better clinical outcome in lung and distant metastases, but not 
in lymph node biopsies40. The low number of lymph node biopsies in our sample set 
precluded the separate analysis of lymph node and organ metastases, thus a possible 
difference in predictive value between these sample sites should be further explored 
in future work. Finally, we observed that samples taken immediately before start of 
PD-1 blockade were more accurate for prediction of clinical benefit, as shown by the 
higher AUC, reaching significance for prediction of DC 12m. Collectively, these data 
suggest that heterogeneity in PD-1T TIL infiltration across and within lesions exist, 
and that PD-1T TILs may therefore be reflective of the capacity of locally residing T 
cells to control tumor growth upon anti-PD-1. Hence, it will be important in future 
studies to address the mechanistic basis of this heterogeneity, such as differences 
in local antigen availability, HLA expression or else.

A further aim of the study was to explore the association of PD-1T TILs to other 
immune-related biomarkers, such as PD-L1 and TLS. PD-1T TILs performed superior 
to PD-L1, since both 50% and 1% PD-L1 TPS showed substantially lower sensitivity 
and NPV. Predictive performance could be improved when PD-L1 TPS and PD-L1 
IC were combined, but remained below that observed with PD-1T TILs. Notably, 
whereas previous studies showed an additive value of PD-L1 to TMB30,33 and PD-L1 
to CD831,32, the combination of either 50% or 1% PD-L1 TPS with PD-1T TILs did not 
improve predictive accuracy. However, since the ≥50% PD-L1 group only comprised 
10% of the samples in the validation set, which is different from previous reported 
percentages1,2, additional studies with subgroups that are more balanced or including 
PD-L1 IC should validate these findings. As another immune-related marker, TLS 
have recently been associated with response and survival benefit to ICB in multiple 
cancer types13–16, and in previous work we observed that PD-1T TILs predominantly 
localize in TLS10. In the present study we found a lower predictive accuracy of TLS and 
LA compared to PD-1T TILs. The observation that tumors with high and low PD-1T TIL 
count do not show substantially different frequencies of TLS, but vary in the number 
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of PD-1T TILs within TLS can explain the difference in predictive value. Moreover, the 
increased infiltration of PD-1T TILs in the tumor parenchyma in the PD-1T high group 
suggests that not only expansion of PD-1T TILs in TLS, but also their infiltration in 
the tumor may be required for an effective response upon PD-1 blockade treatment. 
Further studies are needed to provide a more in-depth characterization of TLS-
associated and intratumoral PD-1T TIL subsets and to investigate a potential role of 
TLS in the expansion of these cells.

Taken together, we here established PD-1T TILs as a novel predictive biomarker for 
durable clinical benefit to PD-1 blockade in NSCLC. Importantly, the high NPV of 
the biomarker may allow for the reliable identification of those patients that are 
unlikely to benefit from PD-1 blockade, thus providing a tool to reduce overtreatment.
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◀ Figure S1. Standardized identification of PD-1T TILs by flowcytometry and digital IHC 
analysis. (A) PD-1T expression assessed by flow cytometry in total lymphocytes. Shown is the 
PD-1 expression on T cells from a reference sample derived from healthy donor peripheral 
blood (left) and from two representative NSCLC samples with either high or low PD-1T 
infiltration (right). The gate for PD-1+ T cells is shown in grey and for PD-1T TILs in red. 
(B) Immunohistochemical (IHC) analysis of PD-1T TILs. Example of a PD-1 IHC with digital 
markup; the black square shows PD-1T TILs localized in a tertiary lymphoid structure (TLS). 
(C) Correlation of flow cytometry and digital IHC algorithm-based quantification of PD-1T 
TILs in 16 NSCLC tumor samples. Shown are different OD thresholds with corresponding R2 
values. An OD of 0.25 was chosen as cut-off with the highest correlation, R2 = 0.615, P***<0.001. R2 
and P-values were calculated using linear regression analysis. (D) Correlation curve showing 
normalized PD-1T values for flowcytometry (FACS) and digital IHC analysis using a cut-off 
of 0.25 OD.
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Figure S2. Association of PD-1T TILs with long-term benefit and survival. (A) PD-1T TILs per 
mm2 in pretreatment samples from patients with disease control at 12 months (DC 12m) 
(n=12) and PD (n=31) in the training set (n=43) and (B) in the validation set (n=14, n=63). 
Dashed line indicates a cut-off of 90 PD-1T TILs per mm2. Medians, interquartile ranges and 
minimum/maximum shown in boxplots, **** P<0.0001 and *** P<0.001 by Mann Whitney 
U-test. (C) Progression-free survival (PFS) (median 26.1 versus 1.3 months, HR 0.30; 95% CI: 
0.16-0.58, *** P<0.001) and (D) overall survival (OS) (median 36.6 versus 6.9 months, HR 0.27; 
95% CI: 0.14-0.53, **** P<0.0001) of patients with PD-1T high (≥90 per mm2) (n=16) and PD-1T low 
(<90 per mm2) (n=27) pretreatment samples in the training set. Tick marks represent data 
censored at the last time the patient was known to be alive and without disease progression 
or death. P-value was determined by log-rank test.
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Figure S3. Association of PD-L1 TPS with DC at 6 months and impact of tissue sample 
properties on the predictive accuracy of PD-L1. (A) Percentage of patients with ≥50% (n=8), 
1-50% (n=19) and 0% PD-L1 expression (n=50) in pretreatment samples showing DC 6m and 
PD in the validation set (n=77). (B) ROC curve for predictive value of PD-L1 for DC 6m (AUC 
0.58; 95%-CI 0.43-0.74) in the validation set (n=77). (C-D) The predictive value of PD-L1 TPS 
in the total cohort and different subgroups. Each comparison is marked in a grey square. 
Shown is the area under the curve (AUC) for DC 6m (C) and 12m (D) with 95% CI interval. 
The dashed line indicates the AUC of PD-1T TILs in the total cohort. P-value was determined 
by one-sided permutation test.
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Figure S4. Combination of PD-L1 TPS and PD-L1 IC to predict clinical benefit. (A) Examples 
of IHC analysis of NSCLC tumors with IC0, IC1, IC2 and IC3 PD-L1 immune cell (IC) score. (B) 
Correlation of PD-L1 TPS scores and IC scores. The size of the circles indicates the number of 
tumors. R2 and P-values were calculated using linear regression analysis. (C-D) Sensitivity 
and specificity of biomarkers PD-L1 TPS at either 50% or 1% cut-off, PD-L1 IC 2, and PD-L1 TPS 
at either 50% or 1% cut-off plus PD-L1 IC 2 for DC 6m (C) and 12m (D) in all nivolumab treated 
patients (n=94). Results are compared to PD-1T 90 per mm2 as univariate biomarker.
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Figure S5. Combination of PD-1T TILs and PD-L1 to predict clinical benefit. (A) Correlation of 
PD-1T TILs and PD-L1 TPS. R2 and P-values were calculated using linear regression analysis. 
(B) IHC analysis of PD-1T TILs and PD-L1. Examples of tumors that are PD-1T high (≥90 per 
mm2)+PD-L1 high (≥50%), PD-1T high+PD-L1 low (<50%), PD-1T low (<90 per mm2)+PD-L1 high 
and PD-1T low+PD-L1 low. (C) Number of patients in the validation set (n=77) with either DC 
6m or PD in the following subgroups: (1) PD-L1 low (<50%)+PD-1T low (n=38), (2) PD-L1 low+PD-
1T high (n=31), (3) PD-L1 high (≥50%)+PD-1T low (n=4), and (4) PD-L1 high+PD-1T high (n=4). (D) 
Same plot as in C for DC 12m and PD. (E) Number of patients in the validation set (n=77) with 
either DC 6m or PD in the following subgroups: (1) PD-L1 low (<1%)+PD-1T low (n=30), (2) PD-L1 
low+PD-1T high (n=20), (3) PD-L1 high (≥1%)+PD-1T low (n=12) and (4) PD-L1 high+PD-1T high 
(n=15). (F) Same plot as in E for DC 12m. (G) Sensitivity and specificity of composite biomarkers 
PD-1T 90 per mm2 + PD-L1 at either 50% or 1% cut-off for DC 6m and 12m using samples from 
the validation set (n=77). Results are compared to PD-1T 90 per mm2 as univariate biomarker.
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◀ Figure S6. Association of TLS, LA and CD20 with clinical benefit. (A) Top: Example of a 
CD20-CD3 IHC double staining with the black square showing CD20+ B cells (in yellow) 
and CD3+ T cells (in purple) localizing in TLS. Bottom: Digital markup to quantify CD20-
positive areas. Colors indicate intensity of the staining. (B) CD20-positive area per mm2 in 
pretreatment samples with presence (n=46) and absence (n=40) of TLS and/or LA (referred 
as TLS+LA). Shown is the mean. (C) PD-1T TILs per mm2 inside and outside TLS+LA in resected 
samples (n=27) and of total tumor area for resected samples with no TLS+LA (n=5). Medians, 
interquartile ranges and minimum/maximum shown in boxplots, ****P<0.0001 by Mann-
Whitney test. (D) TLS+LA per mm2 in pretreatment samples from patients with DC 12m 
(n=20) and PD (n=71). Shown is the mean, *P=0.02 by Mann-Whitney test. (E) TLS and (F) 
TLS+LA per mm2 in pretreatment samples from patients with DC 6m (n=27) and PD (n=64). 
Shown is the mean, *P=0.03, **P<0.01 by Mann-Whitney test. (G) The predictive value of PD-
1T TILs, TLS, TLS+LA and CD20-positive area per mm2 for DC 6m (n=91, note that this cohort 
is smaller due to the availability of FFPE material). Shown are AUCs with 95% CI interval.
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Supplemental tables

Table S1. Exclusion criteria for PD-1T TILs assessment

List of Exclusion criteria:

• Samples containing <10,000 cells

• Samples obtained >2 years before start of ICB

• Samples from the bronchus site

• Samples containing normal lymphoid tissue
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Table S2. Overview of all analyzed biomarkers per patient.

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 001 1 1 T 1 265 0.00 0.14 0.22

NKI-AvL 002 0 0 T 40 25 0.00 0.35 0.57

NKI-AvL 003 0 0 T 0 80 0.19 0.50 2.62

NKI-AvL 004 0 0 T 90 67 0.00 0.00 0.10

NKI-AvL 005 1 1 T 0 298 0.00 0.55 0.34

NKI-AvL 006 0 0 T 0 6 0.00 0.00 0.36

NKI-AvL 007 0 0 T 0 204 0.00 0.24 0.38

NKI-AvL 008 1 1 T 80 367 0.28 0.44 1.08

NKI-AvL 009 0 0 T 0 43 0.01 0.04 0.17

NKI-AvL 010 0 0 T 0 21 0.00 0.00 0.01

NKI-AvL 011 0 0 T 30 31 0.00 0.01 0.08

NKI-AvL 012 0 0 T 1 150 0.00 0.22 0.34

NKI-AvL 013 0 0 T 0 18 0.00 0.02 0.21

NKI-AvL 014 0 0 T 100 230 0.08 0.24 1.45

NKI-AvL 015 0 0 T 0 55 0.00 0.02 0.15

NKI-AvL 016 1 1 T 1 181 0.05 0.16 0.51

NKI-AvL 017 0 0 T 0 126 0.00 0.00 0.03

NKI-AvL 018 1 1 T 30 226 0.16 0.47 1.80

NKI-AvL 019 0 0 T 10 244 0.00 0.00 0.02

NKI-AvL 020 1 1 T 100 319 0.07 0.31 1.31

NKI-AvL 021 1 1 T 1 352 0.66 1.33 5.93

NKI-AvL 022 0 0 T 40 51 0.01 0.07 0.20

NKI-AvL 023 0 0 T 30 80 0.02 0.06 0.20

NKI-AvL 024 0 0 T 0 31 NA NA NA

NKI-AvL 025 1 1 T 0 104 NA NA NA

NKI-AvL 026 1 1 T 5 1 0 0 0.05

NKI-AvL 027 0 0 T 0 27 0 0 0.04

NKI-AvL 028 0 0 T 20 44 NA NA NA

NKI-AvL 029 1 0 T 0 31 0 0.13 0.21

NKI-AvL 030 0 0 T 30 29 0 0 0.08

NKI-AvL 031 0 0 V 40 152 0.12 0.12 0.19

NKI-AvL 032 0 0 V 0 67 0.00 0.48 2.73

NKI-AvL 033 1 1 V 0 537 0.00 0.00 0.63

NKI-AvL 034 1 0 V 90 24 0.00 0.00 0.00

NKI-AvL 035 0 0 V 0 70 0.00 0.00 0.10

NKI-AvL 036 1 0 V 0 828 0.21 0.43 1.87
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Table S2. Overview of all analyzed biomarkers per patient.

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 001 1 1 T 1 265 0.00 0.14 0.22

NKI-AvL 002 0 0 T 40 25 0.00 0.35 0.57

NKI-AvL 003 0 0 T 0 80 0.19 0.50 2.62

NKI-AvL 004 0 0 T 90 67 0.00 0.00 0.10

NKI-AvL 005 1 1 T 0 298 0.00 0.55 0.34

NKI-AvL 006 0 0 T 0 6 0.00 0.00 0.36

NKI-AvL 007 0 0 T 0 204 0.00 0.24 0.38

NKI-AvL 008 1 1 T 80 367 0.28 0.44 1.08

NKI-AvL 009 0 0 T 0 43 0.01 0.04 0.17

NKI-AvL 010 0 0 T 0 21 0.00 0.00 0.01

NKI-AvL 011 0 0 T 30 31 0.00 0.01 0.08

NKI-AvL 012 0 0 T 1 150 0.00 0.22 0.34

NKI-AvL 013 0 0 T 0 18 0.00 0.02 0.21

NKI-AvL 014 0 0 T 100 230 0.08 0.24 1.45

NKI-AvL 015 0 0 T 0 55 0.00 0.02 0.15

NKI-AvL 016 1 1 T 1 181 0.05 0.16 0.51

NKI-AvL 017 0 0 T 0 126 0.00 0.00 0.03

NKI-AvL 018 1 1 T 30 226 0.16 0.47 1.80

NKI-AvL 019 0 0 T 10 244 0.00 0.00 0.02

NKI-AvL 020 1 1 T 100 319 0.07 0.31 1.31

NKI-AvL 021 1 1 T 1 352 0.66 1.33 5.93

NKI-AvL 022 0 0 T 40 51 0.01 0.07 0.20

NKI-AvL 023 0 0 T 30 80 0.02 0.06 0.20

NKI-AvL 024 0 0 T 0 31 NA NA NA

NKI-AvL 025 1 1 T 0 104 NA NA NA

NKI-AvL 026 1 1 T 5 1 0 0 0.05

NKI-AvL 027 0 0 T 0 27 0 0 0.04

NKI-AvL 028 0 0 T 20 44 NA NA NA

NKI-AvL 029 1 0 T 0 31 0 0.13 0.21

NKI-AvL 030 0 0 T 30 29 0 0 0.08

NKI-AvL 031 0 0 V 40 152 0.12 0.12 0.19

NKI-AvL 032 0 0 V 0 67 0.00 0.48 2.73

NKI-AvL 033 1 1 V 0 537 0.00 0.00 0.63

NKI-AvL 034 1 0 V 90 24 0.00 0.00 0.00

NKI-AvL 035 0 0 V 0 70 0.00 0.00 0.10

NKI-AvL 036 1 0 V 0 828 0.21 0.43 1.87
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Table S2. Continued

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 037 0 0 V 0 434 0.45 0.63 3.41

NKI-AvL 038 0 0 V 0 83 0.00 0.00 0.03

NKI-AvL 039 1 1 V 0 115 0.14 0.28 0.45

NKI-AvL 040 0 0 V 0 34 0.22 0.77 1.89

NKI-AvL 041 1 1 V 100 130 0.00 0.00 0.29

NKI-AvL 042 0 0 V 0 98 0.00 0.00 0.01

NKI-AvL 043 0 0 V 40 44 0.00 0.00 0.05

NKI-AvL 044 0 0 V 0 68 0.00 0.00 0.01

NKI-AvL 045 1 1 V 5 210 0.00 0.00 0.25

NKI-AvL 046 0 0 V 0 1875 0.89 2.98 11.07

NKI-AvL 047 0 0 V 1 25 0.00 0.65 0.79

NKI-AvL 048 0 0 V 40 351 0.00 0.00 0.07

NKI-AvL 049 1 1 V 40 110 0.00 0.11 0.33

NKI-AvL 050 0 0 V 1 43 0.00 0.03 0.17

NKI-AvL 051 0 0 V 0 6 0.00 0.00 0.02

NKI-AvL 052 0 0 V 0 457 0.00 0.00 0.51

NKI-AvL 053 0 0 V 1 321 0.00 0.00 0.06

NKI-AvL 054 1 1 V 95 280 0.03 0.33 1.40

NKI-AvL 055 0 0 V 10 201 0.00 0.21 0.78

NKI-AvL 056 1 1 V 0 213 0.03 0.30 1.08

NKI-AvL 057 1 1 V 0 409 0.48 1.28 2.03

NKI-AvL 058 0 0 V 0 41 0.11 0.49 0.97

NKI-AvL 059 0 0 V 0 21 0.05 0.17 0.66

NKI-AvL 060 0 0 V 10 9 0.00 0.00 0.05

NKI-AvL 061 1 0 V 0 17 0.00 0.00 0.76

NKI-AvL 062 0 0 V 1 3 0.00 0.00 0.01

NKI-AvL 063 0 0 V 0 26 0.08 0.58 1.43

NKI-AvL 064 0 0 V 60 17 0.00 0.00 0.19

NKI-AvL 065 0 0 V 0 13 0.00 0.00 0.00

NKI-AvL 066 0 0 V 0 128 0.00 0.00 0.02

NKI-AvL 067 1 1 V 0 211 0.00 0.55 1.58

NKI-AvL 068 0 0 V 0 85 0.00 0.00 0.06

NKI-AvL 069 0 0 V 0 152 0.03 0.20 0.63

NKI-AvL 070 0 0 V 0 13 0.00 0.00 0.04

NKI-AvL 071 0 0 V 0 7 0.00 0.00 0.00

NKI-AvL 072 0 0 V 0 236 0.14 0.60 2.00
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Table S2. Continued

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 037 0 0 V 0 434 0.45 0.63 3.41

NKI-AvL 038 0 0 V 0 83 0.00 0.00 0.03

NKI-AvL 039 1 1 V 0 115 0.14 0.28 0.45

NKI-AvL 040 0 0 V 0 34 0.22 0.77 1.89

NKI-AvL 041 1 1 V 100 130 0.00 0.00 0.29

NKI-AvL 042 0 0 V 0 98 0.00 0.00 0.01

NKI-AvL 043 0 0 V 40 44 0.00 0.00 0.05

NKI-AvL 044 0 0 V 0 68 0.00 0.00 0.01

NKI-AvL 045 1 1 V 5 210 0.00 0.00 0.25

NKI-AvL 046 0 0 V 0 1875 0.89 2.98 11.07

NKI-AvL 047 0 0 V 1 25 0.00 0.65 0.79

NKI-AvL 048 0 0 V 40 351 0.00 0.00 0.07

NKI-AvL 049 1 1 V 40 110 0.00 0.11 0.33

NKI-AvL 050 0 0 V 1 43 0.00 0.03 0.17

NKI-AvL 051 0 0 V 0 6 0.00 0.00 0.02

NKI-AvL 052 0 0 V 0 457 0.00 0.00 0.51

NKI-AvL 053 0 0 V 1 321 0.00 0.00 0.06

NKI-AvL 054 1 1 V 95 280 0.03 0.33 1.40

NKI-AvL 055 0 0 V 10 201 0.00 0.21 0.78

NKI-AvL 056 1 1 V 0 213 0.03 0.30 1.08

NKI-AvL 057 1 1 V 0 409 0.48 1.28 2.03

NKI-AvL 058 0 0 V 0 41 0.11 0.49 0.97

NKI-AvL 059 0 0 V 0 21 0.05 0.17 0.66

NKI-AvL 060 0 0 V 10 9 0.00 0.00 0.05

NKI-AvL 061 1 0 V 0 17 0.00 0.00 0.76

NKI-AvL 062 0 0 V 1 3 0.00 0.00 0.01

NKI-AvL 063 0 0 V 0 26 0.08 0.58 1.43

NKI-AvL 064 0 0 V 60 17 0.00 0.00 0.19

NKI-AvL 065 0 0 V 0 13 0.00 0.00 0.00

NKI-AvL 066 0 0 V 0 128 0.00 0.00 0.02

NKI-AvL 067 1 1 V 0 211 0.00 0.55 1.58

NKI-AvL 068 0 0 V 0 85 0.00 0.00 0.06

NKI-AvL 069 0 0 V 0 152 0.03 0.20 0.63

NKI-AvL 070 0 0 V 0 13 0.00 0.00 0.04

NKI-AvL 071 0 0 V 0 7 0.00 0.00 0.00

NKI-AvL 072 0 0 V 0 236 0.14 0.60 2.00
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Table S2. Continued

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 073 0 0 V 0 56 0.00 0.00 0.09

NKI-AvL 074 0 0 V 0 15 0.00 0.00 0.04

NKI-AvL 075 0 0 V 1 152 0.00 0.00 0.41

NKI-AvL 076 0 0 V 80 206 0.00 0.00 0.03

NKI-AvL 077 0 0 V 0 2 0.00 0.00 0.00

NKI-AvL 078 0 0 V 0 6 0.00 0.00 0.03

NKI-AvL 079 0 0 V 0 35 0.01 0.05 0.38

NKI-AvL 080 0 0 V 10 22 0.00 0.00 0.08

NKI-AvL 081 1 0 V 0 214 0.29 0.58 1.86

NKI-AvL 082 0 0 V 0 49 0.01 0.09 0.31

NKI-AvL 083 1 0 V 0 160 0.05 0.22 0.21

NKI-AvL 084 1 0 V 0 67 0.00 0.06 0.18

NKI-AvL 085 0 0 V 60 66 0.00 0.00 0.05

NKI-AvL 086 0 0 V 0 49 0.00 0.00 0.03

NKI-AvL 087 1 1 V 95 193 0.00 0.00 0.01

NKI-AvL 088 0 0 V 40 24 0.00 0.00 0.00

NKI-AvL 089 0 0 V 0 11 0.00 0.00 0.10

NKI-AvL 090 1 1 V 100 60 0.00 0.00 0.02

NKI-AvL 091 0 0 V 1 380 0.13 0.33 1.33

NKI-AvL 092 0 0 V 0 2 0.00 0.00 0.07

NKI-AvL 093 1 1 V 0 139 0.02 0.14 0.28

NKI-AvL 094 0 0 V 0 0 0.00 0.00 0.02

NKI-AvL 095 1 1 T 60 459 NA NA NA

NKI-AvL 096 1 1 T 80 245 NA NA NA

NKI-AvL 097 1 1 T 0 595 NA NA NA

NKI-AvL 098 1 0 T 0 13 NA NA NA

NKI-AvL 099 0 0 T 0 39 NA NA NA

NKI-AvL 100 0 0 T 0 4 NA NA NA

NKI-AvL 101 0 0 T 30 85 NA NA NA

NKI-AvL 102 0 0 T 0 28 NA NA NA

NKI-AvL 103 0 0 T 0 84 NA NA NA

NKI-AvL 104 0 0 T 0 83 NA NA NA

NKI-AvL 105 0 0 T 80 65 NA NA NA

NKI-AvL 106 0 0 T 0 2 NA NA NA

NKI-AvL 107 0 0 T 0 57 NA NA NA

NKI-AvL 108 0 0 V 0 161 NA NA NA
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Table S2. Continued

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 073 0 0 V 0 56 0.00 0.00 0.09

NKI-AvL 074 0 0 V 0 15 0.00 0.00 0.04

NKI-AvL 075 0 0 V 1 152 0.00 0.00 0.41

NKI-AvL 076 0 0 V 80 206 0.00 0.00 0.03

NKI-AvL 077 0 0 V 0 2 0.00 0.00 0.00

NKI-AvL 078 0 0 V 0 6 0.00 0.00 0.03

NKI-AvL 079 0 0 V 0 35 0.01 0.05 0.38

NKI-AvL 080 0 0 V 10 22 0.00 0.00 0.08

NKI-AvL 081 1 0 V 0 214 0.29 0.58 1.86

NKI-AvL 082 0 0 V 0 49 0.01 0.09 0.31

NKI-AvL 083 1 0 V 0 160 0.05 0.22 0.21

NKI-AvL 084 1 0 V 0 67 0.00 0.06 0.18

NKI-AvL 085 0 0 V 60 66 0.00 0.00 0.05

NKI-AvL 086 0 0 V 0 49 0.00 0.00 0.03

NKI-AvL 087 1 1 V 95 193 0.00 0.00 0.01

NKI-AvL 088 0 0 V 40 24 0.00 0.00 0.00

NKI-AvL 089 0 0 V 0 11 0.00 0.00 0.10

NKI-AvL 090 1 1 V 100 60 0.00 0.00 0.02

NKI-AvL 091 0 0 V 1 380 0.13 0.33 1.33

NKI-AvL 092 0 0 V 0 2 0.00 0.00 0.07

NKI-AvL 093 1 1 V 0 139 0.02 0.14 0.28

NKI-AvL 094 0 0 V 0 0 0.00 0.00 0.02

NKI-AvL 095 1 1 T 60 459 NA NA NA

NKI-AvL 096 1 1 T 80 245 NA NA NA

NKI-AvL 097 1 1 T 0 595 NA NA NA

NKI-AvL 098 1 0 T 0 13 NA NA NA

NKI-AvL 099 0 0 T 0 39 NA NA NA

NKI-AvL 100 0 0 T 0 4 NA NA NA

NKI-AvL 101 0 0 T 30 85 NA NA NA

NKI-AvL 102 0 0 T 0 28 NA NA NA

NKI-AvL 103 0 0 T 0 84 NA NA NA

NKI-AvL 104 0 0 T 0 83 NA NA NA

NKI-AvL 105 0 0 T 80 65 NA NA NA

NKI-AvL 106 0 0 T 0 2 NA NA NA

NKI-AvL 107 0 0 T 0 57 NA NA NA

NKI-AvL 108 0 0 V 0 161 NA NA NA
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Table S2. Continued

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 109 0 0 V 0 194 NA NA NA

NKI-AvL 110 0 0 V 0 42 NA NA NA

NKI-AvL 111 0 0 V 0 552 NA NA NA

NKI-AvL 112 0 0 V 3 193 NA NA NA

NKI-AvL 113 0 0 V 0 7 NA NA NA

NKI-AvL 114 1 0 V 0 139 NA NA NA

NKI-AvL 115 0 0 V 0 25 NA NA NA

NKI-AvL 116 1 0 V 0 12 NA NA NA

NKI-AvL 117 1 1 V 2 868 NA NA NA

NKI-AvL 118 1 1 V 40 96 NA NA NA

NKI-AvL 119 0 0 V 0 66 NA NA NA

NKI-AvL 120 0 0 V 1 0 NA NA NA
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Table S2. Continued

Sample ID 1 = DC 6 months, 
0= PD

1 = DC 12 months, 
0= PD

T=training
V=validation

PD-L1 TPS PD-1T per mm2 
tumor area

TLS per mm2 TLS+LA per 
mm2

CD20-positive 
area per mm2

NKI-AvL 109 0 0 V 0 194 NA NA NA

NKI-AvL 110 0 0 V 0 42 NA NA NA

NKI-AvL 111 0 0 V 0 552 NA NA NA

NKI-AvL 112 0 0 V 3 193 NA NA NA

NKI-AvL 113 0 0 V 0 7 NA NA NA

NKI-AvL 114 1 0 V 0 139 NA NA NA

NKI-AvL 115 0 0 V 0 25 NA NA NA

NKI-AvL 116 1 0 V 0 12 NA NA NA

NKI-AvL 117 1 1 V 2 868 NA NA NA

NKI-AvL 118 1 1 V 40 96 NA NA NA

NKI-AvL 119 0 0 V 0 66 NA NA NA

NKI-AvL 120 0 0 V 1 0 NA NA NA
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Table S3. Patient characteristics and treatment outcomes for training and validation set.

Training cohort Validation cohort

n=43 n=77

Sex P=0.13    

Male, no.(%)   18 (42%) 44 (57%)

Female, no.(%)   25 (58%) 33 (43%)

Age (years), mean (s.d.) P=0.21 64 (8) 62 (9)

Smoking (never/ex/current) P=0.84 3/35/5 8/58/11

Pack years, median (IQR) P=0.62 30 (21) 28 (28)

PS, no.(%) P=0.53    

0   12 (28%) 24 (31%)

1   22 (51%) 43 (56%)

≥2   9 (21%) 10 (13%)

Pathology, no.(%) P=0.90    

Adeno   26 (60%) 50 (65%)

Squamous   9 (21%) 12 (16%)

LCNEC, NSCLC-type   1 (2%) 2 (2%)

NSCLC, NOS   7 (16%) 13 (17%)

Mutations, no. (%) P=0.18    

KRAS positive   22 (51%) 29 (38%)

PD-L1 TPS, no. (%)    

Negative <1%  P=0.17 22 (51%) 50 (65%)

Positive ≥1%   21 (49%) 27 (35%)

Negative <50% P=0.39 36 (84%) 69 (90%)

Positive ≥50% 7 (16%) 8 (10%)

Brain metastases, no. (%) P=1.00 7 (16%) 14 (18%)

Treatment, no. (%) P=0.11    

Nivolumab 30 (70%) 64 (83%)

Pembrolizumab   13 (30%) 13 (17%)

Line of treatment, no (%) P=0.19    

1   0 (0%) 1 (1%)

2   35 (81%) 52 (68%)

>2   8 (19%) 24 (31%)

Best Overall Response P=0.47    

CR/PR   12 (28%) 12 (16%)

SD (PFS ≥6 months)   2 (5%) 11 (14%)

SD (PFS <6 months)   2 (5%) 4 (5%)

PD   27 (63%) 50 (65%)
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Table S3. Continued

Training cohort Validation cohort

n=43 n=77

DC      

6 months P=0.68 33% (14/43) 29% (22/77)

12 months P=0.25 28% (12/43) 18% (14/77)

s.d., standard deviation; IQR, interquartile range; PS, Performance Score, based on the 
European Cooperative Oncology group (ECOG) performance status score. This is a score 
ranging from 0 to 5, where 0 indicates no symptoms, 1 indicates mild symptoms and above 
1 indicates greater disability; LCNEC NSCLC type, large cell neuroendocrine carcinoma non-
small cell lung cancer type; NOS, not otherwise specified; KRAS, Kirsten Rat Sarcoma viral 
oncogene; PD-L1, programmed death ligand 1; TPS, tumor proportion score; CR, complete 
response; PR, partial response; SD, stable disease; PD, progressive disease; DC, disease control.

Table S4. Tissue sample properties of the training and validation set.

Training cohort Validation cohort

n=43 n=77

Sample type P=0.33    

Biopsy 30 (70%) 58 (75%)

Resection 13 (30%) 19 (25%)

Sample site P=0.46    

Primary 19 (44%) 32 (41%)

Metastasis 16 (37%) 36 (47%)

Lung 1 5

Adrenal gland 3 7

Bone 0 7

Pleurae 0 1

Brain 0 2

Muscle / Subcutaneous 3 8

Liver 6 3

Mamma 2 1

Gastrointestinal 1 2

Lymph node metastasis 8 (19%) 9 (12%)
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Table S5. The relationship between PD-1T and clinicopathological variables as categories.

PD-1T <90 per mm2 PD-1T ≥90 per mm2

n=69 n=51

Sex P=0.58    

Male, no. (%)   34 (49%) 28 (55%)

Female, no. (%)   35 (51%) 23 (45%)

Age (years), median (IQR) P=0.96 63 (57 - 70) 64 (58 - 68)

Smoking (never/ex/current) P=0.47 8/52/9 3/41/7

Pack years, median (IQR) P=0.18 25 (13 - 40) 30 (20 - 40)

PS, no. (%) P=0.11    

0   18 (26%) 18 (35%)

1   37 (54%) 28 (55%)

≥2   14 (20%) 5 (10%)

Pathology, no. (%) P=0.20    

Adeno   48 (69%) 28 (55%)

Squamous   8 (12%) 13 (25%)

LCNEC, NSCLC-type   2 (3%) 1 (2%)

NSCLC, NOS   11 (16%) 9 (18%)

Mutations, no. (%) P=1    

KRAS positive   31 (45%) 20 (39%)

KRAS negative   26 (38%) 17 (33%)

KRAS unknown   12 (17%) 14 (28%)

PD-L1 TPS, no. (%)    

Negative *P=0.04 47 (74%) 25 (63%)

Positive ≥1% 22 (26%) 26 (37%)

Negative <50% P=0.17 63 (91%) 42 (82%)

Positive ≥50% 6 (9%) 9 (18%)

Brain metastases, no. (%) P=0.22 15 (22%) 6 (12%)

Treatment, no. (%) P=0.66    

Nivolumab   53 (77%) 41 (80%)

Pembrolizumab   16 (23%) 10 (20%)

Line of treatment, no (%) P=0.21    

1   1 (1%) 0 (0%)

2   53 (77%) 34 (67%)

>2   15 (22%) 17 (%)
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Table S6. The relationship between PD-1T and clinicopathological variables as continuous 
variable.

PD-1T TILs per mm2 (quantiles)

 0% 25% 50% 75% 100%

Sex P=0.67  

Male (n=62)   0 25 67 201 1875

Female (n=58)   1 26 69 199 868

Smoking P=0.86  

Ex (n=93)   0 24 66 194 1875

Current (n=16)   7 40 82 207 457

PS P=0.19  

0 (n=36)   2 25 85 238 868

1 (n=65)   0 27 80 181 1875

≥2 (n=19)   0 26 66 118 457

Pathology P= 0.60  

Adeno (n=76)   0 25 63 184 1875

Squamous (n=21)   2 31 139 213 595

LCNEC, NSCLC-type (n=3)   0 21 82 264 552

NSCLC, NOS (n=20)   7 37 67 97 126

Mutations P= 0.42  

KRAS positive (n=51)   0 30 80 200 1875

KRAS negative (n=43)   2 20 66 212 595

KRAS unknown (n=26)   0 26 101 185 298

Brain metastases P=0.38  

Yes (n=21)   0 29 60 152 828

No (n=99)   0 25 80 207 1875

Treatment P=0.81  

Nivolumab (n=94)   0 25 68 206 1875

Pembrolizumab (n=26)   0 26 75 185 868

Line of treatment P= 0.13  

1 (n=1)  

2 (n=87)   0 25 66 187 868

>2 (n=32)   0 26 104 258 1875
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Table S7. Predictive accuracy of PD-L1 TPS at 1%, 5%, 10% and 50% cut-off in the validation 
set (n=77).

Clinical outcome Biomarker AUC Cut-off Sensitivity Specificity NPV PPV

DC 6m % PD-L1 TPS 0.58 95% CI: 0.43-0.74 <1% vs. ≥1% 41% 67% 74% 33%

<5% vs. ≥5% 36% 82% 76% 44%

<10% vs. ≥10% 32% 82% 75% 41%

<50% vs. ≥50% 23% 95% 75% 63%

DC 12m % PD-L1 TPS 0.68 95% CI: 0.51-0.86 <1% vs. ≥1% 57% 70% 88% 30%

<5% vs. ≥5% 50% 83% 88% 39%

<10% vs. ≥10% 43% 83% 87% 35%

<50% vs. ≥50% 29% 94% 86% 50%

Table S8. Predictive accuracy of composite biomarkers PD-L1 TPS+PD-L1 IC in all nivolumab 
treated patients (n=94).

Clinical outcome Biomarker Cut-off Sensitivity Specificity NPV PPV

DC 6 months % PD-L1 TPS + PD-L1 IC <50%+<2 vs. ≥50%+<2 and <50%+≥2 and ≥50%+≥2 82 44 85 38

DC 6 months % PD-L1 TPS + PD-L1 IC <1%+<2 vs. ≥1%+<2 and <1%+≥2 and ≥1%+≥2 82 53 88 43

DC 12 months % PD-L1 TPS + PD-L1 IC <50%+<2 vs. ≥50%+<2 and <50%+≥2 and ≥50%+≥2 90 44 94 32

DC 12 months % PD-L1 TPS + PD-L1 IC <1%+<2 vs. ≥1%+<2 and <1%+≥2 and ≥1%+≥2 90 52 95 35

Table S9. Predictive accuracy of composite biomarkers PD-1T TILs+PD-L1.

Clinical outcome Biomarker Cut-off Sensitivity Specificity NPV PPV

DC 6 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<50% vs. ≥90+<50% and <90+≥50% and 
≥90+≥50%

86% 64% 92% 49%

DC 6 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<1% vs. ≥90+<1% and <90+≥1% and 
≥90+≥1%

86% 49% 90% 40%

DC 12 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<50% vs. ≥90+<50% and <90+≥50% and 
≥90+≥50%

100% 60% 100% 36%

DC 12 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<1% vs. ≥90+<1% and <90+≥1% and 
≥90+≥1%

100% 48% 100% 30%
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Table S7. Predictive accuracy of PD-L1 TPS at 1%, 5%, 10% and 50% cut-off in the validation 
set (n=77).

Clinical outcome Biomarker AUC Cut-off Sensitivity Specificity NPV PPV

DC 6m % PD-L1 TPS 0.58 95% CI: 0.43-0.74 <1% vs. ≥1% 41% 67% 74% 33%

<5% vs. ≥5% 36% 82% 76% 44%

<10% vs. ≥10% 32% 82% 75% 41%

<50% vs. ≥50% 23% 95% 75% 63%

DC 12m % PD-L1 TPS 0.68 95% CI: 0.51-0.86 <1% vs. ≥1% 57% 70% 88% 30%

<5% vs. ≥5% 50% 83% 88% 39%

<10% vs. ≥10% 43% 83% 87% 35%

<50% vs. ≥50% 29% 94% 86% 50%

Table S8. Predictive accuracy of composite biomarkers PD-L1 TPS+PD-L1 IC in all nivolumab 
treated patients (n=94).

Clinical outcome Biomarker Cut-off Sensitivity Specificity NPV PPV

DC 6 months % PD-L1 TPS + PD-L1 IC <50%+<2 vs. ≥50%+<2 and <50%+≥2 and ≥50%+≥2 82 44 85 38

DC 6 months % PD-L1 TPS + PD-L1 IC <1%+<2 vs. ≥1%+<2 and <1%+≥2 and ≥1%+≥2 82 53 88 43

DC 12 months % PD-L1 TPS + PD-L1 IC <50%+<2 vs. ≥50%+<2 and <50%+≥2 and ≥50%+≥2 90 44 94 32

DC 12 months % PD-L1 TPS + PD-L1 IC <1%+<2 vs. ≥1%+<2 and <1%+≥2 and ≥1%+≥2 90 52 95 35

Table S9. Predictive accuracy of composite biomarkers PD-1T TILs+PD-L1.

Clinical outcome Biomarker Cut-off Sensitivity Specificity NPV PPV

DC 6 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<50% vs. ≥90+<50% and <90+≥50% and 
≥90+≥50%

86% 64% 92% 49%

DC 6 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<1% vs. ≥90+<1% and <90+≥1% and 
≥90+≥1%

86% 49% 90% 40%

DC 12 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<50% vs. ≥90+<50% and <90+≥50% and 
≥90+≥50%

100% 60% 100% 36%

DC 12 months PD-1T TILs per mm2 +
% PD-L1 TPS

<90+<1% vs. ≥90+<1% and <90+≥1% and 
≥90+≥1%

100% 48% 100% 30%
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Abstract

Background
The efficacy of PD-1 blocking agents in advanced NSCLC has shown prolonged 
effectiveness, but only in a minority of patients. Multiple biomarkers have been 
explored to predict treatment benefit, yet their combined performance remains 
inadequately examined. In this study, we assessed the combined predictive 
performance of multiple biomarkers in NSCLC patients treated with nivolumab.

Methods
Pretreatment samples from 135 patients receiving nivolumab were used to 
evaluate the predictive performance of CD8 tumor-infiltrating lymphocytes (TILs), 
intratumoral (IT) localization of CD8 TILs, PD-1 high expressing TILs (PD-1T TILs), CD3 
TILs, CD20 B-cells, tertiary lymphoid structures (TLS), PD-L1 tumor proportion score 
(TPS) and the Tumor Inflammation score (TIS). Patients were randomly assigned to 
a training (n=55) and validation cohort (n=80). The primary outcome measure was 
Disease Control at 6 months (DC 6m) and the secondary outcome measure was DC 
at 12 months (DC 12m).

Results
In the validation cohort, the two best performing composite biomarkers (i.e. CD8+IT-
CD8 and CD3+IT-CD8) demonstrated similar or lower sensitivity (64% and 83%) and 
NPV (76% and 85%) compared to individual biomarkers PD-1T TILs and TIS (sensitivity: 
72% and 83%, NPV: 86% and 84%) for DC 6m, respectively. Additionally, at 12 months, 
both selected composite biomarkers (CD8+IT-CD8 and CD8+TIS) demonstrated 
inferior predictive performance compared to PD-1T TILs and TIS alone. PD-1T TILs 
and TIS showed high sensitivity (86% and 100%) and NPV (95% and 100%) for DC 12m. 
PD-1T TILs could more accurately discriminate patients with no long-term benefit, 
as specificity was substantially higher compared to TIS (74% versus 39%).

Conclusion
Composite biomarkers did not show improved predictive performance compared to 
PD-1T TILs and TIS alone for both the 6- and 12-month endpoints. PD-1T TILs and TIS 
identified patients with DC 12m with high sensitivity. Patients with no long-term 
benefit to PD-1 blockade were most accurately identified by PD-1T TILs.
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Introduction

The success of monoclonal antibodies targeting the inhibitory receptor programmed 
cell death protein 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1) has 
changed the therapeutic landscape of advanced stage non-small cell lung cancer 
(NSCLC). A subset of patients treated with these PD-1/PD-L1 blocking agents 
experience durable responses, translating into a significant survival advantage1–7. 
However, the majority fails to derive durable clinical benefit, underscoring the need 
for predictive biomarkers to support treatment decision-making in clinical practice. 
Specifically, the identification of biomarkers capable of excluding patients unlikely 
to benefit from PD-1/PD-L1 blockade therapy can prevent unnecessary side effects 
and contribute to the reduction of health care costs.

The assessment of tumor PD-L1 expression through immunohistochemistry (IHC) 
has been a focal point in numerous clinical trials as a potential predictive biomarker8. 
Although a positive correlation between PD-L1 expression and treatment outcomes 
has been observed in advanced stage NSCLC patients1,5–7, a considerable proportion 
(60% to 70%) of patients with PD-L1 positive tumors do not respond1,2,5. Besides this, 
PD-L1 assessment by IHC is hampered by intratumor heterogeneity, interassay- and 
interobserver variability as well as pre-analytical variation9–14. Tumor Mutation 
Burden (TMB), reflecting the number of somatic mutations as a surrogate for 
potential tumor antigenicity, has also shown predictive potential. However, its 
clinical implementation faces challenges, including the lack of a robust and 
predictive TMB cut-off and technical issues related to variation across platforms15–17.

Given these challenges, there is an urgent need for biomarkers that can more 
accurately predict responses to PD-1/PD-L1 blockade in advanced NSCLC. Since this 
treatment regimen is thought to reinvigorate tumor-reactive T cells18–20, several T cell 
markers have been investigated. For example, the density of CD8+ tumor infiltrating 
lymphocytes (TILs) has been correlated with responses to PD-1 blockade in various 
cancer types, including melanoma18, colorectal cancer21, and NSCLC22,23. In addition, 
previous work showed that a distinct T cell population, termed PD-1T TILs, can 
predict clinical benefit in NSCLC24,25. These PD-1T TILs predominantly localize in 
tertiary lymphoid structures (TLS)24,25. Notably, B cells, critical components of these 
TLS, have also been associated with response to PD-1 blocking agents26–28. Other 
studies have developed predictive RNA expression signatures, such as the “tumor 
inflammation signature” (TIS), characterizing features of immune activity in the 
tumor microenvironment (TME)29–31.
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While these individual biomarkers show predictive potential, their accuracy is 
limited, likely due to the multifaceted nature of the antitumor immune response. 
Therefore, combining biomarkers holds promise for enhancing predictive accuracy, 
as demonstrated previously for combinations like TMB with PD-L132,33 and CD8 
TILs with PD-L122,34. Thus, the primary objective of this study is to investigate the 
performance of biomarker pairs, including CD8, PD-1T and CD3 TILs, CD20+ B cells, 
TLS, PD-L1, and TIS, and compare their efficacy against individual biomarkers in 
predicting clinical benefit to PD-1 blockade in NSCLC.
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Methods

Patients, endpoints and samples
In this study, 162 patients with pathologically confirmed stage IV NSCLC were eligible 
for efficacy analysis. All enrolled patients started second or later line monotherapy 
nivolumab, administered intravenously at a dose of 3mg/kg every two weeks for 
at least one dose, between October 2014 and August 2017 at the Netherlands Cancer 
Institute/Antoni van Leeuwenhoek hospital (NKI-AVL), the Netherlands. Patients 
with tumors harboring known sensitizing EGFR mutations or ALK translocations 
were excluded from treatment. A randomization process was employed to allocate 
patients into a training and validation cohort. This randomization was stratified 
by treatment outcome at 6 months and at 12 months. Since we could only generate 
gene expression data in 68/162 (42%) of patients’ tumors, additional stratification was 
done by whether mRNA expression analysis was performed or not. Stratification for 
missing values of other biomarkers was not performed, as the number of excluded 
samples per biomarker remained relatively low, ranging from 1 to 32 (see Fig. S1 and 
later in this section).

Response to treatment was evaluated according to the Response Evaluation Criteria 
in Solid Tumors (RECIST) version 1.1. Patients with progressive disease (PD) who 
were not evaluable for response assessment were designated by the treating 
physician as having PD. The primary clinical outcome was Disease Control (DC), 
defined as achieving a complete response (CR), partial response (PR) or maintaining 
stable disease (SD) at the 6-month mark following the initiation of treatment. As a 
secondary outcome measure, DC 12m was employed, representing the persistence of 
CR, PR or SD for a duration of 12 months or more. This secondary endpoint aimed to 
serve as an indicator of the long-term efficacy to PD-1 blockade therapy.

Pretreatment formalin-fixed paraffin embedded (FFPE) tumor tissue samples 
were collected from all patients. Written informed consent for the research 
usage of material, not essential for diagnostic purposes, was obtained from 
each patient by an institutionally implemented opt-out procedure. The study 
was conducted in accordance with the Declaration of Helsinki. The data was 
accessed for research purposes after the approval by the Institutional Review 
Board (IRB) of the Netherlands Cancer Institute on January 11, 2018 (CFMPB586). 
After K.H., M.M., R.D.S., M.M.H., E.F.S. and K.M. retrieved archived tumor samples 
and response data from medical records, all patients were pseudonymized. PD-1T 
TIL and PD-L1 tumor proportion score (TPS) data for 94 samples as well as tertiary 
lymphoid structures (TLS) and CD20+ B cell data for 91 samples were used from 
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previous work25. In 27 patients, none of the biomarkers could be assessed because 
samples did not contain tumor tissue. In one sample no tumor tissue was left 
for CD8 and PD-1T TIL analysis, and five samples had insufficient tumor tissue 
for CD3 TIL, TLS and CD20+ B cell analysis (Fig. S1). An additional number of 32 
patients were excluded for PD-1T TIL analysis based on the following criteria: 
samples contained less than 10,000 cells (n=12), were obtained from endobronchial 
lesions (n=16), contained abundant normal lymphoid tissue (n=1) and showed 
fixation and/or staining artefacts (n=2) (Fig. S1). As described before, we excluded 
bronchial biopsies because they frequently showed unspecific antibody staining 
due to mechanical damage, and lymph node resections due to presence of PD-1+ T 
cells in normal abundant lymphoid tissue, which could potentially lead to false 
positive results25. One sample was excluded for CD8 TIL, CD3 TIL, TLS, CD20+ B cell 
and PD-L1 analysis because of fixation/staining artefacts. One sample contained 
less than 2,000 cells and was excluded for CD8 TIL, CD3 TIL, TLS and CD20+ B cell 
analysis. A total of 67 patients (41%) were excluded for mRNA expression analysis 
due to low RNA yield and/or low RNA quality (Fig. S1).

Immunohistochemistry
The CD8 immunostaining of samples was executed using the BenchMark 
Ultra autostainer Instrument (Ventana Medical Systems) on 3 µm paraffin 
sections from FFPE blocks. Initially, sections were baked at 75°C for 28 minutes 
and deparaffinized in the instrument with EZ prep solution (Ventana Medical 
Systems). Heat-induced antigen retrieval was carried out using Cell Conditioning 
1 (CC1, Ventana Medical Systems) for 32 minutes. CD8 was detected using clone 
C8/144B (1/200 dilution, 32 minutes at 37°C, Agilent/DAKO). Bound antibody was 
detected using the OptiView DAB Detection Kit (Ventana Medical Systems). Slides 
were counterstained with Hematoxylin and Bluing Reagent (Ventana Medical 
Systems).

Immunostaining for PD-1 was carried out using clone NAT105 (Roche Diagnostics), 
for PD-L1 using clone 22C3 (Agilent/DAKO), and for CD68 using clone KP1 (Agilent/
DAKO). For the double staining of CD20 (yellow) followed by CD3 (purple), clone 
L26 (Agilent/DAKO) (CD20) and clone SP7 (Thermo Fisher) (CD3) were used. All 
immunostainings were performed as described previously25.

The immunostained slides for CD8, PD-1, PD-L1 and CD68 were subjected to 
scanning at a magnification of x20 with a resolution of 0.50 per µm2 using an 
Aperio slide AT2 scanner (Leica Biosystems). Immunostained slides for CD20-
CD3 were scanned at x20 magnification with a resolution of 0.24 per µm2 using a 
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3Dhistech P1000 scanner. For manual scoring, PD-L1 and CD68 IHC images were 
uploaded onto Slide Score, a web platform designed for the manual scoring of 
digital slides using a scoring sheet (www.slidescore.com). CD8, PD-1T, CD3 TILs, 
CD20+ B cells and TLS were digitally scored as described below.

Digital quantification of CD8 and PD-1T TILs
Digital image analysis was performed by a trained MD (K.H.) and supervised by an 
experienced pathologist (K.M.) using the Multiplex IHC v1.2 module from the HALOTM 
image analysis software, version 2.3.2089.69 (Indica Labs). Researchers were blinded 
for clinical outcome. For the classification of CD8 lymphocytes in single stains, a 
computationally derived cut-off of 0.3 optical density (OD) was used, reflecting the 
intensity of the staining. This cut-off was established by manually optimizing the 
detection of CD8 positive stained cells in FFPE samples. An image analysis algorithm 
utilizing a 0.3 OD cut-off was generated for automated analyses of CD8 lymphocytes 
in subsequent FFPE samples. The quantification of PD-1T TILs followed a previously 
described methodology25.

The frequency of CD8 and PD-1T TILs were determined as the number per mm2 
tumor area. Tumor areas were digitally annotated as described previously25. PD-1T 
TIL data from 94 samples were used from previous work25 (Table S1). For regional 
analysis of CD8 lymphocytes, classifiers were trained to distinguish stromal and 
tumoral regions, allowing for the separate quantification of CD8 lymphocytes in 
these distinct regions. The percentage of CD8 lymphocytes within tumoral regions 
(i.e. intra-tumoral (IT)) relative to total CD8 TILs was subsequently calculated 
(Table S1).

Scoring of tertiary lymphoid structures
The quantification of TLS and the combined number of TLS and lymphoid aggregates 
(TLS+LA) per mm2 tumor area was performed using the HALOTM image analysis 
software, version 2.3.2089.69 (Indica Labs). This analysis was conducted on a CD20-
CD3 double immunostaining, following a previously established methodology25. TLS 
and TLS+LA data from 91 samples were used from previous work25 (Table S1).

CD20 and CD3 quantification by digital image analysis
Digital quantification of CD20 and CD3 expression involved the measurement of 
the total area with CD20 and CD3 expression, relatively. This was performed using 
a pre-established image analysis algorithm from the Area Quantification version 
1.0 module of HALOTM image analysis software (Indica Labs)25. The resulting CD20-
positive and CD3-positive areas were normalized per mm2 tumor area. Cell numbers 
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were not quantified as no reliable algorithm could be established due to dense 
clustering of CD20+ or CD3+ cells within and at the border of TLS. Tumor areas were 
digitally annotated as described previously25. CD20 data from 91 samples were used 
from previous work25 (Table S1).

PD-L1 scoring
PD-L1 TPS was determined using the qualitative, clinical grade, laboratory developed, 
IHC assay (22C3 Agilent/DAKO) as described previously25. PD-L1 TPS data from 94 
samples were used from previous work25 (Table S1). The CD68 staining was compared 
to the PD-L1 staining to exclude macrophages that express both CD68 and PD-L1, as 
their presence could potentially introduce false-positive results.

RNA extraction and hybridization to nCounter tagset
The extraction of RNA from pretreatment FFPE samples and subsequent Nanostring 
analysis were performed as described previously35.

Statistical analysis
Patient characteristics were descriptively reported using mean ± SD, interquartile 
range (IQR) or frequencies (percentages). The Mann-Whitney test for continuous 
data, Fisher’s exact test for categorical data and linear-by-linear association test 
for ordinal data were used to assess differences in patient characteristics between 
cohorts (training and validation) and between outcome groups (DC vs PD). Statistical 
significance was considered at *P<0.05, **P<0.01, ***P<0.001 or ****P<0.0001.

Genes in the Tumor Inflammation Signature (TIS) are normalized using a ratio of the 
expression value to the geometric mean of the housekeeper genes specific to the TIS 
signature and then followed by log2 transformation. The TIS score, a weighted linear 
combination of the 18 gene expression values, was calculated as part of Nanostring’s 
intellectual property29,36 (Table S1).

In the training cohort, univariate and bivariate logistic models were constructed 
for DC 6m and DC 12m using CD8 TILs, IT-CD8 T cells, PD-1T TILs, CD3 TILs, TLS, 
TLS+LA, CD20+ B cells, PD-L1 and TIS. The bivariate models included an interaction 
term. The bivariate logistic model produces for each patient a number between 0 
and 1, reflecting the probability (according to the model) of patients reaching DC 6m 
or DC 12m. Discriminatory ability was evaluated using the area under the receiver 
operating characteristic (ROC) curve. Predictive performance metrics (sensitivity, 
specificity, positive predictive value (PPV) and negative predictive value (NPV)) for 
different individual and composite biomarkers were calculated and comparisons 
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were made using the McNemar test. A point on the ROC curve corresponding to 90% 
sensitivity for DC 6m or DC 12m was selected to determine specificity, NPV and PPV. 
The aim was to achieve an NPV of ≥90% and a specificity of ≥50%.

Two (closely related) non-parametric approaches were considered to obtain 90% 
sensitivity for predicting DC 6m and DC 12m from two biomarkers. In both methods, 
a cut-point was chosen for each of the two biomarkers and a patient was predicted 
positive (i.e. likely to respond to PD-1 blockade) if at least one (first method) or both 
(second method) biomarker values were above their respective cut-point values. The 
specificities obtained with these non-parametric methods were either equal to or 
worse than those obtained by the parametric method described above (i.e. via logistic 
regression). Therefore, these non-parametric methods were not used in this study.

Four training models were selected based on a cut-off that demonstrated the highest 
specificity and NPV at the predefined sensitivities for predicting DC 6m and DC 12m. 
This cut-off was then used to determine sensitivity, specificity, NPV and PPV in the 
validation cohort.
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Results

Biomarker characteristics and demographics
To evaluate the predictive performance of various biomarker combinations, we 
first analyzed pretreatment tumor samples from 162 advanced stage NSCLC patients 
treated with nivolumab. Nine biomarkers were assessed: (1) the total number of CD8 
TILs per mm2, (2) the percentage intra-tumoral (IT) CD8 T cells of total CD8 TILs, (3) 
the number of PD-1T TILs per mm2 (4) the CD3-positive area per mm2 to estimate the 
presence of CD3 TILs (5) the CD20-positive area per mm2 to estimate the presence of 
B cells (6) the number of TLS and (7) the combined number of TLS and LA (referred 
as TLS+LA) per mm2, (8) the PD-L1 Tumor Proportion Score (TPS) and (9) the TIS score 
(NanoString) (Fig. 1). CD8 TILs and IT-CD8 T cells were successfully assessed in 132/162 
(81%), PD-1T TILs in 103/162 (64%), CD3 TILs, CD20+ B cells, TLS and TLS+LA in 128/162 
(79%), PD-L1 TPS in 134/162 (83%) and TIS in 68/162 (42%) samples (Table 1, Fig. S1). 
The use of solely archival samples led to a subset that lacked sufficient tumor tissue, 
as these samples had been previously used for analyses in the standard diagnostic 
routine. Additional exclusion criteria for each biomarker are provided in Fig. S1.

Patients with results for at least two biomarkers (n=135) were randomly assigned to 
a training (n=55) and validation (n=80) cohort. This randomization was stratified for 
clinical benefit to ensure that in both cohorts, 1 in 3 patients reached disease control 
at 6 months (DC 6m) and 1 in 5 patients reached disease control at 12 months (DC 12m), 
respectively. Due to the limited availability of patients with TIS scores (n=68), these 
patients were proportionately distributed in the randomization process (Table 1, 
Fig. S1). Individual results for each biomarker per patient are detailed in Table S1. 
No significant differences in demographic characteristics were observed between 
the training and validation cohorts (Table 2).
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◀ Figure 1. Immunohistochemical analysis of all biomarkers and digital mark-up. (A) The left 
image shows an example of a CD8 immunohistochemical staining (IHC). The black square 
indicates the area that is shown in the central image. The right image shows the digital 
markup with CD8 TILs (in brown) and all other cells (in grey). (B) The left image shows the 
same example as shown in A. The black square indicates the area that is shown in the central 
image. The right image shows regional analysis of only intratumoral (IT) CD8 TILs. Stromal 
CD8 TILs are not quantified. Red lines indicate the tumor region. Red arrows indicate IT-
CD8 TILs. White arrow indicates the area with stromal CD8 TILs. (C) The left image shows 
an example of a consecutive slide stained for PD-1 IHC. The black square indicates the area 
that is shown in the central image. The right image shows the digital markup with PD-
1T TILs (in brown) and all other cells (in grey). (D) The left image shows an example of a 
consecutive slide double stained with CD20 and CD3 IHC. The black square indicates the 
area that is shown in the central image with CD20+ B cells (in yellow) and CD3+ T cells (in 
purple) localizing in a TLS. The right image shows the digital markup with CD20-positive 
areas highlighted by the intensity of the yellow staining (depicted as spectrum from yellow 
to red color). (E) Example of a consecutive slide stained for PD-L1 IHC. The black square 
indicates the area that is shown in the right image. PD-L1 IHC slides were scored manually.

Accuracy of individual and composite biomarkers to predict DC at 6 months
Next, optimal cut-off values for individual and composite biomarkers in the 
training cohort were determined through ROC analysis. We aimed for a sensitivity 
and NPV of ≥90% to minimize the risk of undertreatment, while maintaining a 
specificity of at least 50% to identify patients unlikely to respond to PD-1 blockade 
therapy. The latter group can potentially benefit from alternative treatments. 
Since not all tumor samples were evaluable for all nine biomarkers, the number 
of samples in the training cohort ranged from 28 to 55 (Table 1, Fig. S1). A total of 
16 composite biomarkers, including PD-1T and TIS as individual biomarkers, met 
the prespecified sensitivity and specificity criteria on the ROC curve (Table S2). 
Interestingly, among these, cut-off values of 7/8 (88%) possible combinations with 
PD-1T TILs and 5/8 (63%) with TIS reached these criteria (Table S2). However, none 
significantly improved predictive accuracy compared to the standalone use of 
PD-1T TILs and TIS (Fig. S2A,B), leading to their exclusion from further analysis.

Subsequently, we selected the four remaining biomarkers with the highest 
predictive performance for validation, including the combinations of CD8+IT-
CD8 and CD3+IT-CD8, as well as the individual biomarkers PD-1T TILs and TIS 
(Table S2). In the training cohort, both CD8+IT-CD8 and CD3+IT-CD8 demonstrated 
significantly higher probability scores in the DC 6m group (reflecting the 
probability of patients reaching DC 6m) compared to the progressive disease 
(PD) group (CD8+IT-CD8, P<0.0001 and CD3+IT-CD8, P<0.001) (Fig. 2A,B). The area 
under the ROC curve (AUC) was 0.83 (95% CI: 0.73-0.94) for CD8+IT-CD8, and 0.78 



Composite versus individual biomarkers for predicting clinical benefit to PD-1 blockade in NSCLC

93

3

(95% CI: 0.65-0.92) for CD3+IT-CD8 (Fig. 2C,D). Corresponding cut-off values of 
0.167 and 0.161, respectively, were associated with a sensitivity of 94% for both, 
specificity of 62% and 54%, NPV of 96% and 95% and PPV of 50% and 47% (Table 3).

Furthermore, PD-1T TIL numbers and TIS scores were significantly higher in the DC 6m 
group compared to the PD group (PD-1T TILs, P<0.001 and TIS, P<0.01) (Fig. S2C,D). PD-1T 
TILs showed an AUC of 0.82 (95% CI: 0.69-0.95), and TIS demonstrated an AUC of 0.81 (95% 
CI: 0.65-0.98) (Fig. S2E,F). For PD-1T TILs, a cut-off value of 90 per mm2 was selected based 
on its predictive value in a previous study25. This threshold yielded a sensitivity of 92%, 
specificity of 67%, NPV of 95% and PPV of 52% (Table 3). A score of 6.65 was identified as 
the optimal cut-off for TIS, resulting in a sensitivity of 100%, specificity of 55%, NPV of 
100% and PPV of 47% (Table 3).

Next, we evaluated the predictive performance of the four selected biomarkers (CD8+IT-
CD8, CD3+IT-CD8, PD-1T TILs and TIS) in the validation cohort. The number of samples 
with successfully obtained biomarker results in the validation cohort ranged from 40 
to 79 (Table 1, Fig. S1). A decrease in the predictive accuracy of CD8+IT-CD8 and CD3+IT-
CD8 biomarkers was observed when compared to the training cohort, as reflected by 
the AUC of the ROC curve measuring 0.62 (95% CI: 0.50-0.75) and 0.68 (95% CI: 0.55-0.80), 
respectively (Fig. 2C,D). Moreover, the probability scores within the DC 6m group did not 
significantly differ from those in the PD group for CD8+IT-CD8 (P=0.08) (Fig. 2E). This 
comparison for CD3+IT-CD8 was borderline significant (P=0.01) (Fig. 2F). The selected 
cut-off value of CD8+IT-CD8 reached a sensitivity of 64%, specificity of 56%, NPV of 
76% and PPV of 41%. The predictive accuracy of CD3+IT-CD8, while higher than that of 
CD8+IT-CD8, remained lower than in the training cohort (sensitivity: 83%, specificity: 
46%, NPV: 85% and PPV: 43%) (Table 3).

The individual biomarker analysis in the validation cohort showed significantly 
higher PD-1T TIL numbers in the DC 6m group versus the PD group (P<0.01), whereas 
no significant difference was observed for TIS scores (P=0.52) (Fig. S2G,H). Although the 
discriminatory ability of PD-1T TILs was lower compared to the training, it still reached 
an AUC of 0.72 (95% CI: 0.57-0.87) (Fig. S2E). A cut-off value of 90 PD-1T TILs per mm2 
resulted in a sensitivity of 72%, specificity of 74%, NPV of 86% and PPV of 54%. Conversely, 
TIS obtained a low AUC of 0.57 (95% CI: 0.36-0.77) (Fig. S2F). A TIS score of 6.65 showed 
a comparable sensitivity (83%), NPV (84%) and PPV (37%) but lower specificity (39%) 
(Table 3). In summary, these results demonstrate that the combination of CD8+IT-CD8 
and CD3+IT-CD8 did not improve predictive accuracy compared to the standalone use of 
PD-1T TILs and TIS. Furthermore, none of the selected biomarkers met the prespecified 
performance criteria.
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Table 1. Total number of samples per biomarker in the training and validation cohort.
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PD-1T TILs 103 12 30 9 33 42 18 43 14 47 61

CD3 TILs CD20+ B cells TLS TLS+LA 128 16 37 12 41 53 24 51 15 60 75

PD-L1 TPS 134 16 39 12 43 55 25 54 16 63 79

TIS 68 8 20 6 22 28 12 28 7 33 40
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Table 2. Patient characteristics and treatment outcomes for training and validation cohorts.

Training cohort Validation cohort
  P-value n=55 n=80

Sex P=1.00    

Male, no.(%)   30 (55%) 44 (55%)

Female, no.(%)   25 (45%) 36 (45%)

Age (years), mean (SD) P=0.20 62 (10.1) 65 (7.5)

Smoking (never/ex/current) P=0.64 5/44/6 12/51/17

Pack years, median (IQR) P=0.90 29 (20) 30 (28)

PS, no. (%) P=0.46    

0   16 (29%) 16 (20%)

1   29 (53%) 50 (62%)

≥2   10 (18%) 14 (18%)

Pathology, no.(%) P=0.19    

Adeno   35 (64%) 50 (62%)

Squamous   10 (18%) 20 (25%)

LCNEC, NSCLC-type   0 (0%) 3 (4%)

NSCLC, NOS   10 (18%) 7 (9%)

Mutations, no. (%) P=0.86    

KRAS positive   19 (35%) 30 (38%)

PD-L1 TPS, no. (%)      

Negative <1% P=1.00 30 (55%) 43 (54%)

Positive ≥1%   25 (45%) 36 (45%)

Negative <50% P=0.66 43 (78%) 65 (81%)

Positive ≥50%   12 (22%) 14 (18%)

Unknown   0 (0%) 1 (1%)

Brain metastases, no. (%) P=0.67 13 (24%) 16 (20%)

Line of treatment, no.(%) P=0.63    

1   0 (0%) 1 (1%)

2   42 (76%) 56 (70%)

>2   13 (24%) 23 (29%)

Best Overall Response P=0.62    

CR/PR   11 (20%) 15 (19%)

SD   5 (9%) 16 (20%)

SD (PFS <6 months)   0 (0%) 6 (7%)

SD (PFS ≥6 months)   5 (9%) 10 (13%)

PD   39 (71%) 49 (61%)

DC      

at 6 months P=0.85 16 (29%) 25 (31%)

at 12 months P=0.83 12 (22%) 16 (20%)
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◀ Figure 2. Performance of selected composite and individual biomarkers to predict DC at 6 
months in NSCLC patients treated with PD-1 blockade. (A) Probability scores of CD8+IT-CD8 
in pretreatment samples from patients with disease control at 6 months (DC 6m) (n=16) 
and progressive disease (PD) (n=39) in the training cohort (n=55). Dashed line indicates a 
cut-off of 0.167. Medians, interquartile ranges and minimum/maximum shown in boxplots, 
****P<0.0001 by Mann Whitney U-test. (B) Probability scores of CD3+IT-CD8 in pretreatment 
samples from patients with DC 6m (n=16) and PD (n=37) in the training cohort (n=53). Dashed 
line indicates a cut-off of 0.161. Medians, interquartile ranges and minimum/maximum 
shown in boxplots, ***P<0.001 by Mann Whitney U-test. (C) Receiver operating characteristic 
(ROC) curve for predictive value of CD8+IT-CD8 for DC 6m in the training (n=55) (AUC 0.83; 
95% CI: 0.73-0.94) and validation cohort (n=77) (AUC 0.62; 95% CI: 0.50-0.75). (D) ROC curve for 
predictive value of CD3+IT-CD8 for DC 6m in the training (n=53) (AUC 0.78; 95% CI: 0.65-0.91) 
and validation cohort (n=74) (AUC 0.68; 95% CI: 0.55-0.80). (E) Same plot as in A (CD8+IT-CD8) 
for patients with DC 6m (n=25) and PD (n=52) in the validation cohort (n=77), P=0.08. (F) Same 
plot as in B (CD3+IT-CD8) for patients with DC 6m (n=24) and PD (n=50) in the validation 
cohort (n=74), *P=0.02.
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Table 3. Predictive accuracy of selected individual and composite biomarkers, summary of 
training and validation results

Training  Training (Continued) Validation 

Clinical 
outcome

Bio-marker Predictor Cut-off Samples 
(n)

AUC
(95% CI)

Sensi-
tivity

Speci-
ficity

NPV PPV Samples 
(n)

AUC (95%-CI) Sensi-
tivity

Speci-
ficity

NPV PPV

DC 6 months PD-1T TILs   90 42 0.82 (0.69-0.95) 92% 67% 95% 52% 61 0.72 (0.57-0.87) 72% 74% 86% 54%

TIS   6.65 28 0.81 (0.65-0.98) 100% 55% 100% 47% 40 0.57 (0.36-0.77) 83% 39% 84% 37%

CD8+ IT-CD-8 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐶𝐶 

=
1

1 − exp(−3.5749	 + 	0.0031	 ∗	
CD8	 + 	0.043	 ∗ 	IT − CD8)

 
0.167 55 0.83 (0.73-0.94) 94% 62% 96% 50% 77 0.62 (0.50-0.75) 64% 56% 76% 41%

CD3+ IT-CD-8 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐶𝐶 

=
1

1 − exp(−2.3821	 + 	0.0806	 ∗	
CD3	 + 	0.0175	 ∗ 	IT − CD8	 +
	0.0069	 ∗ 	CD3	 ∗ 	IT − CD8)

 
0.161 53 0.78 (0.65-0.91) 94% 54% 95% 47% 74 0.68 (0.55-0.80) 83% 46% 85% 43%

DC 12 months PD-1T TILs   90 42 0.82 (0.70-0.94) 100% 64% 100% 43% 61 0.80 (0.65-0.94) 86% 74% 95% 50%

TIS   6.65 28 0.77 (0.58-0.96) 100% 50% 100% 35% 40 0.63 (0.43-0.82) 100% 39% 100% 26%

CD8+ IT-CD-8 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐷𝐷 

=
1

1 − exp	(−4.0644 + 0.003 ∗
𝐷𝐷𝐷𝐷8 + 0.0436 ∗ 𝐼𝐼𝐼𝐼 − 𝐷𝐷𝐷𝐷8)

 
0.122 55 0.85 (0.73-0.96) 92% 63% 96% 41% 77 0.67 (0.53-0.81) 68% 57% 88% 30%

CD8+ TIS 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐶𝐶 

=
1

1 − exp	(−5.7952	 + 	0.0224	 ∗	
CD8	 + 	0.2346	 ∗ 	TIS	 +	
−	0.0021	 ∗ 	CD8	 ∗ 	TIS)

 
0.124 28 0.91 (0.79-1.00) 100% 68% 100% 46% 38 0.59 (0.36-0.82) 29% 68% 81% 17%

Accuracy of individual and composite biomarkers to predict DC at 12 months
Approximately 70-80% of patients undergoing second-line treatment with PD-1/
PD-L1 blockade experience disease progression within 12 months2–4. Our previous 
work demonstrated the superior efficacy of PD-1T TILs in identifying patients with 
DC at 12 months (DC 12m) compared to those with DC 6m, as well as identifying a 
subgroup without long-term benefit25. In light of this, we extended our analysis to 
evaluate the predictive performance of all biomarkers for DC 12m. Similar to the 
analysis performed for DC 6m, we constructed ROC curves to determine optimal 
cut-off values corresponding to a sensitivity of ≥90% and specificity of ≥50% for each 
composite and individual biomarker. Four patients in the training and nine patients 
in the validation cohort experienced disease progression between 6 and 12 months, 
allocating them into the PD group. In the training cohort, 16 composite biomarkers, 
along with individual biomarkers PD-1T TILs and TIS, met the prespecified sensitivity 
and specificity ciritera (Table S3). PD-1T TIL and TIS combinations did not significantly 
improve predictive accuracy (Fig. S3A,B and Table S3). Noteworthy, the combination 
of CD8 with TIS (CD8+TIS) showed an 18% increase in specificity compared to TIS 
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Table 3. Predictive accuracy of selected individual and composite biomarkers, summary of 
training and validation results

Training  Training (Continued) Validation 

Clinical 
outcome

Bio-marker Predictor Cut-off Samples 
(n)

AUC
(95% CI)

Sensi-
tivity

Speci-
ficity

NPV PPV Samples 
(n)

AUC (95%-CI) Sensi-
tivity

Speci-
ficity

NPV PPV

DC 6 months PD-1T TILs   90 42 0.82 (0.69-0.95) 92% 67% 95% 52% 61 0.72 (0.57-0.87) 72% 74% 86% 54%

TIS   6.65 28 0.81 (0.65-0.98) 100% 55% 100% 47% 40 0.57 (0.36-0.77) 83% 39% 84% 37%

CD8+ IT-CD-8 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐶𝐶 

=
1

1 − exp(−3.5749	 + 	0.0031	 ∗	
CD8	 + 	0.043	 ∗ 	IT − CD8)

 
0.167 55 0.83 (0.73-0.94) 94% 62% 96% 50% 77 0.62 (0.50-0.75) 64% 56% 76% 41%

CD3+ IT-CD-8 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐶𝐶 

=
1

1 − exp(−2.3821	 + 	0.0806	 ∗	
CD3	 + 	0.0175	 ∗ 	IT − CD8	 +
	0.0069	 ∗ 	CD3	 ∗ 	IT − CD8)

 
0.161 53 0.78 (0.65-0.91) 94% 54% 95% 47% 74 0.68 (0.55-0.80) 83% 46% 85% 43%

DC 12 months PD-1T TILs   90 42 0.82 (0.70-0.94) 100% 64% 100% 43% 61 0.80 (0.65-0.94) 86% 74% 95% 50%

TIS   6.65 28 0.77 (0.58-0.96) 100% 50% 100% 35% 40 0.63 (0.43-0.82) 100% 39% 100% 26%

CD8+ IT-CD-8 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐷𝐷 

=
1

1 − exp	(−4.0644 + 0.003 ∗
𝐷𝐷𝐷𝐷8 + 0.0436 ∗ 𝐼𝐼𝐼𝐼 − 𝐷𝐷𝐷𝐷8)

 
0.122 55 0.85 (0.73-0.96) 92% 63% 96% 41% 77 0.67 (0.53-0.81) 68% 57% 88% 30%

CD8+ TIS 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑓𝑓𝑃𝑃𝑃𝑃	𝐷𝐷𝐶𝐶 

=
1

1 − exp	(−5.7952	 + 	0.0224	 ∗	
CD8	 + 	0.2346	 ∗ 	TIS	 +	
−	0.0021	 ∗ 	CD8	 ∗ 	TIS)

 
0.124 28 0.91 (0.79-1.00) 100% 68% 100% 46% 38 0.59 (0.36-0.82) 29% 68% 81% 17%

Accuracy of individual and composite biomarkers to predict DC at 12 months
Approximately 70-80% of patients undergoing second-line treatment with PD-1/
PD-L1 blockade experience disease progression within 12 months2–4. Our previous 
work demonstrated the superior efficacy of PD-1T TILs in identifying patients with 
DC at 12 months (DC 12m) compared to those with DC 6m, as well as identifying a 
subgroup without long-term benefit25. In light of this, we extended our analysis to 
evaluate the predictive performance of all biomarkers for DC 12m. Similar to the 
analysis performed for DC 6m, we constructed ROC curves to determine optimal 
cut-off values corresponding to a sensitivity of ≥90% and specificity of ≥50% for each 
composite and individual biomarker. Four patients in the training and nine patients 
in the validation cohort experienced disease progression between 6 and 12 months, 
allocating them into the PD group. In the training cohort, 16 composite biomarkers, 
along with individual biomarkers PD-1T TILs and TIS, met the prespecified sensitivity 
and specificity ciritera (Table S3). PD-1T TIL and TIS combinations did not significantly 
improve predictive accuracy (Fig. S3A,B and Table S3). Noteworthy, the combination 
of CD8 with TIS (CD8+TIS) showed an 18% increase in specificity compared to TIS 

alone. Despite not reaching statistical significance, possibly due to the low sample 
size (P=0.34), this combination was selected for further analysis (Fig. S3B, Table S3). 
Other selected biomarkers for validation with the highest predictive performance 
included CD8+IT-CD8, PD-1T TILs and TIS (Table S3).

The probability scores for DC 12m and PD are depicted per sample in Figure S3C 
(CD8+IT-CD8, P<0.001) and Figure S3D (CD8+TIS, P<0.01). The two composite 
biomarkers showed a high AUC of 0.85 (95% CI: 0.73-0.96) (CD8+IT-CD8) and 0.91 (95% 
CI: 0.79-1.00) (CD8+TIS) in the training cohort, and optimal cut-off values of 0.122 and 
0.124, respectively, were chosen (Fig. 3A,B and Table 3). In the validation cohort, 
only CD8+IT-CD8 showed borderline significantly higher probability scores in the 
DC 12m group versus the PD group (P=0.03) (Fig. S3E,F). The ROCs resulted in low 
AUCs (CD8+IT-CD8: 0.67; 95% CI: 0.53-0.81), CD8+TIS: 0.59; 95% CI 0.36-0.81) (Fig. 3A,B). 
Furthermore, the sensitivity (68% and 29%), specificity (57% and 68%), NPV (88% 
and 81%) and PPV (30% and 17%) did not meet the prespecified performance criteria 
(Table 3).
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PD-1T TIL numbers and TIS scores for the training cohort are presented in Figure S3G 
and H. A cut-off value of 90 PD-1T TILs per mm2 and a TIS score of 6.65 demonstrated 
similar predictive accuracy as observed in the training cohort for DC 6m (Fig. 3C,D 
and Table 3). In the validation cohort, PD-1T TIL numbers were significantly higher 
in patients with DC 12m versus PD (P<0.001) (Fig.  3E). PD-1T TILs maintained a 
consistently high AUC of 0.80 (95% CI: 0.65-0.94) and demonstrated good performance 
(sensitivity: 86%, specificity: 74%, NPV: 95% and PPV: 50%) (Fig. 3C and Table 3). A 
subgroup analysis revealed an enrichment of patients with DC 12m in the PD-1T 
TILs ≥90 group and patients with PD in the PD-1T TILs <90 subgroup (Fig. 3E). TIS 
scores did not significantly differ between the two groups (P=0.31) and showed a 
low AUC of 0.63 (95% CI 0.43-0.82) (Fig. 3D,F). Nevertheless, a cut-off score of 6.65 
reached a sensitivity of 100%, specificity of 39%, NPV of 100% and PPV of 26% (Table 3). 
Although these findings did not meet the prespecified ≥50% specificity criterium, 
they accurately identified all patients with DC 12m including 39% of patients with 
PD. Taken together, PD-1T TILs and TIS, as individual biomarkers, showed superior 
predictive accuracy for DC 12m compared to CD8+IT-CD8 and CD8+TIS. Notably, PD-1T 
TILs alone demonstrated greater performance than TIS alone, particularly in terms 
of specificity and PPV.

Figure 3. Performance of selected composite and individual biomarkers to predict DC at 12 
months in NSCLC patients treated with PD-1 blockade. (A) Receiver operating characteristic 
(ROC) curve for predictive value of CD8+IT-CD8 for disease control at 12 months (DC 12m) in 
the training cohort (n=55) (AUC 0.85; 95% CI: 0.73-0.96) and validation cohort (n=77) (AUC 0.67; 
95% CI: 0.53-0.81). (B) ROC curve for predictive value of CD8+TIS for DC 12m in the training 
cohort (n=28) (AUC 0.91; 95% CI: 0.79-1.00) and validation cohort (n=38) (AUC 0.59; 95% CI: 0.36-
0.82). (C) ROC curve for predictive value of PD-1T TILs for DC 12m in the training cohort (n=42) 
(AUC 0.82; 95% CI: 0.70-0.94) and validation cohort (n=61) (AUC 0.80; 95% CI: 0.65-0.94). (D) ROC 
curve for predictive value of TIS for DC 12m in the training cohort (n=28) (AUC 0.77; 95% CI: 
0.58-0.96) and validation cohort (n=40) (AUC 0.63; 95% CI: 0.43-0.82). (E) PD-1T TILs per mm2 
in pretreatment samples from patients with DC 12m (n=14) and PD (n=47) in the validation 
cohort (n=61). Dashed line indicates a cut-off of 90 PD-1T TILs per mm2. Medians, interquartile 
ranges and minimum/maximum shown in boxplots, **P<0.01 by Mann Whitney U-test. (F) 
TIS scores in pretreatment samples from patients with DC 12m (n=7) and PD (n=33) in the 
validation cohort (n=40). Dashed line indicates a cut-off score of 6.65. Medians, interquartile 
ranges and minimum/maximum shown in boxplots, P=0.31 by Mann Whitney U-test. ▶
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Discussion

Since the introduction of PD-1/PD-L1 blockade therapy, the clinical outcomes for 
advanced stage NSCLC have markedly improved. Nevertheless, a minor subset of 
patients derive benefit from these treatments, leading to concerns of overtreatment 
and unnecessary side effects. In addition, healthcare systems deal with increasing 
costs. Several predictive biomarkers have been identified to support treatment 
decision-making. Given the complex interactions within the TME influencing the 
immune response during PD-1/PD-L1 blockade therapy, the likelihood of identifying 
a single perfect biomarker is minimal. Here, we evaluate the predictive performance 
of combinations of biomarkers in a cohort of advanced-stage NSCLC patients treated 
with nivolumab. Our findings show that the selected composite biomarkers did not 
improve predictive performance compared to PD-1T TILs and TIS alone. At 6 months, 
none of the selected biomarkers met the prespecified criteria of ≥90% sensitivity and 
≥50% specificity in the validation cohort. However, at 12 months, PD-1T TILs and TIS 
demonstrated a high sensitivity in identifying patients with DC 12m with. Patients 
without long-term benefit were more accurately identified by PD-1T TILs than TIS.

While CD8 or CD3 TILs, in combination with intratumoral localization of CD8 T 
cells, emerged as the most accurate composite biomarkers for DC 6m in the training 
cohort, their discriminatory ability was notably low in the validation cohort. The 
mere presence and localization of TILs may not indicate that all T cells are in a 
state to recognize and eliminate the tumor37,38. In the present study, this notion is 
supported by the high predictive accuracy of PD-1T TILs for DC 12m, given that these 
TILs constitute a distinct subset with an enhanced capacity for tumor recognition24. 
The consistency of these findings with our previous work can be attributed to the 
predominant reuse of samples25. Further refinement of this specific T cell population 
holds promise for the development of new markers or gene signatures, as shown by 
various studies39–41. Moreover, we recently developed a clinically applicable mRNA 
expression signature reflecting the presence of PD-1T TILs in the TME35. Since most 
biomarkers assessed in this study are associated with antitumor immunity and are 
presumably correlated, PD-1T combinations did not improve specificity.

Previous studies have shown the predictive potential of combining CD8+PD-L122,34. 
However, in the training cohort, the CD8+PD-L1 combination failed to meet the 
sensitivity and specificity criteria, leading to its exclusion from further evaluation. 
PD-L1 expression on tumor cells is transient and relies on the production of IFNγ by 
TILs42. This dynamic nature of PD-L1 expression could contribute to variable tumor 
PD-L1 expression in the training samples, potentially impacting the predictive 
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accuracy of PD-L1 and of PD-L1 combinations. Furthermore, it is important to note 
that this study is limited by the number of samples, particularly for TIS assessment. 
Therefore, we restricted our evaluation to two-biomarker combinations instead of 
considering three or more. Studies with a larger sample size are essential to validate 
the robustness of our findings.

Our results for TIS align with other studies that have demonstrated the predictive 
potential of this signature29,43. Interestingly, TIS includes genes, such as LAG3 and 
TIGIT, that are highly expressed in PD-1T TILs24,29. A high number of PD-1T TILs or 
a high TIS score in pretreatment samples may serve as surrogate markers for a 
tumor’s capacity to undergo durable immune reactivation upon PD-1 blockade 
therapy. A PD-1T TILs or TIS combination with biomarkers representing distinct 
facets of the immune response holds promise for improving predictive accuracy. 
For instance, TMB can serve as a read-out for immunogenic neoantigens arising 
from somatic mutations15. Previous studies have identified TMB and PD-L1 as 
independent predictors for advanced NSCLC treated with PD-1 blockade and have 
shown improved performance when combined32,33. Conversely, the presence of 
tumor-resident regulatory T cells (Treg) in the TME might be considered. Treg cells, 
known for their immune-inhibitory functions, are associated with poor patient 
survival when present in high numbers44. A combination of TMB or Treg with either 
PD-1T TILs or TIS warrants further investigation in future studies.

In conclusion, this study showed that the biomarker combinations assessed here 
did not improve predictive performance compared to PD-1T TILs and TIS alone. PD-1T 
TILs showed the highest predictive performance of all the biomarkers, accurately 
identifying patients without long-term benefit with high specificity and NPV.
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Supplemental material
Supplemental figures

Figure S1. Flow chart of sample numbers and exclusion criteria per biomarker. In 27 samples 
none of the biomarkers were assessed. The right grey boxes indicate the exclusion criteria 
per biomarker and the right light grey boxes indicate the total number of samples that were 
assessed per biomarker. The remaining samples with ≥2 biomarker values were randomized 
in a training (n=55) and validation cohort (n=80). The blue boxes indicate the number of 
samples that were assessed per biomarker in the training (T) and validation (V) cohort.
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◀ Figure S2. Performance of PD-1T TILs and TIS as individual and as composite biomarker to 
predict disease control at 6 months (DC 6m) in NSCLC patients treated with PD-1 blockade. (A) 
Specificity correlating to a sensitivity of ≥90% for combinations with PD-1T TILs as predictive 
biomarker for DC 6m in the training cohort (n=27 or n=42). The grey dashed line indicates the 
prespecified specificity criterium of ≥50%. Different composite biomarkers were compared 
to the predictive performance of PD-1T TILs alone. P values were calculated by McNemar test. 
(B) Same plot as in A for combinations with TIS in the training cohort (n=27 or n=28). (C) PD-
1T TILs per mm2 in pretreatment samples from patients with DC 6m (n=12) and progressive 
disease (PD) (n=30) in the training cohort (n=42). Dashed line indicates a cut-off of 90 PD-1T 
TILs per mm2. Medians, interquartile ranges and minimum/maximum shown in boxplots, 
***P<0.001 by Mann Whitney U-test. (D) TIS scores in pretreatment samples from patients 
with DC 6m (n=8) and PD (n=20) in the training cohort (n=28). Dashed line indicates a cut-off 
score of 6.65. Medians, interquartile ranges and minimum/maximum shown in boxplots, 
**P<0.01 by Mann Whitney U-test. (E) Receiver operating characteristic (ROC) curve for 
predictive value of PD-1T TILs for DC 6m in the training cohort (n=42) (AUC 0.82; 95% CI: 0.69-
0.95) and validation cohort (n=61) (AUC 0.72; 95% CI: 0.57-0.87). (F) ROC curve for predictive 
value of TIS for DC 6m in the training cohort (n=28) (AUC 0.81; 95% CI: 0.65-0.98) and validation 
cohort (n=40) (AUC 0.57; 95% CI: 0.36-0.77) (G) Same plot as in C (PD-1T TILs) for patients with 
DC 6m (n=18) and PD (n=43) in the validation cohort (n=61), **P<0.01 by Mann Whitney U-test. 
(H) Same plot as in D (TIS) for patients with DC 6m (n=12) and PD (n=28), P=0.52 by Mann 
Whitney U-test.
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◀ Figure S3. Performance of PD-1T TILs and TIS as individual and as composite biomarker to 
predict disease control at 12 months (DC 12m) and association of CD8+IT-CD8 and CD8+TIS 
with DC 12m in NSCLC patients treated with PD-1 blockade. (A) Specificity correlating to 
a sensitivity and NPV of ≥90% for combinations with PD-1T TILs as predictive biomarker 
for DC 12m in the training cohort (n=27 or n=42). The grey dashed line indicates the 
prespecified specificity criterium of ≥50%. Different composite biomarkers were compared 
to the predictive performance of PD-1T TILs alone. P values were calculated by McNemar 
test. (B) Same plot as in A for combinations with TIS in the training cohort (n=27 or 
n=28). (C) Probability scores of CD8+IT-CD8 in pretreatment samples from patients with 
DC 12m (n=12) and progressive disease (PD) (n=43) in the training cohort (n=55). Dashed 
line indicates a cut-off of 0.122. Medians, interquartile ranges and minimum/maximum 
shown in boxplots, ***P<0.001 by Mann Whitney U-test. (D) Probability scores of CD8+TIS in 
pretreatment samples from patients with DC 12m (n=6) and PD (n=22) in the training cohort 
(n=28). Dashed line indicates a cut-off of 0.124. Medians, interquartile ranges and minimum/
maximum shown in boxplots, **P<0.01 by Mann Whitney U-test. (E) Probability scores of 
CD8+IT-CD8 in pretreatment samples from patients with DC 12m (n=16) and PD (n=61) in 
the validation cohort (n=77). Dashed line indicates a cut-off of 0.122. Medians, interquartile 
ranges and minimum/maximum shown in boxplots, *P=0.03 by Mann Whitney U-test. (F) 
Probability scores of CD8+TIS in pretreatment samples from patients with DC 12m (n=7) and 
PD (n=31) in the validation cohort (n=38). Dashed line indicates a cut-off of 0.124. Medians, 
interquartile ranges and minimum/maximum shown in boxplots, P=0.48 by Mann Whitney 
U-test. (G) PD-1T TILs per mm2 in pretreatment samples from patients with DC 12m (n=9) and 
PD (n=33) in the training cohort (n=42). Dashed line indicates a cut-off of 90 PD-1T TILs per 
mm2. Medians, interquartile ranges and minimum/maximum shown in boxplots, **P<0.01 
by Mann Whitney U-test. (H) TIS scores in pretreatment samples from patients with DC 
12m (n=6) and PD (n=22) in the training cohort (n=28). Dashed line indicates a cut-off score 
of 6.65. Medians, interquartile ranges and minimum/maximum shown in boxplots, *P=0.04 
by Mann Whitney U-test.
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Supplementary Tables

Table S1. Overview of all analyzed biomarkers per patient.
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NKI-001 1 1 T 400 32.08 NA 1.28 0.00 0.00 0.15 0 NA 0.2649983 0.1919443 NA 0.1652011

NKI-002 0 0 T 287 49.12 152 1.79 0.12 0.12 0.19 40 NA 0.343007 0.3148431 NA 0.2265712

NKI-003 0 0 T 45 23.33 44 1.07 0.00 0.00 0.09 1 NA 0.0803345 0.1521966 NA 0.0509736

NKI-004 0 0 T 552 24.65 NA 5.17 0.00 0.72 1.65 0 NA 0.2957622 0.3404191 NA 0.1824023

NKI-005 1 1 T 763 89.87 537 3.36 0.00 0.00 0.63 0 NA 0.9058749 0.8216733 NA 0.7926359

NKI-006 1 0 T 1273 42.31 828 9.85 0.21 0.43 1.87 0 8.77 0.8708422 0.8815818 0.7421676 0.7221582

NKI-007 0 0 T 295 22.62 434 3.85 0.45 0.63 3.41 0 6.63 0.1520565 0.2535239 0.1430865 0.0932314

NKI-008 0 0 T 336 3.22 34 2.33 0.22 0.77 1.89 0 7.43 0.0839552 0.1103969 0.1380421 0.0504621

NKI-009 0 0 T 164 22.06 NA 0.79 0.00 0.00 0.19 60 NA 0.1057568 0.1401703 NA 0.0657138

NKI-010 1 1 T 121 51.75 210 4.62 0.00 0.00 0.25 5 NA 0.2669763 0.6301201 NA 0.1798485

NKI-011 0 0 T 914 16.68 1875 14.26 0.89 2.98 11.07 0 NA 0.4787394 0.665758 NA 0.3126318

NKI-012 0 0 T 101 20.42 67 0.46 0.00 0.00 0.10 90 7.47 0.0836776 0.1273957 0.0328116 0.052357

NKI-013 0 0 T 146 32.68 NA NA NA NA NA 0 NA 0.1490646 NA NA 0.0946666

NKI-014 0 0 T 197 10.14 25 2.24 0.00 0.65 0.79 1 6.89 0.0735271 0.1336737 0.0659117 0.0448887

NKI-015 0 0 T 794 33.63 351 4.66 0.00 0.00 0.07 40 9.79 0.5492985 0.4145797 0.0975557 0.3686506

NKI-016 0 0 T 140 26.85 NA 0.34 0.00 0.00 0.05 0 NA 0.1186654 0.1390245 NA 0.0745653

NKI-017 1 1 T 1903 62.5 280 8.37 0.03 0.33 1.40 95 7.91 0.9873589 0.9511964 0.9987685 0.9508837

NKI-018 0 0 T 435 25.44 201 4.40 0.00 0.21 0.78 10 7.84 0.2341446 0.3066154 0.1885522 0.1436726

NKI-019 1 1 T 1443 21.07 409 6.88 0.48 1.28 2.03 0 NA 0.8416185 0.3855678 NA 0.6911857

NKI-020 1 1 T 378 24.56 NA 6.78 0.00 0.00 0.26 0 8.13 0.1992826 0.4340513 0.1244547 0.1220825

NKI-021 1 1 T 320 20.33 367 3.96 0.28 0.44 1.08 80 6.75 0.149622 0.2393714 0.163071 0.0912642

NKI-022 0 0 T 127 28.97 43 1.04 0.01 0.04 0.17 0 6.73 0.1240833 0.1699447 0.0396049 0.0784285

NKI-023 0 0 T 300 17.79 161 2.46 0.00 0.00 0.47 70 NA 0.1298441 0.1717509 NA 0.0790533

NKI-024 0 0 T 225 0.37 26 1.59 0.08 0.58 1.43 0 5.60 0.054467 0.0959122 0.1070282 0.0329746

NKI-025 0 0 T 96 8.73 17 1.32 0.00 0.00 0.19 60 6.50 0.0519602 0.1146254 0.0308767 0.0320816

NKI-026 0 0 T 371 43.62 NA 1.77 0.00 0.00 0.13 60 NA 0.346268 0.2791512 NA 0.2241756

NKI-027 0 0 T 14 48.35 13 0.25 0.00 0.00 0.00 0 5.36 0.1888025 0.1923131 0.012327 0.127833

NKI-028 0 0 T 928 1.09 NA 3.28 0.00 0.58 1.22 0 NA 0.3486183 0.1116267 NA 0.2205889

NKI-029 0 0 T 372 16.67 NA 7.04 0.48 0.48 1.28 20 NA 0.1505913 0.327581 NA 0.0911631

NKI-030 0 0 T 182 79.91 128 1.89 0.00 0.00 0.02 0 6.18 0.5844484 0.5499894 0.0653657 0.4496429

NKI-031 0 0 T 111 17.11 7 0.16 0.00 0.00 0.00 0 NA 0.0756291 0.113873 NA 0.0470361
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Supplementary Tables

Table S1. Overview of all analyzed biomarkers per patient.
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NKI-001 1 1 T 400 32.08 NA 1.28 0.00 0.00 0.15 0 NA 0.2649983 0.1919443 NA 0.1652011

NKI-002 0 0 T 287 49.12 152 1.79 0.12 0.12 0.19 40 NA 0.343007 0.3148431 NA 0.2265712

NKI-003 0 0 T 45 23.33 44 1.07 0.00 0.00 0.09 1 NA 0.0803345 0.1521966 NA 0.0509736

NKI-004 0 0 T 552 24.65 NA 5.17 0.00 0.72 1.65 0 NA 0.2957622 0.3404191 NA 0.1824023

NKI-005 1 1 T 763 89.87 537 3.36 0.00 0.00 0.63 0 NA 0.9058749 0.8216733 NA 0.7926359

NKI-006 1 0 T 1273 42.31 828 9.85 0.21 0.43 1.87 0 8.77 0.8708422 0.8815818 0.7421676 0.7221582
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NKI-029 0 0 T 372 16.67 NA 7.04 0.48 0.48 1.28 20 NA 0.1505913 0.327581 NA 0.0911631

NKI-030 0 0 T 182 79.91 128 1.89 0.00 0.00 0.02 0 6.18 0.5844484 0.5499894 0.0653657 0.4496429

NKI-031 0 0 T 111 17.11 7 0.16 0.00 0.00 0.00 0 NA 0.0756291 0.113873 NA 0.0470361
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Table S1. Continued
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NKI-032 1 1 T 853 91.49 181 3.33 0.05 0.16 0.51 1 7.57 0.9281668 0.8280812 0.7964289 0.8278642
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NKI-037 0 0 T 191 81.87 86 1.36 0.00 0.00 0.06 60 NA 0.609898 0.4800232 NA 0.474431

NKI-038 1 0 T 75 55.56 214 2.03 0.29 0.58 1.86 0 7.05 0.2733109 0.3833487 0.026989 0.1878513

NKI-039 0 0 T 260 14.52 49 1.44 0.01 0.09 0.31 0 6.09 0.1035125 0.1336286 0.1290324 0.0630203

NKI-040 0 0 T 282 20.08 244 1.23 0.00 0.00 0.02 10 6.64 0.1344303 0.1463986 0.1299422 0.0822057

NKI-041 0 0 T 376 45.79 66 2.03 0.00 0.00 0.05 60 NA 0.3698593 0.3139134 NA 0.2416199

NKI-042 1 1 T 2731 95.76 319 11.77 0.07 0.31 1.31 100 9.71 0.9994594 0.9996528 0.7902098 0.9947135

NKI-043 0 0 T 513 11.19 NA 3.11 0.00 0.64 1.02 0 NA 0.1793685 0.1547866 NA 0.1078333

NKI-044 1 1 T 1695 1.8 NA 7.57 0.00 1.46 2.29 95 NA 0.8578328 0.1614933 NA 0.7372112

NKI-045 0 0 T 157 20.4 49 1.24 0.00 0.00 0.03 0 7.24 0.0974757 0.1477143 0.0476186 0.0604833

NKI-046 0 0 T 241 11.41 NA NA NA NA NA 10 NA 0.0874019 NA NA 0.0531643

NKI-047 0 0 T 330 29.98 51 2.53 0.01 0.07 0.20 40 7.73 0.2121404 0.243267 0.1180728 0.1316529

NKI-048 1 1 T 152 54.29 193 1.14 0.00 0.00 0.01 95 NA 0.3066719 0.2853273 NA 0.20799

NKI-049 0 0 T 52 13.3 11 0.49 0.00 0.00 0.10 0 NA 0.05496 0.1124674 NA 0.0343275

NKI-050 0 0 T 507 27.05 380 3.97 0.13 0.33 1.33 1 6.94 0.2877861 0.2986536 0.4280079 0.1778782

NKI-051 0 0 T 85 14.47 2 0.43 0.00 0.00 0.07 0 5.61 0.0633189 0.1138288 0.0268781 0.039405

NKI-052 1 1 T 473 35.65 139 1.75 0.02 0.14 0.28 0 6.67 0.3402331 0.2330759 0.4151931 0.2153227

NKI-053 1 0 T 595 6.53 NA 2.10 0.00 0.00 0.42 0 NA 0.1896019 0.1186925 NA 0.1139911

NKI-054 1 0 T 146 35.89 31 0.66 0.00 0.13 0.21 0 NA 0.1670231 0.1765352 NA 0.1068571

NKI-055 0 0 T 24 25.37 0 0.24 0.00 0.00 0.02 0 NA 0.0821614 0.1326009 NA 0.0525204

NKI-056 1 1 V 148 18.58 265 1.35 0.00 0.14 0.22 1 6.85 0.0887281 0.1446729 0.0461784 0.0549907

NKI-057 0 0 V 220 9.64 67 6.20 0.00 0.48 2.73 0 7.06 0.0769977 0.2134284 0.0749965 0.0468721

NKI-058 0 0 V 66 13.17 25 0.32 0.00 0.35 0.57 40 NA 0.056926 0.1093362 NA 0.0354729

NKI-059 1 0 V 94 61.54 24 0.33 0.00 0.00 0.00 90 NA 0.3382343 0.2419572 NA 0.237746

NKI-060 0 0 V 1105 67.42 NA 5.81 0.00 0.20 0.67 80 NA 0.9118205 0.8752877 NA 0.7878656

NKI-061 0 0 V 132 20.83 70 1.06 0.00 0.00 0.10 0 7.14 0.0925615 0.1440943 0.0404469 0.0576752

NKI-062 0 0 V 274 18.63 80 2.59 0.19 0.50 2.62 0 6.94 0.1249519 0.1798511 0.1118855 0.0763194

NKI-063 0 0 V 107 30.19 83 0.87 0.00 0.00 0.03 0 6.88 0.1232627 0.1672965 0.0339259 0.0783425

NKI-064 0 0 V 599 44.88 NA 2.39 0.00 0.00 0.10 100 NA 0.5171948 0.3383498 NA 0.3474269
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NKI-032 1 1 T 853 91.49 181 3.33 0.05 0.16 0.51 1 7.57 0.9281668 0.8280812 0.7964289 0.8278642

NKI-033 0 0 T 17 13.37 15 0.27 0.00 0.00 0.04 0 4.14 0.0498061 0.1088811 0.0100224 0.0312862

NKI-034 0 0 T 269 35.36 152 4.83 0.00 0.00 0.41 1 6.53 0.2192833 0.4490073 0.1221511 0.138352

NKI-035 0 0 T 5 15.38 2 0.08 0.00 0.00 0.00 0 4.78 0.0522088 0.1092175 0.0098296 0.032955

NKI-036 0 0 T 19 10.64 6 0.59 0.00 0.00 0.03 0 NA 0.0448136 0.1085343 NA 0.0280398

NKI-037 0 0 T 191 81.87 86 1.36 0.00 0.00 0.06 60 NA 0.609898 0.4800232 NA 0.474431

NKI-038 1 0 T 75 55.56 214 2.03 0.29 0.58 1.86 0 7.05 0.2733109 0.3833487 0.026989 0.1878513

NKI-039 0 0 T 260 14.52 49 1.44 0.01 0.09 0.31 0 6.09 0.1035125 0.1336286 0.1290324 0.0630203

NKI-040 0 0 T 282 20.08 244 1.23 0.00 0.00 0.02 10 6.64 0.1344303 0.1463986 0.1299422 0.0822057

NKI-041 0 0 T 376 45.79 66 2.03 0.00 0.00 0.05 60 NA 0.3698593 0.3139134 NA 0.2416199

NKI-042 1 1 T 2731 95.76 319 11.77 0.07 0.31 1.31 100 9.71 0.9994594 0.9996528 0.7902098 0.9947135

NKI-043 0 0 T 513 11.19 NA 3.11 0.00 0.64 1.02 0 NA 0.1793685 0.1547866 NA 0.1078333

NKI-044 1 1 T 1695 1.8 NA 7.57 0.00 1.46 2.29 95 NA 0.8578328 0.1614933 NA 0.7372112

NKI-045 0 0 T 157 20.4 49 1.24 0.00 0.00 0.03 0 7.24 0.0974757 0.1477143 0.0476186 0.0604833

NKI-046 0 0 T 241 11.41 NA NA NA NA NA 10 NA 0.0874019 NA NA 0.0531643

NKI-047 0 0 T 330 29.98 51 2.53 0.01 0.07 0.20 40 7.73 0.2121404 0.243267 0.1180728 0.1316529

NKI-048 1 1 T 152 54.29 193 1.14 0.00 0.00 0.01 95 NA 0.3066719 0.2853273 NA 0.20799

NKI-049 0 0 T 52 13.3 11 0.49 0.00 0.00 0.10 0 NA 0.05496 0.1124674 NA 0.0343275

NKI-050 0 0 T 507 27.05 380 3.97 0.13 0.33 1.33 1 6.94 0.2877861 0.2986536 0.4280079 0.1778782

NKI-051 0 0 T 85 14.47 2 0.43 0.00 0.00 0.07 0 5.61 0.0633189 0.1138288 0.0268781 0.039405

NKI-052 1 1 T 473 35.65 139 1.75 0.02 0.14 0.28 0 6.67 0.3402331 0.2330759 0.4151931 0.2153227

NKI-053 1 0 T 595 6.53 NA 2.10 0.00 0.00 0.42 0 NA 0.1896019 0.1186925 NA 0.1139911

NKI-054 1 0 T 146 35.89 31 0.66 0.00 0.13 0.21 0 NA 0.1670231 0.1765352 NA 0.1068571

NKI-055 0 0 T 24 25.37 0 0.24 0.00 0.00 0.02 0 NA 0.0821614 0.1326009 NA 0.0525204

NKI-056 1 1 V 148 18.58 265 1.35 0.00 0.14 0.22 1 6.85 0.0887281 0.1446729 0.0461784 0.0549907

NKI-057 0 0 V 220 9.64 67 6.20 0.00 0.48 2.73 0 7.06 0.0769977 0.2134284 0.0749965 0.0468721

NKI-058 0 0 V 66 13.17 25 0.32 0.00 0.35 0.57 40 NA 0.056926 0.1093362 NA 0.0354729

NKI-059 1 0 V 94 61.54 24 0.33 0.00 0.00 0.00 90 NA 0.3382343 0.2419572 NA 0.237746

NKI-060 0 0 V 1105 67.42 NA 5.81 0.00 0.20 0.67 80 NA 0.9118205 0.8752877 NA 0.7878656

NKI-061 0 0 V 132 20.83 70 1.06 0.00 0.00 0.10 0 7.14 0.0925615 0.1440943 0.0404469 0.0576752

NKI-062 0 0 V 274 18.63 80 2.59 0.19 0.50 2.62 0 6.94 0.1249519 0.1798511 0.1118855 0.0763194

NKI-063 0 0 V 107 30.19 83 0.87 0.00 0.00 0.03 0 6.88 0.1232627 0.1672965 0.0339259 0.0783425

NKI-064 0 0 V 599 44.88 NA 2.39 0.00 0.00 0.10 100 NA 0.5171948 0.3383498 NA 0.3474269
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NKI-065 1 1 V 448 44.14 115 3.20 0.14 0.28 0.45 0 NA 0.4028893 0.4048485 NA 0.2629425

NKI-066 1 1 V 3172 84.34 130 13.73 0.00 0.00 0.29 100 9.98 0.9997702 0.9997072 0.5879973 0.9974879

NKI-067 0 0 V 233 87.19 98 0.50 0.00 0.00 0.01 0 7.09 0.6854384 0.3726544 0.0813578 0.5500873

NKI-068 0 0 V 249 82.48 44 0.86 0.00 0.00 0.05 40 NA 0.6514318 0.4045269 NA 0.5101457

NKI-069 1 1 V 424 63.61 NA 2.34 0.00 0.00 1.45 0 NA 0.5803949 0.4843495 NA 0.4168848

NKI-070 0 0 V 50 62.3 68 1.24 0.00 0.00 0.01 0 8.02 0.3185722 0.3396215 0.0254434 0.2257876

NKI-071 0 0 V 66 20.29 NA 0.49 0.00 0.00 0.08 0 NA 0.0755549 0.1278312 NA 0.0475368

NKI-072 0 0 V NA NA 26 1.51 0.00 0.00 0.16 NA NA NA NA NA NA

NKI-073 1 1 V 630 42.6 298 2.35 0.00 0.55 0.34 0 NA 0.5170683 0.3180552 NA 0.3459363

NKI-074 0 0 V 984 52.16 61 8.09 0.03 0.27 0.99 60 5.83 0.8086051 0.8882897 0.9955607 0.6348037

NKI-075 1 1 V 232 17.24 110 2.23 0.00 0.11 0.33 40 6.79 0.1061145 0.1627554 0.0867333 0.0649764

NKI-076 0 0 V 239 37.77 43 1.12 0.00 0.03 0.17 1 NA 0.2214177 0.2071013 NA 0.1409171

NKI-077 0 0 V 40 4.29 6 0.32 0.00 0.00 0.02 0 5.79 0.0367493 0.093465 0.0174087 0.0227566

NKI-078 0 0 V 501 66.58 457 7.72 0.00 0.00 0.51 0 7.83 0.6581 0.9491255 0.2549388 0.4874698

NKI-079 1 0 V 116 32.78 NA 2.34 0.00 0.00 0.03 70 NA 0.1387327 0.2505997 NA 0.0885215

NKI-080 0 0 V 732 73.97 321 2.19 0.00 0.00 0.06 1 8.78 0.8279293 0.5489125 0.2702141 0.6728334

NKI-081 0 0 V 113 17.43 6 1.70 0.00 0.00 0.36 0 NA 0.0770103 0.1496058 NA 0.0479004

NKI-082 1 1 V 279 13.04 213 3.93 0.03 0.30 1.08 0 6.90 0.1032161 0.184462 0.1172105 0.0626449

NKI-083 0 0 V 199 4.32 NA 2.53 0.00 0.00 0.11 100 6.32 0.0589316 0.1163071 0.0738505 0.0358275

NKI-084 0 0 V 152 49.38 204 1.13 0.00 0.24 0.38 0 NA 0.2646051 0.2599037 NA 0.176134

NKI-085 0 0 V 319 16.83 41 2.11 0.11 0.49 0.97 0 NA 0.1319056 0.1577837 NA 0.0801059

NKI-086 0 0 V 209 5.59 21 1.44 0.05 0.17 0.66 0 5.95 0.0637693 0.1078106 0.0860978 0.0387583

NKI-087 0 0 V 1442 17.82 NA 6.46 0.00 0.37 4.23 90 NA 0.8257727 0.3183919 NA 0.6715443

NKI-088 0 0 V 36 7.04 9 0.45 0.00 0.00 0.05 10 NA 0.0406569 0.0996383 NA 0.0252655

NKI-089 1 0 V 138 3.51 17 1.71 0.00 0.00 0.76 0 NA 0.0476799 0.1050916 NA 0.0291588

NKI-090 0 0 V 43 13.87 3 0.41 0.00 0.00 0.01 1 5.44 0.0547966 0.112249 0.0170706 0.0342993

NKI-091 0 0 V 39 16.39 21 0.35 0.00 0.00 0.01 0 NA 0.0599567 0.1162457 NA 0.037682

NKI-092 0 0 V 172 37.35 31 1.13 0.00 0.01 0.08 30 5.93 0.1869745 0.205923 0.0617904 0.1196551

NKI-093 1 0 V 479 39.02 NA 3.49 0.00 0.00 0.43 70 8.01 0.3752656 0.3808228 0.2075551 0.2406227

NKI-094 0 0 V 240 3.75 150 2.13 0.00 0.22 0.34 1 NA 0.0649582 0.1100494 NA 0.0393285

NKI-095 0 0 V 115 10.66 18 0.49 0.00 0.02 0.21 0 NA 0.0593131 0.1070974 NA 0.0365982

NKI-096 1 1 V 582 36.78 211 4.81 0.00 0.55 1.58 0 NA 0.4256953 0.4651745 NA 0.2746127

NKI-097 0 0 V 184 10.64 101 2.40 0.10 0.60 0.91 0 5.68 0.0722413 0.1384903 0.0714983 0.0441878
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NKI-065 1 1 V 448 44.14 115 3.20 0.14 0.28 0.45 0 NA 0.4028893 0.4048485 NA 0.2629425

NKI-066 1 1 V 3172 84.34 130 13.73 0.00 0.00 0.29 100 9.98 0.9997702 0.9997072 0.5879973 0.9974879

NKI-067 0 0 V 233 87.19 98 0.50 0.00 0.00 0.01 0 7.09 0.6854384 0.3726544 0.0813578 0.5500873

NKI-068 0 0 V 249 82.48 44 0.86 0.00 0.00 0.05 40 NA 0.6514318 0.4045269 NA 0.5101457

NKI-069 1 1 V 424 63.61 NA 2.34 0.00 0.00 1.45 0 NA 0.5803949 0.4843495 NA 0.4168848

NKI-070 0 0 V 50 62.3 68 1.24 0.00 0.00 0.01 0 8.02 0.3185722 0.3396215 0.0254434 0.2257876

NKI-071 0 0 V 66 20.29 NA 0.49 0.00 0.00 0.08 0 NA 0.0755549 0.1278312 NA 0.0475368

NKI-072 0 0 V NA NA 26 1.51 0.00 0.00 0.16 NA NA NA NA NA NA

NKI-073 1 1 V 630 42.6 298 2.35 0.00 0.55 0.34 0 NA 0.5170683 0.3180552 NA 0.3459363

NKI-074 0 0 V 984 52.16 61 8.09 0.03 0.27 0.99 60 5.83 0.8086051 0.8882897 0.9955607 0.6348037

NKI-075 1 1 V 232 17.24 110 2.23 0.00 0.11 0.33 40 6.79 0.1061145 0.1627554 0.0867333 0.0649764

NKI-076 0 0 V 239 37.77 43 1.12 0.00 0.03 0.17 1 NA 0.2214177 0.2071013 NA 0.1409171

NKI-077 0 0 V 40 4.29 6 0.32 0.00 0.00 0.02 0 5.79 0.0367493 0.093465 0.0174087 0.0227566

NKI-078 0 0 V 501 66.58 457 7.72 0.00 0.00 0.51 0 7.83 0.6581 0.9491255 0.2549388 0.4874698

NKI-079 1 0 V 116 32.78 NA 2.34 0.00 0.00 0.03 70 NA 0.1387327 0.2505997 NA 0.0885215

NKI-080 0 0 V 732 73.97 321 2.19 0.00 0.00 0.06 1 8.78 0.8279293 0.5489125 0.2702141 0.6728334

NKI-081 0 0 V 113 17.43 6 1.70 0.00 0.00 0.36 0 NA 0.0770103 0.1496058 NA 0.0479004

NKI-082 1 1 V 279 13.04 213 3.93 0.03 0.30 1.08 0 6.90 0.1032161 0.184462 0.1172105 0.0626449

NKI-083 0 0 V 199 4.32 NA 2.53 0.00 0.00 0.11 100 6.32 0.0589316 0.1163071 0.0738505 0.0358275

NKI-084 0 0 V 152 49.38 204 1.13 0.00 0.24 0.38 0 NA 0.2646051 0.2599037 NA 0.176134

NKI-085 0 0 V 319 16.83 41 2.11 0.11 0.49 0.97 0 NA 0.1319056 0.1577837 NA 0.0801059

NKI-086 0 0 V 209 5.59 21 1.44 0.05 0.17 0.66 0 5.95 0.0637693 0.1078106 0.0860978 0.0387583

NKI-087 0 0 V 1442 17.82 NA 6.46 0.00 0.37 4.23 90 NA 0.8257727 0.3183919 NA 0.6715443

NKI-088 0 0 V 36 7.04 9 0.45 0.00 0.00 0.05 10 NA 0.0406569 0.0996383 NA 0.0252655

NKI-089 1 0 V 138 3.51 17 1.71 0.00 0.00 0.76 0 NA 0.0476799 0.1050916 NA 0.0291588

NKI-090 0 0 V 43 13.87 3 0.41 0.00 0.00 0.01 1 5.44 0.0547966 0.112249 0.0170706 0.0342993

NKI-091 0 0 V 39 16.39 21 0.35 0.00 0.00 0.01 0 NA 0.0599567 0.1162457 NA 0.037682

NKI-092 0 0 V 172 37.35 31 1.13 0.00 0.01 0.08 30 5.93 0.1869745 0.205923 0.0617904 0.1196551

NKI-093 1 0 V 479 39.02 NA 3.49 0.00 0.00 0.43 70 8.01 0.3752656 0.3808228 0.2075551 0.2406227

NKI-094 0 0 V 240 3.75 150 2.13 0.00 0.22 0.34 1 NA 0.0649582 0.1100494 NA 0.0393285

NKI-095 0 0 V 115 10.66 18 0.49 0.00 0.02 0.21 0 NA 0.0593131 0.1070974 NA 0.0365982

NKI-096 1 1 V 582 36.78 211 4.81 0.00 0.55 1.58 0 NA 0.4256953 0.4651745 NA 0.2746127

NKI-097 0 0 V 184 10.64 101 2.40 0.10 0.60 0.91 0 5.68 0.0722413 0.1384903 0.0714983 0.0441878



Chapter 3

118

Table S1. Continued

Sample 
ID 1 =

 D
C 

6m
0=

 P
D

1 =
 D

C 
12

m
,

0=
 P

D

T=
 T

ra
in

in
g,

V
= 

Va
li

da
ti

on

CD
8 

TI
Ls

pe
r 

m
m

2

IT
-C

D
8

T 
ce

ll
s (

%
)

PD
-1

T 
TI

Ls
pe

r 
m

m
2

CD
3+  p

os
it

iv
e

ar
ea

 p
er

 m
m

2

TL
S 

pe
r 

m
m

2

TL
S+

LA
 p

er
m

m
2

CD
20

+  
po

si
ti

ve
ar

ea
 p

er
 m

m
2

PD
-L

1 T
PS

 (%
)

TI
S 

sc
or

e

CD
8 

TI
Ls

+
IT

 C
D

8 
T 

ce
ll

s 
(p

ro
ba

bi
li

ty
 

sc
or

e,
 D

C
 6

m
)

CD
3 

TI
Ls

+
IT

 C
D

8 
T 

ce
ll

s 
(p

ro
ba

bi
li

ty
 

sc
or

e,
 D

C
 6

m
)

CD
8 

TI
Ls

+
TI

S 
(p

ro
ba

bi
li

ty
 

sc
or

e,
 D

C
 12

m
)

CD
8 

TI
Ls

+
IT

 C
D

8 
T 

ce
ll

s 
(p

ro
ba

bi
li

ty
 

sc
or

e,
 D

C
 12

m
)

NKI-098 0 0 V 632 58.28 230 6.43 0.08 0.24 1.45 100 8.60 0.6655044 0.8484654 0.2370195 0.4845027

NKI-099 0 0 V 242 14.78 55 1.04 0.00 0.02 0.15 0 7.13 0.099495 0.1262077 0.08555 0.0606982

NKI-100 0 0 V 268 17.43 85 2.19 0.00 0.00 0.06 0 6.90 0.1177306 0.1625127 0.1086931 0.0718445

NKI-101 0 0 V 380 35.19 152 1.65 0.03 0.20 0.63 0 6.82 0.2783846 0.2250008 0.2328005 0.1750651

NKI-102 0 0 V 189 13.48 13 0.67 0.00 0.00 0.04 0 NA 0.0817629 0.1159974 NA 0.0501128

NKI-103 0 0 V 1012 32.4 NA 6.77 0.00 0.42 1.41 0 8.30 0.6881829 0.5579657 0.7256058 0.4969709

NKI-104 0 0 V 616 16.68 236 7.23 0.14 0.60 2.00 0 8.71 0.2710605 0.3359382 0.2053837 0.1653748

NKI-105 0 0 V 59 1.45 NA 0.33 0.00 0.00 0.03 0 NA 0.0346187 0.0889156 NA 0.0213275

NKI-106 0 0 V 124 22.94 56 1.22 0.00 0.00 0.09 0 6.21 0.0981677 0.1555833 0.0392423 0.0614348

NKI-107 0 0 V 185 23.2 126 0.83 0.00 0.00 0.03 0 NA 0.116696 0.1445237 NA 0.072433

NKI-108 1 1 V 175 38.34 181 3.34 0.33 1.32 7.01 100 7.82 0.1947283 0.3622262 0.0497995 0.124898

NKI-109 0 0 V 341 99.02 206 1.96 0.00 0.00 0.03 80 NA 0.8241216 0.6974137 NA 0.7076549

NKI-110 1 1 V 381 23.05 225 3.58 0.14 0.68 2.05 1 NA 0.1910461 0.2449967 NA 0.1167034

NKI-111 0 0 V 196 27.34 35 1.46 0.01 0.05 0.38 0 NA 0.1396518 0.1804173 NA 0.0871661

NKI-112 0 0 V 48 23.99 22 0.44 0.00 0.00 0.08 10 6.01 0.083122 0.135228 0.019392 0.0527722

NKI-113 1 1 V 595 34.1 226 3.76 0.16 0.47 1.80 30 NA 0.4092446 0.3532502 NA 0.2617925

NKI-114 0 0 V 52 50.51 12 0.57 0.00 0.00 0.02 0 NA 0.2213779 0.221484 NA 0.1499217

NKI-115 0 0 V 255 3.54 NA 1.87 0.00 0.00 0.28 0 NA 0.0673037 0.1067635 NA 0.0406925

NKI-116 1 1 V 1156 18.87 NA 5.58 0.93 2.78 9.29 0 NA 0.674359 0.292948 NA 0.4883256

NKI-117 0 0 V 365 91.69 NA 1.40 0.00 0.00 0.04 70 8.41 0.7869513 0.5526563 0.1026149 0.6545504

NKI-118 1 0 V 260 23.93 160 2.78 0.05 0.22 0.21 0 5.61 0.1456327 0.2168293 0.1470963 0.089745

NKI-119 1 0 V 280 15.98 67 1.32 0.00 0.06 0.18 0 6.91 0.1153123 0.1356187 0.1176396 0.0701794

NKI-120 1 1 V 1562 46.55 352 9.83 0.66 1.33 5.93 1 8.26 0.946989 0.9137131 0.9762271 0.8562076

NKI-121 1 0 V 217 42.43 NA 1.69 0.00 0.00 0.07 1 5.02 0.2446654 0.2662741 0.1115903 0.1581614

NKI-122 0 0 V 90 25.31 24 0.21 0.00 0.00 0.00 40 NA 0.0980491 0.1315955 NA 0.0619341

NKI-123 0 0 V 396 39.23 80 3.15 0.02 0.06 0.20 30 NA 0.3226077 0.3552108 NA 0.2056915

NKI-124 0 0 V 311 62.72 31 NA NA NA NA 0 NA 0.4942433 NA NA 0.3486228

NKI-125 1 1 V 245 5.09 104 NA NA NA NA 0 6.95 0.0694158 NA 0.0914363 0.0420353

NKI-126 0 0 V 267 11.11 NA 1.12 0.00 0.00 0.10 2 NA 0.0929217 0.1178855 NA 0.0563683

NKI-127 1 1 V 456 56.8 60 1.55 0.00 0.00 0.02 100 NA 0.5345907 0.3402784 NA 0.3716708

NKI-128 1 1 V 296 69.57 1 1.27 0.00 0 0.05 5 NA 0.5542083 0.3870957 NA 0.4053088

NKI-129 0 0 V 95 34.14 27 0.47 0.00 0 0.04 0 6.98 0.1382523 0.1627029 0.0310978 0.088781

NKI-130 0 0 V 267 45.91 44 NA NA NA NA 20 NA 0.3016551 NA NA 0.1968249
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Table S1. Continued
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NKI-098 0 0 V 632 58.28 230 6.43 0.08 0.24 1.45 100 8.60 0.6655044 0.8484654 0.2370195 0.4845027

NKI-099 0 0 V 242 14.78 55 1.04 0.00 0.02 0.15 0 7.13 0.099495 0.1262077 0.08555 0.0606982

NKI-100 0 0 V 268 17.43 85 2.19 0.00 0.00 0.06 0 6.90 0.1177306 0.1625127 0.1086931 0.0718445

NKI-101 0 0 V 380 35.19 152 1.65 0.03 0.20 0.63 0 6.82 0.2783846 0.2250008 0.2328005 0.1750651

NKI-102 0 0 V 189 13.48 13 0.67 0.00 0.00 0.04 0 NA 0.0817629 0.1159974 NA 0.0501128

NKI-103 0 0 V 1012 32.4 NA 6.77 0.00 0.42 1.41 0 8.30 0.6881829 0.5579657 0.7256058 0.4969709

NKI-104 0 0 V 616 16.68 236 7.23 0.14 0.60 2.00 0 8.71 0.2710605 0.3359382 0.2053837 0.1653748

NKI-105 0 0 V 59 1.45 NA 0.33 0.00 0.00 0.03 0 NA 0.0346187 0.0889156 NA 0.0213275

NKI-106 0 0 V 124 22.94 56 1.22 0.00 0.00 0.09 0 6.21 0.0981677 0.1555833 0.0392423 0.0614348

NKI-107 0 0 V 185 23.2 126 0.83 0.00 0.00 0.03 0 NA 0.116696 0.1445237 NA 0.072433

NKI-108 1 1 V 175 38.34 181 3.34 0.33 1.32 7.01 100 7.82 0.1947283 0.3622262 0.0497995 0.124898

NKI-109 0 0 V 341 99.02 206 1.96 0.00 0.00 0.03 80 NA 0.8241216 0.6974137 NA 0.7076549

NKI-110 1 1 V 381 23.05 225 3.58 0.14 0.68 2.05 1 NA 0.1910461 0.2449967 NA 0.1167034

NKI-111 0 0 V 196 27.34 35 1.46 0.01 0.05 0.38 0 NA 0.1396518 0.1804173 NA 0.0871661

NKI-112 0 0 V 48 23.99 22 0.44 0.00 0.00 0.08 10 6.01 0.083122 0.135228 0.019392 0.0527722

NKI-113 1 1 V 595 34.1 226 3.76 0.16 0.47 1.80 30 NA 0.4092446 0.3532502 NA 0.2617925

NKI-114 0 0 V 52 50.51 12 0.57 0.00 0.00 0.02 0 NA 0.2213779 0.221484 NA 0.1499217

NKI-115 0 0 V 255 3.54 NA 1.87 0.00 0.00 0.28 0 NA 0.0673037 0.1067635 NA 0.0406925

NKI-116 1 1 V 1156 18.87 NA 5.58 0.93 2.78 9.29 0 NA 0.674359 0.292948 NA 0.4883256

NKI-117 0 0 V 365 91.69 NA 1.40 0.00 0.00 0.04 70 8.41 0.7869513 0.5526563 0.1026149 0.6545504

NKI-118 1 0 V 260 23.93 160 2.78 0.05 0.22 0.21 0 5.61 0.1456327 0.2168293 0.1470963 0.089745

NKI-119 1 0 V 280 15.98 67 1.32 0.00 0.06 0.18 0 6.91 0.1153123 0.1356187 0.1176396 0.0701794

NKI-120 1 1 V 1562 46.55 352 9.83 0.66 1.33 5.93 1 8.26 0.946989 0.9137131 0.9762271 0.8562076

NKI-121 1 0 V 217 42.43 NA 1.69 0.00 0.00 0.07 1 5.02 0.2446654 0.2662741 0.1115903 0.1581614

NKI-122 0 0 V 90 25.31 24 0.21 0.00 0.00 0.00 40 NA 0.0980491 0.1315955 NA 0.0619341

NKI-123 0 0 V 396 39.23 80 3.15 0.02 0.06 0.20 30 NA 0.3226077 0.3552108 NA 0.2056915

NKI-124 0 0 V 311 62.72 31 NA NA NA NA 0 NA 0.4942433 NA NA 0.3486228

NKI-125 1 1 V 245 5.09 104 NA NA NA NA 0 6.95 0.0694158 NA 0.0914363 0.0420353

NKI-126 0 0 V 267 11.11 NA 1.12 0.00 0.00 0.10 2 NA 0.0929217 0.1178855 NA 0.0563683

NKI-127 1 1 V 456 56.8 60 1.55 0.00 0.00 0.02 100 NA 0.5345907 0.3402784 NA 0.3716708

NKI-128 1 1 V 296 69.57 1 1.27 0.00 0 0.05 5 NA 0.5542083 0.3870957 NA 0.4053088

NKI-129 0 0 V 95 34.14 27 0.47 0.00 0 0.04 0 6.98 0.1382523 0.1627029 0.0310978 0.088781

NKI-130 0 0 V 267 45.91 44 NA NA NA NA 20 NA 0.3016551 NA NA 0.1968249
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Table S1. Continued
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NKI-131 0 0 V 153 42.38 29 0.87 0.00 0 0.08 30 7.25 0.2118835 0.2109187 0.0463233 0.137822

NKI-132 1 0 V 274 4.73 NA 2.21 0.00 0.00 1.30 0 NA 0.0744299 0.1140751 NA 0.0449534

NKI-133 0 0 V NA NA NA NA NA NA NA 0 5.48 NA NA NA NA

NKI-134 1 0 V 927 54.17 NA 4.66 0.00 0 0.07 20 9.03 0.7950019 0.6614375 0.3327138 0.6185755

NKI-135 0 0 V NA NA NA NA NA NA NA 0 5.4 NA NA NA NA

NA, not available

Table  S2. Predictive accuracy of individual and composite biomarkers at a prespecified 
criterium of ≥90% sensitivity for detecting disease control (DC) at 6 months in the training 
cohort. * Indicates an interaction term.

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

PD-1T * LA 0.92 73 54 88 58 96 85 73 97

PD-1T * PD-L1 0.92 73 54 88 58 96 85 74 97

PD-1T * CD3 0.92 73 54 88 58 96 86 72 99

PD-1T * IT-CD8 0.92 73 54 88 58 96 86 70 100

PD-1T * CD20 0.92 70 51 85 55 95 85 72 98

PD-1T 0.92 70 51 85 55 95 82 68 95

PD-1T * TLS 0.92 70 51 85 55 95 84 71 97

CD8 * IT-CD8 0.94 62 45 77 50 96 83 73 94

PD-1T * TIS 1.00 60 36 81 47 100 83 67 99

LA * TIS 1.00 55 32 77 47 100 82 67 98

TIS 1.00 55 32 77 47 100 81 65 98

CD3 * TIS 1.00 55 32 77 47 100 84 69 100

CD3 * IT-CD8 0.94 54 37 71 47 95 78 65 92

PD-1T * CD8 0.92 53 34 72 44 94 82 68 97

TLS * CD20 0.94 51 34 68 45 95 73 59 88

LA * CD20 0.94 51 34 68 45 95 72 58 87

TLS * TIS 1.00 50 27 73 44 100 86 72 100

CD20 * TIS 1.00 50 27 73 44 100 84 68 100

CD20 0.94 49 32 66 44 95 71 56 86

IT-CD8 * TIS 1.00 45 23 68 42 100 89 74 100
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Table S1. Continued
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NKI-131 0 0 V 153 42.38 29 0.87 0.00 0 0.08 30 7.25 0.2118835 0.2109187 0.0463233 0.137822

NKI-132 1 0 V 274 4.73 NA 2.21 0.00 0.00 1.30 0 NA 0.0744299 0.1140751 NA 0.0449534

NKI-133 0 0 V NA NA NA NA NA NA NA 0 5.48 NA NA NA NA

NKI-134 1 0 V 927 54.17 NA 4.66 0.00 0 0.07 20 9.03 0.7950019 0.6614375 0.3327138 0.6185755

NKI-135 0 0 V NA NA NA NA NA NA NA 0 5.4 NA NA NA NA

NA, not available

Table  S2. Predictive accuracy of individual and composite biomarkers at a prespecified 
criterium of ≥90% sensitivity for detecting disease control (DC) at 6 months in the training 
cohort. * Indicates an interaction term.

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

PD-1T * LA 0.92 73 54 88 58 96 85 73 97

PD-1T * PD-L1 0.92 73 54 88 58 96 85 74 97

PD-1T * CD3 0.92 73 54 88 58 96 86 72 99

PD-1T * IT-CD8 0.92 73 54 88 58 96 86 70 100

PD-1T * CD20 0.92 70 51 85 55 95 85 72 98

PD-1T 0.92 70 51 85 55 95 82 68 95

PD-1T * TLS 0.92 70 51 85 55 95 84 71 97

CD8 * IT-CD8 0.94 62 45 77 50 96 83 73 94

PD-1T * TIS 1.00 60 36 81 47 100 83 67 99

LA * TIS 1.00 55 32 77 47 100 82 67 98

TIS 1.00 55 32 77 47 100 81 65 98

CD3 * TIS 1.00 55 32 77 47 100 84 69 100

CD3 * IT-CD8 0.94 54 37 71 47 95 78 65 92

PD-1T * CD8 0.92 53 34 72 44 94 82 68 97

TLS * CD20 0.94 51 34 68 45 95 73 59 88

LA * CD20 0.94 51 34 68 45 95 72 58 87

TLS * TIS 1.00 50 27 73 44 100 86 72 100

CD20 * TIS 1.00 50 27 73 44 100 84 68 100

CD20 0.94 49 32 66 44 95 71 56 86

IT-CD8 * TIS 1.00 45 23 68 42 100 89 74 100
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Table S2. Continued

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

PD-L1 * TIS 1.00 45 23 68 42 100 81 64 98

CD8 * LA 0.94 41 25 58 41 94 79 63 95

PD-L1 * IT-CD8 0.94 38 23 55 38 94 76 62 91

TLS * CD3 0.94 38 22 55 39 93 77 63 91

LA * CD3 0.94 38 22 55 39 93 76 62 90

CD20 * CD3 0.94 38 22 55 39 93 77 62 91

PD-L1 * CD3 0.94 35 20 53 38 93 74 58 89

CD3 0.94 35 20 53 38 93 74 59 88

CD8 * TLS 0.94 35 20 53 38 93 78 63 92

CD8 * CD20 0.94 32 18 50 38 92 78 63 93

PD-L1 * CD20 0.94 32 18 50 38 92 59 42 76

CD8 * CD3 0.94 32 18 50 38 92 76 61 92

CD8 0.94 28 15 45 35 92 76 60 91

PD-L1 * CD8 0.94 26 13 42 34 91 77 61 92

CD8 TILs * TIS 1.00 25 9 49 35 100 85 66 100

PD-L1 * LA 0.94 24 12 41 35 90 64 47 80

TLS * IT-CD8 0.94 8 2 22 31 75 78 62 93

LA * IT-CD8 0.94 8 2 22 31 75 75 59 92

CD20 * IT-CD8 0.94 8 2 22 31 75 75 59 92

IT-CD8 0.94 8 2 21 29 75 74 57 90

TLS * LA 1.00 3 0 14 31 100 64 49 80

PD-L1 1.00 0 0 9 29 NA 54 36 72

TLS 1.00 0 0 9 30 NA 62 46 77

LA 1.00 0 0 9 30 NA 60 44 76

PD-L1 * TLS 1.00 0 0 9 30 NA 58 41 76

NA, not available
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Table S2. Continued

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

PD-L1 * TIS 1.00 45 23 68 42 100 81 64 98

CD8 * LA 0.94 41 25 58 41 94 79 63 95

PD-L1 * IT-CD8 0.94 38 23 55 38 94 76 62 91

TLS * CD3 0.94 38 22 55 39 93 77 63 91

LA * CD3 0.94 38 22 55 39 93 76 62 90

CD20 * CD3 0.94 38 22 55 39 93 77 62 91

PD-L1 * CD3 0.94 35 20 53 38 93 74 58 89

CD3 0.94 35 20 53 38 93 74 59 88

CD8 * TLS 0.94 35 20 53 38 93 78 63 92

CD8 * CD20 0.94 32 18 50 38 92 78 63 93

PD-L1 * CD20 0.94 32 18 50 38 92 59 42 76

CD8 * CD3 0.94 32 18 50 38 92 76 61 92

CD8 0.94 28 15 45 35 92 76 60 91

PD-L1 * CD8 0.94 26 13 42 34 91 77 61 92

CD8 TILs * TIS 1.00 25 9 49 35 100 85 66 100

PD-L1 * LA 0.94 24 12 41 35 90 64 47 80

TLS * IT-CD8 0.94 8 2 22 31 75 78 62 93

LA * IT-CD8 0.94 8 2 22 31 75 75 59 92

CD20 * IT-CD8 0.94 8 2 22 31 75 75 59 92

IT-CD8 0.94 8 2 21 29 75 74 57 90

TLS * LA 1.00 3 0 14 31 100 64 49 80

PD-L1 1.00 0 0 9 29 NA 54 36 72

TLS 1.00 0 0 9 30 NA 62 46 77

LA 1.00 0 0 9 30 NA 60 44 76

PD-L1 * TLS 1.00 0 0 9 30 NA 58 41 76

NA, not available
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Table  S3. Predictive accuracy of individual and composite biomarkers at a prespecified 
criterium of ≥90% sensitivity for detecting disease control (DC) at 12 months in the training 
cohort. * Indicates an interaction term.

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

PD-1T * CD8 1.00 73 54 87 50 100 91 82 100

PD-1T * CD3 1.00 70 51 84 47 100 90 80 100

PD-1T * TLS 1.00 70 51 84 47 100 82 70 95

CD8 * TIS 1.00 68 45 86 46 100 91 79 100

PD-1T 1.00 67 48 82 45 100 82 70 95

PD-1T * CD20 1.00 67 48 82 45 100 85 74 97

PD-1T * LA 1.00 67 48 82 45 100 81 68 94

PD-1T * PD-L1 1.00 67 48 82 45 100 85 72 97

CD8 * IT-CD8 0.92 63 47 77 41 96 85 73 96

CD3 * IT-CD8 0.92 59 42 74 39 96 82 70 94

LA * IT-CD8 0.92 56 40 72 38 96 82 69 94

PD-L1 * CD8 0.92 56 40 71 37 96 80 65 94

PD-1T * TIS 1.00 55 32 76 33 100 80 61 99

CD8 * LA 0.92 54 37 69 37 96 82 66 98

PD-1T * IT-CD8 1.00 52 34 69 36 100 84 70 98

CD3 * TIS 1.00 50 28 72 35 100 83 65 100

LA * TIS 1.00 50 28 72 35 100 77 57 97

TIS 1.00 50 28 72 35 100 77 57 97

CD-20 * IT-CD8 0.92 49 33 65 34 95 73 55 91

TLS * CD20 0.92 49 33 65 34 95 68 52 85

TLS * IT-CD8 0.92 49 33 65 34 95 76 58 93

CD20 * CD3 0.92 46 31 63 33 95 81 68 95

CD20 * TIS 1.00 45 24 68 33 100 76 53 98

IT-CD8 * TIS 1.00 45 24 68 33 100 83 64 100

TLS * TIS 1.00 45 24 68 33 100 80 60 99

CD20 0.92 44 28 60 32 95 66 49 83

IT-CD8 0.92 44 29 60 31 95 74 56 92

PD-L1 * IT-CD8 0.92 42 27 58 31 95 80 65 94

CD8 * CD3 0.92 41 26 58 31 94 81 67 95

CD8 * TLS 0.92 41 26 58 31 94 79 64 95

PD-L1 * CD3 0.92 41 26 58 31 94 77 62 92

PD-L1 * TIS 1.00 41 21 64 32 100 80 59 100

TLS * CD3 0.92 41 26 58 31 94 79 64 94

CD3 0.92 39 24 55 31 94 76 61 92
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Table  S3. Predictive accuracy of individual and composite biomarkers at a prespecified 
criterium of ≥90% sensitivity for detecting disease control (DC) at 12 months in the training 
cohort. * Indicates an interaction term.

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

PD-1T * CD8 1.00 73 54 87 50 100 91 82 100

PD-1T * CD3 1.00 70 51 84 47 100 90 80 100

PD-1T * TLS 1.00 70 51 84 47 100 82 70 95

CD8 * TIS 1.00 68 45 86 46 100 91 79 100

PD-1T 1.00 67 48 82 45 100 82 70 95

PD-1T * CD20 1.00 67 48 82 45 100 85 74 97

PD-1T * LA 1.00 67 48 82 45 100 81 68 94

PD-1T * PD-L1 1.00 67 48 82 45 100 85 72 97

CD8 * IT-CD8 0.92 63 47 77 41 96 85 73 96

CD3 * IT-CD8 0.92 59 42 74 39 96 82 70 94

LA * IT-CD8 0.92 56 40 72 38 96 82 69 94

PD-L1 * CD8 0.92 56 40 71 37 96 80 65 94

PD-1T * TIS 1.00 55 32 76 33 100 80 61 99

CD8 * LA 0.92 54 37 69 37 96 82 66 98

PD-1T * IT-CD8 1.00 52 34 69 36 100 84 70 98

CD3 * TIS 1.00 50 28 72 35 100 83 65 100

LA * TIS 1.00 50 28 72 35 100 77 57 97

TIS 1.00 50 28 72 35 100 77 57 97

CD-20 * IT-CD8 0.92 49 33 65 34 95 73 55 91

TLS * CD20 0.92 49 33 65 34 95 68 52 85

TLS * IT-CD8 0.92 49 33 65 34 95 76 58 93

CD20 * CD3 0.92 46 31 63 33 95 81 68 95

CD20 * TIS 1.00 45 24 68 33 100 76 53 98

IT-CD8 * TIS 1.00 45 24 68 33 100 83 64 100

TLS * TIS 1.00 45 24 68 33 100 80 60 99

CD20 0.92 44 28 60 32 95 66 49 83

IT-CD8 0.92 44 29 60 31 95 74 56 92

PD-L1 * IT-CD8 0.92 42 27 58 31 95 80 65 94

CD8 * CD3 0.92 41 26 58 31 94 81 67 95

CD8 * TLS 0.92 41 26 58 31 94 79 64 95

PD-L1 * CD3 0.92 41 26 58 31 94 77 62 92

PD-L1 * TIS 1.00 41 21 64 32 100 80 59 100

TLS * CD3 0.92 41 26 58 31 94 79 64 94

CD3 0.92 39 24 55 31 94 76 61 92
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Table S3. Continued

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

LA * CD3 0.92 39 24 55 31 94 79 64 94

CD8 0.92 37 23 53 29 94 80 65 95

CD8 * CD20 0.92 37 22 53 30 94 82 66 97

PD-L1 * TLS 0.92 17 7 32 24 88 64 43 85

LA * CD20 0.92 10 3 23 23 80 55 33 76

PD-L1 * CD20 0.92 5 1 17 22 67 43 21 64

PD-L1 * LA 0.92 2 0 13 22 50 65 44 86

TLS * LA 1.00 2 0 13 23 100 59 42 76

LA 1.00 0 0 9 23 NA 58 40 75

PD-L1 1.00 0 0 8 22 NA 64 45 84

TLS 1.00 0 0 9 23 NA 59 43 76

NA, not available
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Table S3. Continued

Model Sensitivity ≥90% Specificity Specificity 95% CI
lower limit

Specificity 95% CI
upper limit

PPV NPV AUC AUC 95% CI
lower limit

AUC 95% CI
upper limit

LA * CD3 0.92 39 24 55 31 94 79 64 94

CD8 0.92 37 23 53 29 94 80 65 95

CD8 * CD20 0.92 37 22 53 30 94 82 66 97

PD-L1 * TLS 0.92 17 7 32 24 88 64 43 85

LA * CD20 0.92 10 3 23 23 80 55 33 76

PD-L1 * CD20 0.92 5 1 17 22 67 43 21 64

PD-L1 * LA 0.92 2 0 13 22 50 65 44 86

TLS * LA 1.00 2 0 13 23 100 59 42 76

LA 1.00 0 0 9 23 NA 58 40 75

PD-L1 1.00 0 0 8 22 NA 64 45 84

TLS 1.00 0 0 9 23 NA 59 43 76

NA, not available
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Translational relevance

PD-(L)1 blockade therapies have significantly improved the survival of a subset of 
patients with advanced stage non-small cell lung cancer. However, most patients 
don’t benefit, but still are at risk of adverse effects associated. This asks for biomarkers 
to better predict benefit. PD-1T TILs, a tumor- reactive T-cell population, constitute 
such a biomarker, and can be accurately quantified by digital image analysis in FFPE 
tumor tissue. Yet, this method is complex, limiting its application in routine patient 
care. As an alternative, a PD-1T mRNA expression signature measured in FFPE tissue 
samples with industry standard technology is more suitable for implementation 
in routine diagnostics. The PD-1T signature reached equally high sensitivity and 
negative predictive value as the digital image analysis-based IHC quantification 
of PD-1T TILs, making it particularly suited for reliably identifying advanced stage 
non-small cell lung cancer patients who have a low chance of benefitting from PD-
(L)1 blockade therapy.
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Abstract:

Introduction
Since PD-1 blockade is only effective in a minority of patients with advanced stage 
NSCLC, biomarkers are needed to guide treatment decisions. Tumor infiltration by 
PD-1T TILs, a dysfunctional tumor infiltrating lymphocyte (TIL) pool with tumor-
reactive capacity, can be detected by digital quantitative IHC and has been established 
as a novel predictive biomarker in NSCLC. To facilitate translation of this biomarker 
to the clinic, we here aimed to develop a robust RNA signature reflecting a tumor’s 
PD-1T TIL status.

Methods
mRNA expression analysis using Nanostring was performed in baseline tumor 
samples from 41 advanced stage NSCLC patients treated with nivolumab that 
were selected based on PD-1T TIL infiltration by IHC. Samples were included as 
training cohort (n=41) to develop a predictive gene signature. This signature was 
independently validated in a second cohort (n=42). Primary outcome was disease 
control at 12 months (DC 12m) and secondary outcome was progression-free and 
overall survival.

Results
Regularized regression analysis yielded a signature using 12 out of 56 differentially 
expressed genes between PD-1T IHC high tumors from patients with DC 12m and 
PD-1T IHC low tumors from patients with progressive disease (PD). In the validation 
cohort 6/6 (100%) patients with DC 12m and 23/36 (64%) with PD were correctly 
classified with an NPV of 100% and a PPV of 32%.

Conclusion
The PD-1T mRNA signature showed a similar high sensitivity and high NPV as the 
digital IHC quantification of PD-1T TILs. This provides a straightforward approach 
allowing for easy implementation in a routine diagnostic clinical setting.
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Introduction

Pharmacological blockade of the inhibitory immune receptor programmed cell death 
protein 1 (PD-1) or its ligand programmed death-ligand 1 (PD-L1) has improved the 
clinical outcome of many cancers, including non-small cell lung cancer (NSCLC)1–5. 
High tumor PD-L1 expression has been associated with clinical benefit in NSCLC 
treated with PD-1 blockade1,2,6 and these results have led to the implementation of 
PD-L1 immunohistochemistry (IHC) as a biomarker in clinical practice. However, 
other studies have shown suboptimal correlation of PD-L1 expression to clinical 
outcome3–5. Therefore, robust biomarkers that more accurately predict who will 
benefit, and who not, are needed. In particular, biomarkers with a high negative 
predictive value (NPV) that reliably predict lack of clinical benefit are important to 
offer patients alternative treatments.

Previously, we reported high levels of PD-1T tumor-infiltrating lymphocytes (TILs) 
as a novel predictive biomarker for long-term benefit to PD-1 blockade with a high 
NPV7. PD-1T TILs are a subset of PD-1+ T cells with a dysfunctional phenotype, high 
tumor-specific expression of PD-1, and high capacity for tumor recognition8,9. PD-
1T TILs can be measured via algorithm-based quantitative analysis of PD-1 IHC 
in formalin-fixed paraffin embedded (FFPE) tumor tissue7,8. While digital image 
analysis can yield accurate quantitative PD-1 protein expression data, this method 
is challenging to validate across centers, impacting routine clinical care.

We therefore aimed at developing a reliable method that can detect the signal 
represented by PD-1T TILs and that can easily be applied in routine clinical care. The 
NanoString nCounter is a robust platform that allows for measuring very low input 
RNA amounts isolated from FFPE tissue10. Already several mRNA signatures have 
been developed for this platform, including the Tumor Inflammation Signature 
(TIS) that has demonstrated predictive potential for clinical benefit to PD-1 blockade 
in multiple cancer types11–13.

In the present study, we used the NanoString nCounter platform, to develop and 
validate an RNA expression signature that reflects a tumor’s PD-1T TIL status and 
predicts clinical outcome of NSCLC patients treated with PD-1 blockade.
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Methods

Patient cohorts and study endpoints
In this study, 152 stage IV NSCLC patients were included that all started second or 
later line monotherapy with nivolumab. Patients with tumors harboring known 
sensitizing EGFR mutations or ALK translocations were excluded. A total of 115 
patients received PD-1 blockade therapy since March 2015 at the Netherlands Cancer 
Institute/Antoni van Leeuwenhoek hospital (NKI-AVL), The Netherlands, and were 
split in a training (n=94) and validation cohort (n=21). 37 patients from the CERTIM 
(Immunomodulatory Therapies Multidisciplinary Study Group) treated since July 
2015 at Cochin University hospital, France13 were pooled with the validation cohort 
(Fig. 1). All patients received nivolumab, administered per label as a single agent.

Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was used to 
determine the objective response. Patients treated at NKI-AVL, who were not evaluable 
for response assessment according to RECIST, were determined as progressive disease 
(PD) by the treating physician. Disease Control (DC) status (complete response (CR)/
partial response (PR) or stable disease (SD)) at 12 months after treatment initiation 
was used as the primary clinical outcome measure. Progression-free survival (PFS) 
and overall survival (OS) were used as secondary outcome measures. PFS and OS 
were defined as the time from the date of initiation of PD-1 blockade treatment to 
the date of progression (for PFS) or death (for OS). Patients who had not progressed 
or died were censored at the date of their last follow-up.

RNA or gene expression data derived from pretreatment archival formalin-fixed 
paraffin embedded (FFPE) tumor tissue samples were collected from the cohorts. 
Written informed consent was obtained from all patients treated at NKI-AVL 
for research usage of material not required for diagnostic use by institutionally 
implemented opt-out procedure. The study was conducted in accordance with the 
Declaration of Helsinki and approved by the Institutional Review Board of NKI 
(CFMPB586). Gene expression data of the CERTIM cohort was used from Damotte et 
al., a study that was previously approved by the ethics committee (CPP Ile de France 
II, no. 2008-33, 2012 06-12, 2018 MS1) in agreement with article L.1121-1 of the French 
law13. In the NKI-AVL training cohort (n=94), 28 samples were excluded based on 
low RNA yield and/or low RNA quality. Eight additional samples were excluded due 
to quality control failure in the Nanostring nCounter profiling assay (Nanostring) 
(Fig. 1). Eight samples in the NKI-AVL validation cohort and 6 samples in the CERTIM 
cohort were excluded because these were obtained 2 years or more before start 
of PD-1 blockade. Two additional samples in the NKI-AVL validation cohort were 
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excluded because these contained abundant normal lymphoid tissue (n=2) (Fig. 1). 
We excluded lymph node resections as these contain PD-1 high-expressing T cells 
in normal lymphoid tissue, which could potentially lead to false positive results. 
Lymph node biopsies were included as these are usually targeted biopsies in the 
tumor region.

Figure 1. Study design for the development and validation of the PD-1T signature as biomarker 
for non-response to PD-1 blockade in NSCLC. Overall workflow for the development of the 
PD-1T signature using PD-1T IHC high (≥90 per mm2) patients with disease control (DC) at 12 
months (n=12) and PD-1T IHC low (<90 per mm2) patients with progressive disease (n=29). An 
independent cohort of patients was used for validation (n=42).

Immunohistochemistry
PD-1 and PD-L1 immunostaining of samples from the NKI-AVL cohorts were 
performed on fresh-cut slides from FFPE blocks using an anti-PD-1 antibody (NAT105, 
Roche Diagnostics) and anti-PD-L1 antibody (22C3 DAKO, Agilent) on a BenchMark 
Ultra autostainer Instrument (Ventana Medical Systems) as described previously7. 
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PD-L1 immunostaining of samples from the CERTIM cohort was performed using 
a different anti-PD-L1 antibody (E1L3N, Cell Signaling, catalog no. AB_2687655) on a 
Bond automat (Leica Biosystems) as described previously by Adam et al14.

PD-1 IHC slides were scanned at x20 magnification with a resolution of 0.50 per µm2 
using an Aperio slide AT2 scanner (Leica Biosystems).

Digital quantification of PD-1T TILs
In 11/94 (12%) pretreatment samples automated quantification of PD-1T TILs was 
performed using an image analysis algorithm with a cut-off of 0.25 optical density 
(OD) of PD-1 staining as described previously7. In 83/94 (88%) samples PD-1T TIL 
numbers were used from a previously published cohort and quantified using the 
same approach7. PD-1T TIL numbers of 58 samples were used to develop the signature 
and are provided in Supplementary Table S1.

PD-L1 scoring
Tumor PD-L1 expression in pretreatment FFPE samples was assessed in the NKI-
AVL training (n=58) and validation cohort (n=21) using the clinical grade LDT IHC 
assay with the 22C3 DAKO clone (Agilent) as described previously7. For 35/37 (95%) 
samples in the CERTIM cohort, PD-L1 tumor proportion score (TPS) data has been 
reported before13. In 2/37 (5%) the PD-L1 status was unknown. The expression levels 
were scored using a different anti-PD-L1 antibody (E1L3N, Cell Signaling, catalog no. 
AB_2687655) as previously described and validated by the PATTERN French thoracic 
pathologists’ group14. PD-L1 TPS data is provided in Supplementary Table S1.

RNA extraction and hybridization to nCounter tagset
RNA of pretreatment FFPE samples from the NKI-AVL cohorts were isolated 
with the AllPrep DNA/RNA FFPE isolation kit (#80234, Qiagen) according to the 
recommendations of the manufacturer and quantified by Tapestation (Agilent). 
RNA from the CERTIM cohort was extracted with High Pure FFPE RNA Isolation Kit 
(Roche Diagnostics) according to the recommendations of the manufacturer and 
quantified using fluorimetry with Qubit RNA XR Assay Kit (Invitrogen, Thermo 
Fisher). 200 to 300 ng RNA from the NKI-AVL cohorts and 30-100 ng RNA from 
the CERTIM cohort were hybridized to Nanostring PanCancer IO 360 Panel code 
set (Nanostring), according to the recommendations of the manufacturer. After 
hybridization non-bound probes were washed off and the RNA-probe complex was 
bound to the cartridge on the Nanostring Flex Prep Station (Nanostring) according 
to manufacturing protocol. The cartridge was sealed and transferred to the Digital 
Analyzer for imaging.
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Statistical analysis
The Mann-Whitney, Fisher exact and linear-by-linear association tests, respectively, 
were used to assess differences in patient characteristics between training and 
validation cohorts. Differences were considered statistically significant if *P<0.05. 
Correlations between the PD-1T signature and PD-1T TILs assessed by IHC or the PD-1T 
signature and the Tumor Inflammation Signature (TIS), respectively, were evaluated 
using linear regression analysis.

A 2-level batch effect correction on the mRNA expression data was performed on 
all NKI-AVL and CERTIM patients using an empirical bayes linear regression. This 
was performed to correct for batch effects between the NKI-AVL and the CERTIM 
cohort and between the different NKI-AVL cohorts. Both batch effect correction and 
gene expression analysis were performed with R 4.1.0 and the package limma 3.48.0. 
Differential gene expression analysis was performed using linear regression on the 
gene log-expression. Separate models were fitted for each gene, and the computation 
of moderated t-statistics and log-odds of differential expression was performed via 
empirical bayes moderation. Analysis of main biological processes involved in the 
gene signature was performed by gene ontology analysis using the Fisher exact test 
with the R package topGO 2.44.0 (SCR_014798). P-values were adjusted via Benjamini-
Hochberg.

A prediction model was built using logistic regression combined with regularized 
regression for variable selection using LASSO (least absolute shrinkage and selection 
operator). By adding a penalization term on the coefficients of the model, the 
coefficients of the models are constrained to zero leading to variable selection. Due 
to the limited sample size and unequal distribution over the DC 12m and PD patient 
groups, cross validation was limited to three-fold. Thus, a three-fold cross-validation 
for the selection of the optimal penalization term of the regularized regression, based 
on the deviance, was performed. This is a goodness-of-fit statistics commonly used for 
generalized linear models. The results of the regression were transformed to obtain 
probability scores using the formula: 

1
1 + 𝑒𝑒!" 		 with K being the results of the logistic 

regression. K was computed as 𝐾𝐾 =	𝑐𝑐! ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑐𝑐" ∗ 𝑂𝑂𝑆𝑆𝑆𝑆1 + 𝑐𝑐# ∗ 𝑆𝑆𝑆𝑆𝑇𝑇1 +⋯+	𝑐𝑐!" ∗ 𝐿𝐿𝑆𝑆𝐿𝐿3 . 
The coefficients of the prediction model are provided in Supplementary Table S2.

The cross-validation and prediction model building were performed with R and 
the package glmnet 4.1-2. Based on the NKI-AVL training cohort, a threshold was 
chosen from the probability scores that were provided by the prediction model to 
classify a patient as predicted to achieve DC upon therapy. This threshold was set 
at the best sensitivity (detection of DC), while keeping a satisfactory specificity. A 
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prediction model including only the PDCD1 gene was built using logistic regression 
with samples from the NKI-AVL training cohort. All prediction models aimed to 
predict DC 12m and therefore the reference category used in the logistic regression 
was PD. Signature probability scores are provided in Supplementary Table  S1. 
Receiver operating characteristic (ROC) curves were produced for each prediction 
model using the package pROC 1.18.0. The Area Under the ROC Curves (AUCs) were 
compared using the DeLong test with the pROC 1.18.0 R package.

Genes in the TIS are normalized using a ratio of the expression value to the geometric 
mean of the housekeeper genes that are used only for the TIS. This is then followed 
by a log2 transformation. The TIS score was calculated in the NKI-AVL validation 
cohort (n=21) as a weighted linear combination of the 18 gene expression values11,15. 
This analysis was performed by Nanostring as part of their intellectual property. 
For the 37 samples in the CERTIM cohort, TIS scores have been reported before13. 
TIS scores of 42 samples were used for analysis and are provided in Supplementary 
Table S1.
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Results

PD-1T signature development
To develop a predictive mRNA signature that reflects tumor infiltration by PD-1T 
TILs, we first selected 94 pretreatment samples from advanced stage NSCLC patients 
treated with nivolumab (training cohort). 66/94 (70%) of these samples had sufficient 
RNA available for gene expression analysis using the Nanostring nCounter platform. 
Only archival samples were used, and therefore the majority with insufficient RNA 
were blocks that were already (partially) used for previous molecular analysis. 58/94 
(62%) samples were successful in obtaining high quality mRNA expression data to 
be used for signature development, as 8 samples did not meet RNA quality criteria 
(Fig. 1).

Of these 58 patients, 12 showed disease control at 12 months (DC 12m) (n=12) and 
46 developed progressive disease (PD) within 12 months of treatment (Fig. 1). DC12 
was chosen as primary clinical outcome measure based on previous observations 
that patients with DC 12m were more accurately identified by the biomarker as 
compared to DC 6m (i.e. higher sensitivity). This was also found for a group with no 
long-term benefit (i.e. higher negative predictive value (NPV))7. Clinicopathological 
characteristics and treatment outcomes are summarized in Supplementary Table S3. 
In line with our previous work, the number of PD-1T TILs per mm2 was significantly 
higher in patients with DC 12m compared to patients with PD (P<0.01) (Fig. 2A). PD-
1T IHC high versus low status was called using a previously established cut-off of 90 
PD-1T TILs per mm2 (Fig. S1A,B)7. 12/12 (100%) patients with DC 12m were classified as 
PD-1T IHC high. 29/46 (63%) patients with PD were classified as PD-1T IHC low, and 
17/46 (37%) as PD-1T IHC high (Fig. 1, 2A).

To obtain a distinctive mRNA expression gene set with maximum contrast, we 
performed differential gene expression analysis between PD-1T IHC high patients 
with DC 12m (n=12) and PD-1T IHC low patients with PD (n=29) (Fig. 1, 2A). After 
correction for multiple testing, 54 genes were significantly higher expressed and 
2 genes were significantly lower expressed in the PD-1T IHC high DC 12m group. 
Some of the top ranked genes included LAG3, CTLA4, CXCR6 and CXCL13, which have 
previously shown to be highly expressed in PD-1T TILs8 (Table S4). In addition, various 
pathways related to active immune responses in the tumor microenvironment 
(TME), including type I interferon signaling, regulation of lymphocyte chemotaxis 
and natural killer cell mediated cytotoxicity were significantly upregulated in the 
PD-1T IHC high DC 12m group (Fig. 2B).
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Regularized regression analysis (LASSO) yielded a 12-gene PD-1T signature (STAT1, 
OAS1, TAP1, HEY1, CXCL13, IFIT2, IL6, TDO2, CD6, CTLA4, CD274, LAG3) as being most 
predictive (Table 1). All genes in the signature were positively associated with DC 
12m, except for HEY1, which showed a negative association (Fig. 2C,D). In line with 
the selection strategy of the samples, we observed a high correlation between the 
number of PD-1T TILs assessed by IHC and the PD-1T signature score within samples 
(R2=0.603; P<0.0001; Fig. 2E). The PD-1T signature was able to separate the preselected 
PD-1T IHC high DC 12m group from the preselected PD-1T IHC low PD group with 
high significance (P<0.0001) (Fig. 2D,F). The area under the ROC curve (AUC) was 0.97 
(95% CI: 0.93-1.00) (Fig. 2G). We aimed for a sensitivity of ≥90% to minimize the risk 
of undertreatment and a specificity of ≥50%, a strategy that was previously used for 
the PD-1T TIL IHC biomarker7. A probability score of 0.35 was selected as optimal cut-
off (Fig. 2F). This cut-off resulted in a sensitivity of 92%, specificity of 93%, positive 
predictive value (PPV) of 85% and NPV of 96% (Table 2).

PD-1T signature validation
Next, the predictive performance of this PD-1T signature was validated in an 
independent cohort of 42 patients with advanced stage NSCLC treated with 
nivolumab. 6/42 (14%) patients showed DC 12m and 36/42 (86%) showed PD (Fig. 1). 
In contrast to the training cohort, tumor samples were not preselected. None of 
the clinicopathological characteristics differed significantly between training and 
validation set, except for the performance score as more patients in the validation 
cohort showed a higher performance score (P<0.01) (Table S3).

In the validation cohort, in line with previously observed patterns of PD-1T TILs 
quantified by IHC, PD-1T signature scores were significantly higher in the DC 12m 
group than in the PD group (P<0.01) (Fig. 3A). A high PD-1T signature score (≥0.35) 
correctly identified 6/6 patients with DC 12m (sensitivity for treatment benefit 100%), 
and a low score (<0.35) identified 23/36 patients with PD (specificity for no treatment 
benefit 64%), yielding a PPV of 32%, and an NPV of 100%, with an AUC of 0.87 (95% CI: 
0.74-0.99) (Fig. 3A,B and Table 2). Similar to the training cohort, most signature genes 
were overexpressed in the PD-1T signature high DC 12m group (n=6), compared to the 
PD-1T signature low PD group (n=23), and the HEY1 gene was expressed at lower levels. 
The PD-1T signature high patients with PD (n=13) showed a similar gene expression 
profile as the PD-1T signature high DC 12m group (Fig. 3C).



Chapter 4

140

In addition, in the validation cohort, progression-free survival (PFS) was significantly 
longer in PD-1T signature high patients (median 8.3 months) versus PD-1T signature 
low patients (median 1.8 months) with HR 0.36 (95% CI: 0.18-0.69), P<0.001. The median 
overall survival (OS) was 7.0 months versus 5.6 months, respectively, with HR 0.34 
(95% CI: 0.17-0.68), P<0.001 (Fig. 3D,E).
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◀ Figure 2. PD-1T signature development for prediction of non-response to PD-1 blockade. 
(A) PD-1T TILs per mm2, as measured by digital IHC algorithm-based quantification, in 
pretreatment samples from patients with disease control at 12 months (DC 12m) (n=12) and 
progressive disease (PD) (n=46) in the training cohort (n=58). Only patients with available PD-
1T IHC and gene expression data are included. Dashed line indicates a cut-off of 90 PD-1T TILs 
per mm2. Medians, interquartile ranges and minimum/maximum shown in boxplots, **P<0.01 
by Mann Whitney U-test. The red colored dots indicate PD-1T IHC high (≥90 per mm2) patients 
with DC 12m (n=12) and the blue colored dots indicate PD-1T IHC low (<90 per mm2) patients 
with PD (n=29). (B) Gene set enrichment analysis displaying gene sets that are significantly 
enriched in PD-1T IHC high tumors from patients with DC 12m (n=12). Pathways are ordered 
by P value (log transformed), P values were calculated by Fisher exact test. (C) Volcano plot 
showing the differentially expressed genes between PD-1T IHC high tumors from patients with 
DC 12m and PD-1T IHC low tumors from patients with PD (n=29) in the training cohort (n=41). 
56 genes reached statistical significance. The red line indicates a P-value <0.05. P-values were 
computed by moderated t-statistics. D) Heatmap showing the expression of the 12-gene PD-1T 
signature in pretreatment samples from PD-1T IHC high patients with DC 12m (n=12) and PD-
1T IHC low patients with PD (n=29) in the training cohort (n=41) ordered by probability score. 
Each column represents one patient (blue: PD-1T signature high (score of ≥0.35) and light grey: 
PD-1T signature low (score of <0.35), green: PD-1T IHC high patients with DC 12m, dark grey: 
PD-1T IHC low patients with PD) and rows display genes. Positive values (red) indicate higher 
gene expression and negative values (blue) indicate lower gene expression. (E) Correlation 
of PD-1T TILs and the PD-1T signature in the training cohort (n=41), R2=0.603, ****P<0.0001. R2 
and P-values were calculated using linear regression analysis. (F) PD-1T signature scores in 
pretreatment samples from PD-1T IHC high patients with DC 12m (n=12) and PD-1T IHC low 
patients with PD (n=29) in the training cohort (n=41). The dashed line indicates a cut-off score of 
0.35. Medians, interquartile ranges and minimum/maximum shown in boxplots, ****P<0.0001 
by Mann Whitney U-test. (G) Receiver operating characteristic (ROC) curve for predictive value 
of the PD-1T signature for DC 12m (AUC 0.97; 95% CI: 0.93-1.00) in the training cohort (n=41).

Table 1. Overview of the up- and downregulated PD-1T signature genes.

PD-1T signature genes 

STAT1 UP

OAS1 UP

TAP1 UP

HEY1 DOWN

CXCL13 UP

IFIT2 UP

IL6 UP

TDO2 UP

CD6 UP

CTLA4 UP

CD274 UP

LAG3 UP
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Table 2. Predictive accuracy of the PD-1T signature and PD-L1 TPS, summary of training and 
validation results.

Biomarker AUC Cut-off Sensitivity Specificity PPV NPV

Training cohort (n=41) PD-1T signature 0.97 95% CI: 0.93-1.00 <0.35 vs ≥0.35 92% 93% 85% 96%

Validation cohort (n=42) PD-1T signature 0.87 95% CI: 0.74-0.99 <0.35 vs ≥0.35 100% 64% 32% 100%

Validation cohort (n=40) % PD-L1 TPS 0.63 95% CI: 0.34-0.91 <50% vs ≥50% 50% 82% 33% 90%

      <1% vs ≥1% 50% 62% 19% 88%

Comparison to PD-L1 IHC and PDCD1 gene expression
In previous work we showed that the predictive performance of PD-1T TILs was 
superior to the PD-L1 tumor proportion score (TPS)7. Therefore, we compared the 
predictive performance of PD-L1 TPS to the PD-1T signature in the validation cohort. 
9/42 (21%) pretreatment samples showed a PD-L1 TPS of ≥50%, 7/42 (17%) between 1% 
and 50% and 24/42 (57%) showed no PD-L1 expression. In 2/42 (5%) the PD-L1 status 
was unknown and these patients were excluded from further analysis (Table S1, S3). 
PD-L1 TPS was not significantly higher in patients with DC 12m compared to patients 
with PD (P=0.30) (Fig. 4A). The AUC was substantially lower compared to the PD-
1T signature (AUC: 0.63; 95% CI: 0.34-0.91, P=0.13), indicating a lower discriminatory 
ability (Fig. 4B). At 50% cut-off, the sensitivity was also lower (50%), as well as were 
specificity (82%), PPV (33%) and NPV (90%) (Table 2). Furthermore, we observed that 
a PD-L1 TPS of ≥50% was not associated with significantly better PFS (HR 0.77; 95% 
CI: 0.38-1.54, median PFS 5.7 vs 2.3 months), but did show borderline significance 
for improved OS (HR 0.40; 95% CI: 0.20-0.81, median OS 11.4 vs 3.0 months) (Fig 4C,D). 
Next, we assessed the predictive accuracy at 1% cut-off, as this cut-off has also been 
previously studied, though with contradictory results3–5. Here, sensitivity (50%) and 
NPV (88%) were similar to the performance of 50% PD-L1 TPS, with only a slightly 
lower specificity (62%) and PPV (19%) (Table  2). PD-L1 TPS ≥1% showed similar 
survival outcomes as PD-L1 TPS ≥50% (Fig. 4E,F).
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Table 2. Predictive accuracy of the PD-1T signature and PD-L1 TPS, summary of training and 
validation results.

Biomarker AUC Cut-off Sensitivity Specificity PPV NPV

Training cohort (n=41) PD-1T signature 0.97 95% CI: 0.93-1.00 <0.35 vs ≥0.35 92% 93% 85% 96%

Validation cohort (n=42) PD-1T signature 0.87 95% CI: 0.74-0.99 <0.35 vs ≥0.35 100% 64% 32% 100%

Validation cohort (n=40) % PD-L1 TPS 0.63 95% CI: 0.34-0.91 <50% vs ≥50% 50% 82% 33% 90%

      <1% vs ≥1% 50% 62% 19% 88%

Comparison to PD-L1 IHC and PDCD1 gene expression
In previous work we showed that the predictive performance of PD-1T TILs was 
superior to the PD-L1 tumor proportion score (TPS)7. Therefore, we compared the 
predictive performance of PD-L1 TPS to the PD-1T signature in the validation cohort. 
9/42 (21%) pretreatment samples showed a PD-L1 TPS of ≥50%, 7/42 (17%) between 1% 
and 50% and 24/42 (57%) showed no PD-L1 expression. In 2/42 (5%) the PD-L1 status 
was unknown and these patients were excluded from further analysis (Table S1, S3). 
PD-L1 TPS was not significantly higher in patients with DC 12m compared to patients 
with PD (P=0.30) (Fig. 4A). The AUC was substantially lower compared to the PD-
1T signature (AUC: 0.63; 95% CI: 0.34-0.91, P=0.13), indicating a lower discriminatory 
ability (Fig. 4B). At 50% cut-off, the sensitivity was also lower (50%), as well as were 
specificity (82%), PPV (33%) and NPV (90%) (Table 2). Furthermore, we observed that 
a PD-L1 TPS of ≥50% was not associated with significantly better PFS (HR 0.77; 95% 
CI: 0.38-1.54, median PFS 5.7 vs 2.3 months), but did show borderline significance 
for improved OS (HR 0.40; 95% CI: 0.20-0.81, median OS 11.4 vs 3.0 months) (Fig 4C,D). 
Next, we assessed the predictive accuracy at 1% cut-off, as this cut-off has also been 
previously studied, though with contradictory results3–5. Here, sensitivity (50%) and 
NPV (88%) were similar to the performance of 50% PD-L1 TPS, with only a slightly 
lower specificity (62%) and PPV (19%) (Table  2). PD-L1 TPS ≥1% showed similar 
survival outcomes as PD-L1 TPS ≥50% (Fig. 4E,F).

Next, we explored the predictive value of PDCD1 gene expression, encoding PD-1, 
and compared this to the PD-1T signature. Using all 58 pretreatment samples with 
available gene expression data from the first cohort for training, we observed that 
PDCD1 scores of the DC 12m group were slightly higher compared to the PD group 
(P=0.03), with an AUC of 0.71 (95% CI: 0.54-0.88) and a score of 0.20 as the optimal 
cut-off (Fig. S2A,B). In the validation cohort, signature scores did not significantly 
differ between the DC 12m group and the PD group (P=0.06) (Fig. S2C). The AUC 
was lower compared to the PD-1T signature (0.74; 95% CI: 0.50-0.99, P=0.36) (Fig. S2D), 
as well as the sensitivity (83%), NPV (93%) and specificity (36%) when using the 
predefined cut-off of 0.20 (Table S5). Patients with high (≥0.20) PDCD1 scores did not 
show significantly prolonged PFS and OS compared to those with low (<0.20) PDCD1 
scores in the validation cohort (Fig. S2E,F).

Taken together, these findings show that the PD-1T signature had a higher 
accuracy for predicting DC 12m and survival compared to PD-L1 TPS. The predictive 
performance of PDCD1 alone was lower as compared to the PD-1T signature, further 
highlighting that only the presence of a T cell subset with high expression of PD-1, 
which is reflected by the PD-1T signature, and not total PD-1 expression is predictive 
for response to PD-1 blockade.



Chapter 4

144



A PD-1T signature as clinical applicable biomarker in NSCLC

145

4

◀ Figure 3. PD-1T signature validation for prediction of non-response to PD-1 blockade. (A) 
PD-1T signature scores in pretreatment samples from patients with disease control at 12 
months (DC 12m) (n=6) and patients with progressive disease (PD) (n=36) in the validation 
set (n=42). The dashed line indicates a cut-off score of 0.35. Medians, interquartile ranges 
and minimum/maximum shown in boxplots, **P<0.01 by Mann Whitney U-test. (B) Receiver 
operating characteristic (ROC) curve for predictive value of the PD-1T signature for DC 
12m (AUC 0.87; 95% CI: 0.74-0.99) in the validation cohort (n=42). (C) Heatmap showing the 
expression of the 12-gene PD-1T signature in pretreatment samples from patients with DC 
12m (n=6) and patients with PD (n=36) in the validation cohort (n=42) ordered by probability 
score. Each column represents one patient (blue: PD-1T signature high (score of ≥0.35), light 
grey: PD-1T signature low (score of <0.35), green: patients with DC 12m, dark grey: patients 
with PD) and rows display genes. Positive values (red) indicate higher gene expression and 
negative values (blue) indicate lower gene expression. (D) Progression-free survival (PFS) 
(median 8.3 months versus 1.8 months, HR 0.36; 95% CI: 0.18-0.69, ***P<0.001) and (E) overall 
survival (OS) (median 7.0 months versus 5.6 months, HR 0.34; 95% CI: 0.17-0.68, ***P<0.001) 
of patients with PD-1T signature high (n=6) and PD-1T signature low (n=36) pretreatment 
samples in the validation set (n=42). Tick marks represent data censored at the last time 
the patient was known to be alive and without disease progression or death. P-value was 
determined by log-rank test.

Figure 4. Association of PD-L1 with treatment benefit and survival. (A) PD-L1 tumor 
proportion score (TPS) in pretreatment samples from patients with DC at 12 months (DC 12m) 
(n=6) and patients with PD (n=34) in the validation cohort (n=40). Mean shown as dashed line, 
P=0.30 by Mann Whitney U-test. Note that for 2 patients PD-L1 TPS was unknown. (B) Receiver 
operating characteristic (ROC) curve for predictive value of PD-L1 TPS for DC 12m (AUC 0.63; 
95% CI: 0.34-0.91) in the validation cohort (n=40). (C) Progression-free survival (PFS) (median 
5.7 months versus 2.3 months, HR 0.77; 95% CI: 0.38-1.54, P=0.47) and (D) overall survival (OS) 
(median 11.4 months versus 3.0 months, HR 0.40; 95% CI: 0.20-0.81, *P=0.03) of patients with PD-
L1 TPS ≥50% (n=9) and PD-L1 TPS <50% (n=31) pretreatment samples in the validation cohort 
(n=40). (E) PFS (median 4.2 months versus 2.1 months, HR 0.87; 95% CI: 0.46-1.63, P=0.65) and 
(F) OS (median 8.9 months versus 2.5 months, HR 0.56; 95% CI: 0.30-1.07, *P=0.0498) of patients 
with PD-L1 TPS ≥1% (n=16) and PD-L1 TPS <1% (n=24) pretreatment samples in the validation 
cohort (n=40). Tick marks represent data censored at the last time the patient was known to 
be alive and without disease progression or death. P-value was determined by log-rank test. ▶
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Discussion

In spite of the success of PD-(L)1 blockade therapies, the majority of patients do 
not benefit from these agents. Therefore, biomarkers that reliably allow to identify 
patients without clinical response are urgently needed to guide alternative treatment 
decisions beyond PD-1 blockade. In addition, such biomarkers should be developed 
using robust clinical grade platforms that can easily be implemented in a clinical 
setting. We previously established PD-1T TILs, a functionally and transcriptionally 
distinct intratumoral T cell population with enriched tumor reactivity, as a novel 
predictive biomarker for long-term benefit to PD-1 blockade7,8. However, the 
measurement of PD-1T TIL status using advanced digital image analysis-based 
quantification of IHC stainings is complex, and multiple – predominantly technical 
– sources of potential bias are challenging to cope with in a routine diagnostic 
setting. Therefore, we here developed a clinically applicable mRNA signature 
reflecting the presence of PD-1T TILs by using the Nanostring nCounter platform. 
This study shows that the PD-1T TIL IHC biomarker could successfully be translated 
into a gene expression signature, as the latter had a similar predictive performance 
to the digital IHC quantification approach7. Importantly, a high sensitivity and NPV 
(100%) was reached, which should allow to reliably identify patients without clinical 
benefit to PD-1 blockade alone. In this relatively small number of patients, the PD-1T 
signature performed superior to PD-L1 TPS which is similar to previous work7. The 
clinical applicability of the Nanostring nCounter platform has been demonstrated 
previously16 and this platform has been shown to have a high analytical sensitivity, 
technical reproducibility, and to generate robust data from routine FFPE samples10. 
Therefore, we expect that by using this approach the PD-1T signature can now easily 
be applied in a clinical setting, and that a similar approach can be exploited for other 
promising biomarker candidates.

Genes in the PD-1T signature are related to, for instance, co-inhibitory signaling 
(CD274, CTLA4, LAG3), cytokines and chemokines (CXCL13, IL6), interferon signaling 
(IFIT2, OAS1, STAT1), antigen presentation (TAP1) and angiogenesis (HEY1). This is 
in line with features of a tumor microenvironment with a pre-existing adaptive 
immune response as well as with ongoing immunosuppressive stimuli associated 
with T cell dysfunction17,18. Of note, LAG3, CTLA4 and CXCL13 correspond to the 
dysfunctional phenotype that characterizes PD-1T TILs8, indicating that the gene 
signature captures the presence of PD-1T TILs in the TME. Intriguingly, the PDCD1 
gene was not among the signature genes, probably due to a partial overlap in 
expression levels between PD-1T TIL high and low tumors. Notably, the predictive 
performance of the PD-1T signature was better than PDCD1 gene expression alone. 
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This is in line with the notion that the predictive capacity is specifically driven 
by the PD-1T TIL subset, which reflects a tumor-reactive population that is likely 
crucial for response to PD-1 blockade, and not simply by the presence of PD-1 
positive T cells8.

The development of predictive mRNA signatures that characterize a broader 
transcriptomic immune profile of the TME has gained interest. For example, the 
commercially available Tumor Inflammation Signature (TIS) has shown to predict 
clinical benefit in different cancer types, including NSCLC11–13. We correlated the PD-
1T signature scores to the TIS scores in samples from the validation cohort (n=42). 
We observed a good correlation between the signatures (R2=0.705, P<0.0001), in line 
with a partial overlap in three genes (STAT1, CD274, LAG3) (Fig. S3). While the small 
sample size limits conclusions that can be made from this analysis, it may further 
support the notion that these types of mRNA signatures can robustly detect tumor 
immune environments that are responsive to immune checkpoint inhibitors (ICI). 
In the future, it will be interesting to compare the performance of the signatures 
in a larger patient cohort to understand whether they report on similar features of 
the TME or whether there may be possible additive value for a subgroup of patients.

While the analysis of samples from two distinct expert centers on NSCLC ICI 
therapy strengthens the results of the current study, a number of limitations should 
be noted: First, the sample size was low in both the training and the validation 
cohorts. Thus, additional studies with higher patient numbers are needed. Second, 
this is a retrospective study which makes further validation in prospective studies 
necessary. Third, different PD-L1 IHC antibodies were used in the validation cohort 
which could potentially have introduced analytical differences19,20. Finally, an 
important emerging question in the clinical treatment of NSCLC is how to preselect 
patients for therapy with either single agent PD-1 blockade or in combination with 
chemotherapy. As we developed the PD-1T biomarker aimed at high sensitivity and 
NPV, the signature is currently not designed to make such predictions. Nevertheless, 
retraining of the biomarker for high specificity and PPV in a suitable patient cohort 
could be considered for this purpose. Such an approach, however, may be potentially 
limited by the number of false positives driven by a relatively large fraction of mixed 
responses in the biomarker high, PD group as shown previously7.

Taken together, in the present study we developed a PD-1T gene expression signature 
with high sensitivity and NPV that can be used as a predictive biomarker for non-
response to PD-1 blockade in NSCLC. Our data demonstrate, that our digital image-
based IHC assay can reliably be replaced by a matching gene expression signature 
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with comparable predictive performance. This could provide a straightforward FFPE-
based approach that allows for easy implementation in a routine diagnostic clinical 
setting. Moreover, the strategy used has the potential to bring other expression-level 
based biomarkers to routine clinical diagnostics where these can support shared 
decision making for therapeutic strategies.
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Supplemental material
Supplemental figures

Figure S1. PD-1T quantification by an algorithm-based immunohistochemical (IHC) imaging 
approach. (A) IHC analysis of PD-1T TILs. Example of a PD-1T IHC high (≥90 per mm2) and (B) 
PD-1T IHC low (<90 per mm2) tumor with digital markup.
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Figure S2. Predictive accuracy of PDCD1 gene expression. (A) PDCD1 scores in pretreatment 
samples from patients with disease control at 12 months (DC 12m) (n=12) and patients with 
progressive disease (PD) (n=46) in the training cohort (n=58). Only patients with available 
PD-1T IHC and gene expression data are included. The dashed line indicates a cut-off score 
of 0.20. Medians, interquartile ranges and minimum/maximum shown in boxplots, *P=0.03 
by Mann Whitney U-test. (B) Receiver operating characteristic (ROC) curve for predictive 
value of PDCD1 for DC 12m (AUC 0.71; 95% CI: 0.54-0.88) in the training cohort (n=58). (C) Same 
plot as in A for pretreatment samples from patients with DC 12m (n=6) and patients with 
PD (n=36) in the validation cohort (n=42). P=0.06 by Mann Whitney U-test. (D) ROC curve for 
predictive value of PDCD1 for DC 12m (AUC 0.74; 95% CI: 0.50-0.99) in the validation cohort 
(n=42). (E) Progression-free survival (PFS) (median 2.9 months versus 2.0 months, HR 0.74; 
95% CI: 0.37-1.47, P=0.35) and (F) overall survival (OS) (median 10.6 months versus 5.6 months, 
HR 0.72; 95% CI: 0.34-1.50, P=0.35) of patients with PDCD1 high (score of ≥0.20) (n=28) and PDCD1 
low (score of <0.20) (n=14) pretreatment samples in the validation cohort (n=42).
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Figure S3. Correlation of the PD-1T signature with the Tumor Inflammation Signature 
(TIS). Correlation of the PD-1T signature and the TIS in the validation cohort (n=42). R2=0.705, 
P<0.0001. R2 and P-values were calculated using linear regression analysis.
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Supplemental tables

Table S1. Overview of all analyzed biomarkers per patient.

Sample ID 1= DC 12m, 0= PD T= Training, V= validation PD-1T per mm2 PD-L1 TPS (%) PD-1T signature scores PDCD1 signature scores TIS scores

NKI-AVL 01 0 T 25 0 0.14313735 0.21041538 6.894

NKI-AVL 02 0 T 13 90 0.14651535 0.18958687 5.356

NKI-AVL 03 0 T 236 0 NA 0.22942241 8.714

NKI-AVL 04 0 T 56 30 0.10309239 0.21128473 6.206

NKI-AVL 05 1 T 104 1 0.6752406 0.08915112 6.951

NKI-AVL 06 0 T 27 100 0.13637567 0.20225829 6.976

NKI-AVL 07 0 T 67 0 0.25506862 0.18907535 7.473

NKI-AVL 08 0 T 85 10 0.22950462 0.23071459 6.895

NKI-AVL 09 0 T 160 0 NA 0.20943275 5.614

NKI-AVL 10 0 T 244 10 NA 0.21665969 6.643

NKI-AVL 11 0 T 51 0 0.30510214 0.21733635 7.726

NKI-AVL 12 0 T 380 1 NA 0.21748375 6.935

NKI-AVL 13 0 T 2 0 0.13819939 0.1836076 5.614

NKI-AVL 14 0 T 49 0 0.13225086 0.20029234 6.088

NKI-AVL 15 1 T 130 80 0.8372285 0.25045961 9.983

NKI-AVL 16 0 T 67 0 0.20755694 0.20377961 6.906

NKI-AVL 17 1 T 319 1 0.85051817 0.25863572 9.709

NKI-AVL 18 1 T 352 100 0.59917723 0.25248777 8.263

NKI-AVL 19 1 T 367 1 0.36533558 0.21741849 6.747

NKI-AVL 20 0 T 55 0 0.16828838 0.21972862 7.131

NKI-AVL 21 1 T 139 0 0.24642246 0.20259564 6.671

NKI-AVL 22 0 T 26 0 0.05090746 0.18342566 5.595

NKI-AVL 23 0 T 15 0 0.07232613 0.19142927 4.139

NKI-AVL 24 0 T 21 1 0.16470257 0.19862647 5.947

NKI-AVL 25 0 T 230 100 NA 0.23463825 8.602

NKI-AVL 26 0 T 80 0 0.31416743 0.20564011 6.935

NKI-AVL 27 0 T 83 0 0.20042987 0.20826304 6.875

NKI-AVL 28 0 T 68 1 0.35025771 0.21089449 8.021

NKI-AVL 29 0 T 6 10 0.06093618 0.19147168 5.785

NKI-AVL 30 0 T 321 1 NA 0.23866693 8.783

NKI-AVL 31 1 T 280 100 0.63915571 0.22100179 7.912

NKI-AVL 32 0 T 31 1 0.09786897 0.19074833 5.934

NKI-AVL 33 0 T 22 0 0.08723175 0.18909407 6.006

NKI-AVL 34 0 T 49 60 0.26389771 0.20557294 7.239
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Supplemental tables

Table S1. Overview of all analyzed biomarkers per patient.

Sample ID 1= DC 12m, 0= PD T= Training, V= validation PD-1T per mm2 PD-L1 TPS (%) PD-1T signature scores PDCD1 signature scores TIS scores

NKI-AVL 01 0 T 25 0 0.14313735 0.21041538 6.894

NKI-AVL 02 0 T 13 90 0.14651535 0.18958687 5.356

NKI-AVL 03 0 T 236 0 NA 0.22942241 8.714

NKI-AVL 04 0 T 56 30 0.10309239 0.21128473 6.206

NKI-AVL 05 1 T 104 1 0.6752406 0.08915112 6.951

NKI-AVL 06 0 T 27 100 0.13637567 0.20225829 6.976

NKI-AVL 07 0 T 67 0 0.25506862 0.18907535 7.473

NKI-AVL 08 0 T 85 10 0.22950462 0.23071459 6.895

NKI-AVL 09 0 T 160 0 NA 0.20943275 5.614

NKI-AVL 10 0 T 244 10 NA 0.21665969 6.643

NKI-AVL 11 0 T 51 0 0.30510214 0.21733635 7.726

NKI-AVL 12 0 T 380 1 NA 0.21748375 6.935

NKI-AVL 13 0 T 2 0 0.13819939 0.1836076 5.614

NKI-AVL 14 0 T 49 0 0.13225086 0.20029234 6.088

NKI-AVL 15 1 T 130 80 0.8372285 0.25045961 9.983

NKI-AVL 16 0 T 67 0 0.20755694 0.20377961 6.906

NKI-AVL 17 1 T 319 1 0.85051817 0.25863572 9.709

NKI-AVL 18 1 T 352 100 0.59917723 0.25248777 8.263

NKI-AVL 19 1 T 367 1 0.36533558 0.21741849 6.747

NKI-AVL 20 0 T 55 0 0.16828838 0.21972862 7.131

NKI-AVL 21 1 T 139 0 0.24642246 0.20259564 6.671

NKI-AVL 22 0 T 26 0 0.05090746 0.18342566 5.595

NKI-AVL 23 0 T 15 0 0.07232613 0.19142927 4.139

NKI-AVL 24 0 T 21 1 0.16470257 0.19862647 5.947

NKI-AVL 25 0 T 230 100 NA 0.23463825 8.602

NKI-AVL 26 0 T 80 0 0.31416743 0.20564011 6.935

NKI-AVL 27 0 T 83 0 0.20042987 0.20826304 6.875

NKI-AVL 28 0 T 68 1 0.35025771 0.21089449 8.021

NKI-AVL 29 0 T 6 10 0.06093618 0.19147168 5.785

NKI-AVL 30 0 T 321 1 NA 0.23866693 8.783

NKI-AVL 31 1 T 280 100 0.63915571 0.22100179 7.912

NKI-AVL 32 0 T 31 1 0.09786897 0.19074833 5.934

NKI-AVL 33 0 T 22 0 0.08723175 0.18909407 6.006

NKI-AVL 34 0 T 49 60 0.26389771 0.20557294 7.239



Chapter 4

158

Table S1. Continued

Sample ID 1= DC 12m, 0= PD T= Training, V= validation PD-1T per mm2 PD-L1 TPS (%) PD-1T signature scores PDCD1 signature scores TIS scores

NKI-AVL 35 1 T 110 40 0.47371578 0.2086303 6.786

NKI-AVL 36 0 T 98 0 NA 0.21601595 7.093

NKI-AVL 37 0 T 152 0 NA 0.20774513 6.821

NKI-AVL 38 1 T 265 95 0.3880614 0.20910561 6.846

NKI-AVL 39 1 T 181 0 0.64223869 0.2151738 7.570

NKI-AVL 40 0 T 351 40 NA 0.23791112 9.791

NKI-AVL 41 0 T 43 0 0.23592662 0.20604298 6.730

NKI-AVL 42 0 T 3 0 0.13767804 0.19327852 5.439

NKI-AVL 43 0 T 67 0 0.22376986 0.2162488 7.057

NKI-AVL 44 0 T 70 0 0.20403531 0.19266077 7.139

NKI-AVL 45 0 T 434 0 NA 0.2198334 6.633

NKI-AVL 46 0 T 34 0 0.46417086 0.21368521 7.425

NKI-AVL 47 0 T 457 0 NA 0.1925737 7.831

NKI-AVL 48 0 T 201 10 NA 0.21595654 7.838

NKI-AVL 49 1 T 213 0 0.51176161 0.22551758 6.895

NKI-AVL 50 0 T 17 0 0.21179962 0.1968275 6.496

NKI-AVL 51 0 T 128 0 NA 0.18916553 6.182

NKI-AVL 52 0 T 152 1 NA 0.19097529 6.527

NKI-AVL 53 0 T 2 0 0.05472433 0.17966245 4.777

NKI-AVL 54 0 T 828 0 NA 0.21645211 8.767

NKI-AVL 55 0 T 214 0 NA 0.19726592 7.054

NKI-AVL 56 0 T 61 60 0.1871965 0.19130507 5.833

NKI-AVL 57 0 T 101 0 NA 0.18832904 5.680

NKI-AVL 58 1 T 181 100 0.43659426 0.20833796 7.817

NKI-AVL 59 1 V NA 0 0.59875534 0.23130271 8.136

NKI-AVL 60 1 V NA 0 0.57577079 0.23659817 8.126

NKI-AVL 61 0 V NA 0 0.33791226 0.22503081 8.299

NKI-AVL 62 0 V NA 1 0.05584476 0.1953445 5.016

NKI-AVL 63 0 V NA 70 0.57234398 0.22409197 8.412

NKI-AVL 64 0 V NA 0 0.03369218 0.19838459 5.475

NKI-AVL 65 0 V NA 20 0.51901336 0.25715829 9.026

NKI-AVL 66 0 V NA 1 0.41398173 0.20309417 7.316

NKI-AVL 67 0 V NA 100 0.16411478 0.20684874 6.324

NKI-AVL 68 0 V NA 70 0.41995247 0.21239991 8.007

NKI-AVL 69 0 V NA 0 0.05657554 0.18272455 5.389

CERTIM 01 0 V NA 0 0.45709704 0.19546895 7.947705372

CERTIM 02 0 V NA 0 0.37482841 0.19669646 6.426587946
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Table S1. Continued

Sample ID 1= DC 12m, 0= PD T= Training, V= validation PD-1T per mm2 PD-L1 TPS (%) PD-1T signature scores PDCD1 signature scores TIS scores

NKI-AVL 35 1 T 110 40 0.47371578 0.2086303 6.786

NKI-AVL 36 0 T 98 0 NA 0.21601595 7.093

NKI-AVL 37 0 T 152 0 NA 0.20774513 6.821

NKI-AVL 38 1 T 265 95 0.3880614 0.20910561 6.846

NKI-AVL 39 1 T 181 0 0.64223869 0.2151738 7.570

NKI-AVL 40 0 T 351 40 NA 0.23791112 9.791

NKI-AVL 41 0 T 43 0 0.23592662 0.20604298 6.730

NKI-AVL 42 0 T 3 0 0.13767804 0.19327852 5.439

NKI-AVL 43 0 T 67 0 0.22376986 0.2162488 7.057

NKI-AVL 44 0 T 70 0 0.20403531 0.19266077 7.139

NKI-AVL 45 0 T 434 0 NA 0.2198334 6.633

NKI-AVL 46 0 T 34 0 0.46417086 0.21368521 7.425

NKI-AVL 47 0 T 457 0 NA 0.1925737 7.831

NKI-AVL 48 0 T 201 10 NA 0.21595654 7.838

NKI-AVL 49 1 T 213 0 0.51176161 0.22551758 6.895

NKI-AVL 50 0 T 17 0 0.21179962 0.1968275 6.496

NKI-AVL 51 0 T 128 0 NA 0.18916553 6.182

NKI-AVL 52 0 T 152 1 NA 0.19097529 6.527

NKI-AVL 53 0 T 2 0 0.05472433 0.17966245 4.777

NKI-AVL 54 0 T 828 0 NA 0.21645211 8.767

NKI-AVL 55 0 T 214 0 NA 0.19726592 7.054

NKI-AVL 56 0 T 61 60 0.1871965 0.19130507 5.833

NKI-AVL 57 0 T 101 0 NA 0.18832904 5.680

NKI-AVL 58 1 T 181 100 0.43659426 0.20833796 7.817

NKI-AVL 59 1 V NA 0 0.59875534 0.23130271 8.136

NKI-AVL 60 1 V NA 0 0.57577079 0.23659817 8.126

NKI-AVL 61 0 V NA 0 0.33791226 0.22503081 8.299

NKI-AVL 62 0 V NA 1 0.05584476 0.1953445 5.016

NKI-AVL 63 0 V NA 70 0.57234398 0.22409197 8.412

NKI-AVL 64 0 V NA 0 0.03369218 0.19838459 5.475

NKI-AVL 65 0 V NA 20 0.51901336 0.25715829 9.026

NKI-AVL 66 0 V NA 1 0.41398173 0.20309417 7.316

NKI-AVL 67 0 V NA 100 0.16411478 0.20684874 6.324

NKI-AVL 68 0 V NA 70 0.41995247 0.21239991 8.007

NKI-AVL 69 0 V NA 0 0.05657554 0.18272455 5.389

CERTIM 01 0 V NA 0 0.45709704 0.19546895 7.947705372

CERTIM 02 0 V NA 0 0.37482841 0.19669646 6.426587946
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Table S1. Continued

Sample ID 1= DC 12m, 0= PD T= Training, V= validation PD-1T per mm2 PD-L1 TPS (%) PD-1T signature scores PDCD1 signature scores TIS scores

CERTIM 03 0 V NA 0 0.09061181 0.19352412 6.663844276

CERTIM 04 0 V NA 50 0.19990922 0.19174377 7.089186346

CERTIM 05 0 V NA 0 0.37673778 0.21397528 7.790608182

CERTIM 06 1 V NA 100 0.42474192 0.20949471 8.13669394

CERTIM 07 0 V NA 0 0.20888208 0.20910316 6.48711348

CERTIM 08 0 V NA 0 0.28941286 0.20018483 7.695182459

CERTIM 09 0 V NA 0 0.29583936 0.20291918 7.152807509

CERTIM 10 0 V NA 0 0.2060138 0.19456563 6.963596419

CERTIM 11 0 V NA 5 0.20464135 0.20806045 6.498026588

CERTIM 12 0 V NA 0 0.21180426 0.18821267 6.839139019

CERTIM 13 1 V NA 100 0.74622667 0.24092749 9.289461347

CERTIM 14 0 V NA 0 0.47661187 0.20975658 8.067153437

CERTIM 15 0 V NA 0 0.11008555 0.22364154 6.701786258

CERTIM 16 1 V NA 60 0.56494611 0.19211549 8.003015848

CERTIM 17 0 V NA 0 0.22378207 0.1936509 6.498107194

CERTIM 18 0 V NA 90 0.09012218 0.18721871 6.168103946

CERTIM 19 1 V NA 0 0.35146763 0.21564433 8.243507416

CERTIM 20 0 V NA 0 0.44403454 0.2192682 8.673249687

CERTIM 21 0 V NA 5 0.15117402 0.19661584 7.40775649

CERTIM 22 0 V NA 0 0.1960908 0.20657123 6.012744812

CERTIM 23 0 V NA NA 0.17913245 0.20169567 5.716478727

CERTIM 24 0 V NA 10 0.14672321 0.20961013 6.097363206

CERTIM 25 0 V NA 80 0.64992468 0.23851804 8.884735325

CERTIM 26 0 V NA 0 0.44134557 0.2070323 6.783573802

CERTIM 27 0 V NA NA 0.06060794 0.17208473 4.003295911

CERTIM 28 0 V NA 0 0.22646001 0.20680609 7.654154777

CERTIM 29 0 V NA 30 0.44175787 0.22527499 7.579428401

CERTIM 30 0 V NA 0 0.691726 0.22474679 8.43256737

CERTIM 31 0 V NA 0 0.25405197 0.20390309 6.038361128

NA, not available
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Table S1. Continued

Sample ID 1= DC 12m, 0= PD T= Training, V= validation PD-1T per mm2 PD-L1 TPS (%) PD-1T signature scores PDCD1 signature scores TIS scores

CERTIM 03 0 V NA 0 0.09061181 0.19352412 6.663844276

CERTIM 04 0 V NA 50 0.19990922 0.19174377 7.089186346

CERTIM 05 0 V NA 0 0.37673778 0.21397528 7.790608182

CERTIM 06 1 V NA 100 0.42474192 0.20949471 8.13669394

CERTIM 07 0 V NA 0 0.20888208 0.20910316 6.48711348

CERTIM 08 0 V NA 0 0.28941286 0.20018483 7.695182459

CERTIM 09 0 V NA 0 0.29583936 0.20291918 7.152807509

CERTIM 10 0 V NA 0 0.2060138 0.19456563 6.963596419

CERTIM 11 0 V NA 5 0.20464135 0.20806045 6.498026588

CERTIM 12 0 V NA 0 0.21180426 0.18821267 6.839139019

CERTIM 13 1 V NA 100 0.74622667 0.24092749 9.289461347

CERTIM 14 0 V NA 0 0.47661187 0.20975658 8.067153437

CERTIM 15 0 V NA 0 0.11008555 0.22364154 6.701786258

CERTIM 16 1 V NA 60 0.56494611 0.19211549 8.003015848

CERTIM 17 0 V NA 0 0.22378207 0.1936509 6.498107194

CERTIM 18 0 V NA 90 0.09012218 0.18721871 6.168103946

CERTIM 19 1 V NA 0 0.35146763 0.21564433 8.243507416

CERTIM 20 0 V NA 0 0.44403454 0.2192682 8.673249687

CERTIM 21 0 V NA 5 0.15117402 0.19661584 7.40775649

CERTIM 22 0 V NA 0 0.1960908 0.20657123 6.012744812

CERTIM 23 0 V NA NA 0.17913245 0.20169567 5.716478727

CERTIM 24 0 V NA 10 0.14672321 0.20961013 6.097363206

CERTIM 25 0 V NA 80 0.64992468 0.23851804 8.884735325

CERTIM 26 0 V NA 0 0.44134557 0.2070323 6.783573802

CERTIM 27 0 V NA NA 0.06060794 0.17208473 4.003295911

CERTIM 28 0 V NA 0 0.22646001 0.20680609 7.654154777

CERTIM 29 0 V NA 30 0.44175787 0.22527499 7.579428401

CERTIM 30 0 V NA 0 0.691726 0.22474679 8.43256737

CERTIM 31 0 V NA 0 0.25405197 0.20390309 6.038361128

NA, not available



Chapter 4

162

Table S2. Coefficients of the PD-1T signature genes used in the prediction model.

Gene Coefficient

STAT1 0.071

OAS1 0.126

TAP1 0.193

HEY1 -0.257

CXCL13 0.147

IFIT2 0.036

IL6 0.028

TDO2 0.054

CD6 0.008

CTLA4 0.219

CD274 0.006

LAG3 0.154
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Table S3. Patient characteristics and treatment outcomes for training and validation cohorts. 
P-values were calculated by Mann-Whitney, Fisher exact or linear-by-linear association tests.

P-value Training cohor
t (n=41)

Validation cohort 
(n=42)

Sex P=0.51    
Male, no. (%)   22 (54%) 26 (62%)
Female, no. (%)   19 (46%) 16 (38%)

Age (years), mean (s.d.) P=0.79 64 (9.2) 64 (9.6)
Smoking (never/ex/current) P=0.39 3/32/6 6/27/9
Pack years, median (IQR) P=0.27 34 (25) 30 (35)
PS, no. (%) P=0.002    

0   11 (27%) 3 (7%)
1   22 (54%) 25 (60%)
≥2   8 (19%) 14 (33%)

Pathology, no. (%) P=0.87    
Adeno   28 (68%) 27 (64%)
Squamous   9 (22%) 12 (29%)
LCNEC, NSCLC-type   1 (3%) 0 (0%)
NSCLC, NOS   3 (7%) 3 (7%)

PD-L1 TPS, no. (%) P=0.58    
Negative   22 (54%) 24 (57%)
Positive 1-50%   10 (24%) 7 (17%)
Positive ≥50%   9 (22%) 9 (21%)
Unknown   0 (0%) 2 (5%)

Brain metastases, no. (%) P=0.6028 10 (24%) 8 (19%)
Treatment, no. (%)      

Nivolumab   41 (100%) 42 (100%)
Line of treatment, no (%) P=0.62    

2   32 (78%) 30 (71%)
>2   9 (22%) 12 (29%)

Best Overall Response P=0.63    
CR   3 (7%) 2 (5%)
PR   9 (22%) 5 (12%)
SD   4 (10%) 5 (12%)
PD   25 (61%) 30 (71%)

DC      
≥12 months P=0.12 12 (29%) 6 (14%)
≥6 months P=0.63 13 (32%) 11 (26%)

s.d., standard deviation; IQR, interquartile range; PS, Performance Score, based on the 
European Cooperative Oncology group (ECOG) performance status score. This is a score 
ranging from 0 to 5, where 0 indicates no symptoms, 1 indicates mild symptoms and above 
1 indicates greater disability; LCNEC NSCLC type, large cell neuroendocrine carcinoma non-
small cell lung cancer type; NOS, not otherwise specified; KRAS, Kirsten Rat Sarcoma viral 
oncogene; PD-L1, programmed death ligand 1; TPS, tumor proportion score; CR, complete 
response; PR, partial response; SD, stable disease; PD, progressive disease; DC, disease control.
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Table S4. Overview of significantly expressed genes between tumors from PD-1T IHC high 
patients (n=12) and PD-1T IHC low patients (n=29).

Gene logFC Average Expression T-statistics P Value Adjusted P Value Bayesion factor

LAG3 1.88884548400466 -2.80041279814709 4.83909975303927 1.78582558984076e-05 0.00513959649734931 2.84658700406427

PSMB9 1.43868956579743 0.302996932117271 4.68297306902122 2.95030175588419e-05 0.00513959649734931 2.3794555181907

CTLA4 1.42200236599635 -2.47865299771225 4.58614199005501 4.01997988520925e-05 0.00513959649734931 2.09185824232994

CXCR6 1.6446782493738 -2.96961697142336 4.56461815426475 4.30518750486993e-05 0.00513959649734931 2.02816979330291

CXCL13 2.2175668262985 -1.70636645256783 4.55957550465733 4.374827644334e-05 0.00513959649734931 2.01326176709522

SH2D1A 1.75917395751567 -3.32747140742716 4.52323657993327 4.91044251339106e-05 0.00513959649734931 1.90597879026597

TAP1 1.07179116679377 0.153764377204745 4.42871623399643 6.62333066853745e-05 0.0059420737997736 1.62819981640937

CD3E 1.46133550402829 -2.43718170364179 4.34655157267091 8.57844244323353e-05 0.00624933012589224 1.38831333947697

CD274 1.77461018365805 -2.62787569257075 4.32375917934292 9.21423282844515e-05 0.00624933012589224 1.32204345171818

CD8A 1.72830415204725 -2.03954190686031 4.29919107351712 9.95116262084752e-05 0.00624933012589224 1.25074848681342

CD3G 1.50938013286876 -3.45143656891331 4.26277330674192 0.000111505813579992 0.0063659682662032 1.14533534077684

CD3D 1.61835438828301 -1.69109606921838 4.2243295633599 0.000125697954760364 0.00657819296579236 1.03441469824883

CD6 1.58051071356482 -3.28877942082266 4.18473695715741 0.00014215324524755 0.00686709523195857 0.920573026443

GZMK 1.65813054066268 -2.44753255939726 4.14705536140784 0.00015975506400955 0.00716615572842837 0.812607525409131

IRF1 1.08945362100745 -0.000809016866967984 4.11311177849518 0.000177416210315866 0.00725034112981547 0.715678990937824

STAT1 1.00072220553547 1.3077408591629 4.10002366246689 0.000184722067001668 0.00725034112981547 0.678389223896438

IFNG 1.74152190267805 -4.44726680139924 4.0748260400368 0.000199620893678133 0.00737423066058042 0.606732278127318

ZAP70 1.40194538684443 -2.43585243496581 3.98141401445179 0.00026574207772818 0.00870486547777766 0.342677146403622

GZMA 1.70542230583565 -2.13364043308839 3.97952213627703 0.000267279924727654 0.00870486547777766 0.337355790598474

IFI35 0.987717180524364 -0.841730242635249 3.96753679245733 0.000277225015215849 0.00870486547777766 0.303669250065301

CCR5 1.32440469417496 -2.76216599584521 3.92721579227505 0.000313387613303551 0.00937178195974429 0.190662987446336

CD69 1.37959073066651 -1.92613327085766 3.8988727178203 0.000341502217054782 0.00974833601410923 0.111528845611906

KLRK1 1.40427005952429 -2.62445715181827 3.77837064927973 0.000490778589434132 0.0129074447601548 -0.222018805317814

CXCL10 1.78562490084712 -0.404538293424959 3.77667217154252 0.000493278143700185 0.0129074447601548 -0.226685616413969

CD5 1.20112720197047 -2.76496364144761 3.75595053892489 0.000524780061140286 0.013182475135844 -0.283541712241419

TRAT1 1.44947890393937 -3.23767089629177 3.71034624896656 0.000601092014501517 0.0145186840425751 -0.408145952388601

LY9 1.24574092018984 -2.99614570191887 3.69450105663426 0.000630028960993021 0.0146540069445784 -0.451267919858972

HEY1 -1.39760491698939 -0.834522518489289 -3.66050500135453 0.000696709420999094 0.0155998317781292 -0.543482241972573

IFIT3 1.110231762069 -0.559615244491435 3.63627225806104 0.000748332439827997 0.0155998317781292 -0.608956479871537

TDO2 1.56097678398257 -2.13703000505588 3.63533485688183 0.000750401530542069 0.0155998317781292 -0.611484888627425

HLA-E 0.762834406039039 2.56854832062947 3.6265525721914 0.000770055390321665 0.0155998317781292 -0.635157109489466

IDO1 1.73063654284901 -1.30330315884557 3.57629413697303 0.000892401931916592 0.0175133879138631 -0.7700698361775

PRF1 1.44354677083376 -2.74740428352741 3.54542071855368 0.000976590425975104 0.0180202149542676 -0.85246821215889

CD48 1.30252149946313 -1.62285167747091 3.54275584938563 0.000984204057044527 0.0180202149542676 -0.859563203214019

NKG7 1.66816172872997 -1.25067906555379 3.53581193874381 0.00100431134299262 0.0180202149542676 -0.878037769613107

IL2RG 1.18159319380198 -0.771658463957608 3.50991373160624 0.0010828328324166 0.0188894171877119 -0.946774068063469
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Table S4. Overview of significantly expressed genes between tumors from PD-1T IHC high 
patients (n=12) and PD-1T IHC low patients (n=29).

Gene logFC Average Expression T-statistics P Value Adjusted P Value Bayesion factor

LAG3 1.88884548400466 -2.80041279814709 4.83909975303927 1.78582558984076e-05 0.00513959649734931 2.84658700406427

PSMB9 1.43868956579743 0.302996932117271 4.68297306902122 2.95030175588419e-05 0.00513959649734931 2.3794555181907

CTLA4 1.42200236599635 -2.47865299771225 4.58614199005501 4.01997988520925e-05 0.00513959649734931 2.09185824232994

CXCR6 1.6446782493738 -2.96961697142336 4.56461815426475 4.30518750486993e-05 0.00513959649734931 2.02816979330291
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HLA-E 0.762834406039039 2.56854832062947 3.6265525721914 0.000770055390321665 0.0155998317781292 -0.635157109489466

IDO1 1.73063654284901 -1.30330315884557 3.57629413697303 0.000892401931916592 0.0175133879138631 -0.7700698361775

PRF1 1.44354677083376 -2.74740428352741 3.54542071855368 0.000976590425975104 0.0180202149542676 -0.85246821215889

CD48 1.30252149946313 -1.62285167747091 3.54275584938563 0.000984204057044527 0.0180202149542676 -0.859563203214019

NKG7 1.66816172872997 -1.25067906555379 3.53581193874381 0.00100431134299262 0.0180202149542676 -0.878037769613107

IL2RG 1.18159319380198 -0.771658463957608 3.50991373160624 0.0010828328324166 0.0188894171877119 -0.946774068063469
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Table S4. Continued

Gene logFC Average Expression T-statistics P Value Adjusted P Value Bayesion factor

CCL4 1.37652182502365 -1.15162060939353 3.40516640779077 0.00146460040912612 0.0248586231603028 -1.22202988086957

CD244 1.0140109917243 -4.13601859978355 3.29001171724326 0.00203162237460295 0.0335752329276488 -1.5193151090479

GIMAP4 0.910008059694032 -0.110032084999837 3.28044048418724 0.00208715549280246 0.0336085551148703 -1.54376365326564

CCL5 1.34205185377604 -0.41616328442252 3.26944024694903 0.00215276026558408 0.0337983361696701 -1.57181186993599

IL6 1.6751565235166 -1.85138061368234 3.25141577878206 0.00226450748828835 0.0346856268937826 -1.61765275641612

CXCL14 -2.43479633694284 1.19030995683133 -3.20732072434023 0.00256153449492565 0.0379144834890493 -1.72917479474905

TNFRSF1B 0.931778521160674 -0.633533347850366 3.18603193642275 0.00271780639232291 0.0379144834890493 -1.78269593555762

IL2RB 1.20344276687788 -1.41007205577328 3.17866032782817 0.00277399012810882 0.0379144834890493 -1.80117926832359

CD40 0.917900814704211 -0.693642929932606 3.17042387987491 0.00283806429807378 0.0379144834890493 -1.8218009080922

IFIT2 1.18990439064898 -1.60118350410009 3.17034219468396 0.00283870670848873 0.0379144834890493 -1.82200526392905

SLAMF7 1.310766818109 -2.38257048577135 3.16800927938585 0.00285711198423105 0.0379144834890493 -1.82784030499371

HLA-F 1.05618112032267 -0.105931695806803 3.15810405319661 0.00293652191218481 0.0379144834890493 -1.85258644150503

NCR1 0.960005951631412 -4.16203875925747 3.15005089263706 0.00300261649391027 0.0379144834890493 -1.8726713287389

CD7 1.15797115824849 -2.92732873037538 3.14812028847099 0.00301866906759946 0.0379144834890493 -1.8774817495049

HLA-C 0.943096476582807 3.12629587925205 3.13625194586673 0.00311914668878484 0.0384083160893506 -1.90701465469001

HSD11B1 1.23825740268296 -2.96366472328225 3.09942853822148 0.00345136315249579 0.0416818473032184 -1.99821434057035

OAS1 0.916330131374769 0.7835427792938 3.07351166731402 0.00370488487846314 0.0438993906353746 -2.06200681564335

OAS2 0.964878990316807 0.159982062948577 3.05982631055085 0.0038457314590148 0.0442309269563468 -2.0955590246727

PIK3CD 0.910004000640195 -1.47076303939425 3.05716235556109 0.00387372767929789 0.0442309269563468 -2.10207942725563

RRM2 0.861345905307591 -0.16258390339206 3.0401575234094 0.00405700347078921 0.045496396065279 -2.14361792408683

Table S5. Predictive accuracy of PDCD1 gene expression signature, summary of training and 
validation results.

Biomarker AUC Cut-off Sensitivity Specificity PPV NPV

Training cohort (n=58) PDCD1 0.71 95% CI: 0.54-0.88 <0.20 vs ≥0.20 92% 41% 29% 95%

Validation cohort (n=42) PDCD1 0.74 95% CI: 0.50-0.99 <0.20 vs ≥0.20 83% 36% 18% 93%
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Translational Relevance

Predictive biomarkers for the efficacy of PD-(L)1 inhibition in non-small cell 
lung cancer (NSCLC) beyond PD-L1 are lacking. We retrospectively developed a 
pretreatment proteomic signature derived from peripheral blood that was able 
to stratify patients for benefit of nivolumab in treatment of relapsed NSCLC. A 
signature consisting of 274 mass spectral features derived from a development set of 
116 patients was associated with progression free survival (PFS) and overall survival 
(OS) across 2 validation cohorts (n=98 and n=75). In pooled analysis, a significantly 
better OS was demonstrated for “sensitive” relative to “not sensitive” patients, hazard 
ratio (HR) 0.58 (95% CI: 0.38-0-87, P=0.009). There was no significant association 
with clinical factors including PD-L1 immunohistochemistry. Further prospective 
exploration of the predictive capabilities of this assay is underway.
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Abstract

Purpose
Pretreatment selection of non-small-cell lung cancer (NSCLC) patients who derive 
clinical benefit from treatment with immune checkpoint inhibitors would fulfill an 
unmet clinical need by reducing unnecessary toxicities from treatment and result 
in substantial health care savings.

Patients and Methods
In a retrospective study, mass spectrometry (MS) based proteomic analysis was 
performed on pretreatment sera derived from advanced NSCLC patients treated 
with nivolumab as part of routine clinical care (n=289). Machine learning combined 
spectral and clinical data to stratify patients into three groups with good (“sensitive”), 
intermediate and poor (“resistant”) outcomes following treatment in the second-line 
setting. The test was applied to three independent patient cohorts and its biology 
investigated using protein set enrichment analyses (PSEA).

Results
A signature consisting of 274 MS features derived from a development set of 116 
patients was associated with progression free survival (PFS) and overall survival (OS) 
across 2 validation cohorts (n=98 and n=75). In pooled analysis, significantly better 
OS was demonstrated for “sensitive” relative to “not sensitive” patients treated with 
nivolumab, HR 0.58 (95% CI: 0.38-0-87, P=0.009). There was no significant association 
with clinical factors including PD-L1 expression, available from 133/289 patients. 
The test demonstrated no significant association with PFS or OS in a historical 
cohort (n=68) of second-line NSCLC patients treated with docetaxel. PSEA revealed 
proteomic classification to be significantly associated with complement and wound 
healing cascades.

Conclusions
This serum-derived protein signature successfully stratified outcomes in cohorts of 
advanced NSCLC patients treated with second line PD-1 checkpoint inhibitors and 
deserves further prospective study.
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Introduction

The addition of immune checkpoint inhibitors (CPIs) to the armamentarium of 
medical treatment of advanced non-small cell lung cancer (NSCLC) has increased 
survival for a minority of patients. Historically, in patients with metastatic disease, 
2-year survival rates following platinum-based chemotherapy were 10-20%1. In 
recent phase III studies, either comparing CPIs alone or CPI-chemotherapy to 
chemotherapy2, 2-year survival rates in the CPI arms range from 32% to 67%. In 
addition, long term follow-up of patients treated in early single agent CPI studies 
indicates that 5-year survival of 15-20% may be expected, even in heavily pretreated 
patients3,4.

At the same time, it is clear that not all patients benefit from treatment with CPIs. 
Indeed, response rates and survival times can be augmented by pretreatment 
selection based on tumor characteristics such as PD-(L)1 expression5, staining of CD8 
positive cells6, tumor mutational burden (TMB)7 and other genomic markers8,9. The 
predictive power of the best studied of these, PD-L1 immunohistochemistry, is far 
from perfect. For example, in previously treated NSCLC patients with PD-L1 staining 
of at least 50%, the objective response rate (ORR) to pembrolizumab is 44%5. Thus, 
alternative predictive biomarkers for response and clinical benefit are needed. We 
sought to develop a serum-based, pretreatment protein test to avoid the need for 
tissue biopsies, which are typically required to analyze tumor-related biomarkers. 
Here, we report on the development of such a test in advanced NSCLC treated with 
single agent CPI in the second-line setting.
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Methods

Patient cohorts and sample sets
Pretreatment serum samples, collected within one month of immunotherapy 
initiation, were available from four cohorts of patients. The development set 
consisted of 116 samples from patients treated at the Netherlands Cancer Institute 
between May 2015 and March 2017. Validation set 1 consisted of 98 samples from 
patients treated at Vrije Universiteit Medical Center or Netherlands Cancer Institute 
between June 2015 and July 2018. Validation set 2 comprised samples from 75 patients 
treated at Erasmus University Medical Centre in Rotterdam between April 2016 
and July 2017. Patients, identified according to criteria established in the phase 3 
trials demonstrating benefit for nivolumab over docetaxel10,11, received nivolumab 
3mg/kg, administered as an intravenous infusion, every 2 weeks, for advanced 
NSCLC after platinum containing chemotherapy as part of routine clinical care. 
Patients in the development cohort and validation set 2 were treated in second line. 
Validation set 1 contained 58 patients treated in second line and 40 patients treated 
in higher lines. The cohorts comprised all patients in the respective institutions 
who provided pretreatment serum samples available for analysis, were eligible for 
immunotherapy as routine care, and who received at least one dose of nivolumab. 
Response to treatment was evaluated according to RECIST v1.1 every 6 weeks for 
the first 12 weeks and every three months thereafter. In addition, a fourth cohort 
of pretreatment serum samples (chemotherapy cohort) had been collected from 
patients with advanced NSCLC treated in second line with chemotherapy while 
enrolled in a clinical trial (NCT00989690)12. Samples were available for 68 of the 74 
patients who received docetaxel (75mg/m2 every 21 days) in this study. Trial inclusion 
and exclusion criteria have been published elsewhere12. All samples were obtained in 
the context of biobanking protocols or a clinical trial for which institutional review 
board approval was sought and obtained. All patients provided written informed 
consent according to local ethical standards and adhered to standards set out in the 
Declaration of Helsinki. Progression free survival (PFS) was measured from start of 
treatment until progression of disease, death or loss to follow up. Overall survival 
(OS) was defined as time from start of therapy until death or loss to follow up.

PD-L1 immunohistochemistry
Tumor PD-L1 expression scoring was performed according to the instruction manual 
of the qualitative immunohistochemical assay developed as a complementary 
diagnostic tool for nivolumab (PD-L1 IHC 22C3 pharmDx, Dako, Carpinteria, CA). 
PD-L1 expression levels were determined by observing complete circumferential or 
partial linear expression (at any intensity) of PD-L1 on the plasma cell membrane of 
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viable tumor-cells. In parallel, the pattern of staining in CD4 stained slides, which 
also stain CD4+ lymphocytes and macrophages, was evaluated and compared to PD-
L1 stained slides in order to avoid false positive assessment due to PD-L1 expressing 
macrophages in between tumor cells. Assessment of expression levels was performed 
in sections that included at least 100 tumor cells that could be evaluated.

Spectral acquisition and processing
Samples were processed using standardized operating procedures. We used 
the Deep MALDI® method of mass spectrometry on a matrix-assisted laser 
desorption/ionization (MALDI) time-of-flight mass spectrometer (SimulTof Systems, 
Marlborough, MA, USA) to generate reproducible mass spectra from small amounts 
of serum (3 µL)13. This approach reveals mass spectral (MS) peaks with a greater 
dynamic range than previously possible by exposing the samples to 400,000 MALDI 
laser “shots”, rather than the several thousand used in standard applications. The 
spectra were processed to render them comparable between patients and 274 MS 
features (peaks) were selected for further analysis for their known reproducibility 
and stability (listed in supplement). Sample processing and MS analysis followed 
methods previously presented14,15 and are outlined in the supplementary materials. 
Parameters for these procedures were established using only the 116-sample 
development set, and this fixed procedure was applied to all other sample sets 
without modification.

Test Development
Test development was carried out using the Diagnostic Cortex® platform16, which 
has been used previously to design tests able to stratify patients by outcome in 
various settings, for example, to identify patients with advanced melanoma likely 
to be sensitive to checkpoint inhibitors14,15. The approach incorporates machine 
learning concepts and elements of deep learning17 to facilitate test development in 
cases where there are more measured attributes than samples. The potential for 
overfitting is minimized, thus allowing the creation of tests that can generalize to 
unseen datasets. Tests are created averaging over many splits of the development set 
into training and test sets, and reliable test performance estimates can be obtained 
from the development set by restricting averages to the test set evaluations (‘out-of-
bag estimates’)18.

For successful supervised learning, suitable training class labels are required. We 
used a semi-supervised approach19 that does not require accurate pre-specification 
of patients into better or worse outcome training classes and allows us to be guided 
by the gold standard time-to-event outcomes of OS and PFS. An approximation is 
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made for training classes, with patients with the lowest time-to-event outcome times 
assigned to the ‘negative’ class and those with the highest time-to-event outcome 
times assigned to the ‘positive’ class. A classifier is constructed using these training 
classes and used to generate classifications for all samples in the development 
set using out-of-bag evaluations. These resulting classifications are then used as 
improved training class labels for a second iteration of classifier construction. This 
simultaneous iterative refinement of the classifier and the classes used in training 
generally converges quickly and reveals the underlying structure of the MS data and 
its association with clinical outcomes19. Full details of the application of the method 
in this setting are provided in the supplementary materials.

One classifier previously developed with the Diagnostic Cortex platform was used 
as part of the developed test. BDX008 was created to stratify patients with advanced 
melanoma into groups with better and worse outcomes when treated with 
nivolumab15. It has been validated in multiple independent cohorts of melanoma 
patients treated with CPIs15,20. Also, it has demonstrated some ability to stratify overall 
survival of patients with advanced NSCLC treated with nivolumab21. A version of 
BDX008, adapted for the spectral preprocessing parameters and feature definitions 
in this project, was created (See Supplemental Data: Methods for details).

Preliminary statistical considerations showed a binary split of the development set 
into equal-sized groups would allow detection of a hazard ratio between the groups 
of 0.55 with 90% power, assuming fully mature clinical data and a significance level 
of 95%. Similar considerations for a ternary split into equal size subgroups would 
allow detection of a hazard ratio of 0.48 under the same specifications.

All reference data and test parameters were generated solely using the development 
set. Validation sets and the chemotherapy cohort were never used in the creation of 
any components of the test. All elements of the classification algorithms were locked 
prior to running the test on the validation sets and chemotherapy cohort.

Protein set enrichment analysis (PSEA)
This analysis applies the gene set enrichment analysis (GSEA) method22 to protein 
expression data. The method identifies expression differences that are consistent 
across prespecified groups or sets of attributes, in this case, sets of proteins that 
are associated with particular biological processes. Two additional independent 
reference sets of serum samples with matched MS data and protein expression 
data were used for this set enrichment analysis. One sample set was composed of 
49 samples with protein expression data from a panel of 1,129 proteins; the second 
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set had 100 samples with protein expression data from a panel of 1,305 proteins. 
(Protein expression measurements were generated by SomaLogic, Boulder, CO, USA.) 
Specific protein sets were created as the intersection of the list of the panel targets 
and results of queries for biological functions from GeneOntology, using AmiGO2 
tools (http://amigo.geneontology.org/amigo) and UniProt databases (https://www.
uniprot.org/). The PSEA method associated test classification with these biological 
functions via a rank-based correlation of the measured protein expressions with the 
test classifications of the reference samples23. The mass spectral features associated 
with biological processes (in particular Immune Response Type 2) were determined 
using Spearman correlation of the measured protein expressions with the mass 
spectral features23 using the 49-sample reference set only. While the implementation 
closely follows the GSEA approach, we employed an extension of the standard method 
that increases the statistical power to detect associations between phenotype (test 
classification subgroup) and biological process24. The PSEA was carried out using 
a C# implementation and Matlab (MathWorks, Natick, MA, USA). PSEA P-values 
were defined as described by Subramanian and colleagues20. False discovery rates 
(FDRs) for the PSEA calculations were assessed using the method of Benjamini and 
Hochberg25.

Other Statistical analysis
All analyses, except the PSEA, were carried out using SAS9.3 (SAS Institute, Cary, NC, 
USA) or PRISM (GraphPad, La Jolla, CA, USA). Survival/progression-free survival plots 
and medians were generated using the Kaplan–Meier method. Association between 
test classification and categorical or continuous variables was assessed using Fisher’s 
exact test and Mann-Whitney test, respectively. All P-values are two-sided.
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Results

Patient characteristics and overall outcomes for all four cohorts are summarized in 
Table 1 and were typical of patients with advanced NSCLC treated predominantly in 
the second-line setting. Clinicopathological characteristics were generally similar 
between the four cohorts, although the proportion of patients with performance 
status 2 or higher was larger in the development cohort and validation set 1, and the 
proportion of patients with performance status 0 was higher in the chemotherapy 
cohort. PD-L1 status was not available for the chemotherapy cohort and was missing 
for at least one-third of patients in the other three cohorts.

Development of the test
A ternary test was developed that was able to stratify the development set of 116 
samples into three groups with different outcomes after anti-PD-1 treatment, i.e., the 
resistant group (with poor outcomes), the intermediate group (with intermediate 
outcomes) and the sensitive group (with good outcomes). The ternary test result 
was generated by combining the results of three binary classification algorithms 
(classifiers). Each of the three classifiers stratified patients into two groups: “positive”, 
with better outcomes and “negative” with worse outcomes. The binary results were 
integrated, as shown in figure 1, to yield the final test result. First, classifications 
were generated for all samples by Classifier A, the version of the pre-existing 
BDX008 test adapted to the spectral processing used in this project. To identify 
a group of patients least likely to have good outcomes, the patients classified as 
negative by Classifier A were subsequently classified by Classifier C. This classifier 
was developed using the subset of MS features found to be associated with Immune 
Response type 2 by PSEA and a subset of the development cohort enriched for inferior 
outcomes, by excluding patients designated as BDX008+ and having performance 
status 0. (The MS features in this subset are listed in the supplementary materials.) 
Samples designated as negative by both Classifier A and Classifier C were classified 
as “resistant”. To identify a group of patients likely to have the best outcomes, the 
patients classified as positive by Classifier A were further classified by Classifier 
B. This classifier was developed using all 274 mass spectral features on a subset of 
the development set enriched for better outcomes, by excluding patients who were 
classified both as BDX008- and negative by Classifier C. Samples designated positive 
by both Classifier A and Classifier B were classified as “sensitive”. All samples not 
classified as “sensitive” or “resistant” were classified as “intermediate”. More details 
of the test development process and parameters are provided in the supplement. 
Reproducibility was assessed by running the test on the 98 serum samples of 
validation set 1 twice, 13 months apart. Concordance between classifications was 85%. 
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For identification of patients with resistant outcomes (resistant vs not resistant (i.e., 
sensitive and intermediate)), concordance was 91% and for identification of patients 
with sensitive outcomes (sensitive vs not sensitive (i.e., resistant and intermediate)), 
concordance was 93%.

Table 1. Patient characteristics and outcomes for all cohorts: development, validation set 1, 
validation set 2, and chemotherapy cohort.

  D
ev

el
op

m
en

t
(n

 =
 11

6)

Va
li

da
ti

on
 1

(n
 =

 9
8)

Va
li

da
ti

on
 2

(n
 =

 7
5)

Ch
em

ot
he

ra
py

 
(n

 =
 6

8)

Age median (range) 65 (43-83)  64 (29-77) 65 (35-78)  64 (39-77)

Gender, n (%)
 

Male 66 (57) 51 (52) 48 (64)  52 (76)

Female 50 (43) 47 (48) 27 (36)  16 (24)

PS, n (%) 0 36 (32) 20 (20) 18 (32)  35 (51)

1 60 (54) 65 (66) 37 (66)  29 (43)

2+ 15 (14) 13 (13) 1 (2)  4 (6)

Smoking status, n (%) Ever 104 (91) 88 (92) 61 (92) 64 (94)

Never 10 (9) 8 (8) 5 (8)  4 (6)

Histology, n (%) Adeno 77 (66) 42 (74) 49 (65)  47 (75)

Squamous 26 (22) 10 (18) 17 (23)  12 (19)

Other 13 (11) 5 (9) 9 (12) 4 (6)

PD-L1, n (%) ≥1% 33 (28) 12 (14) 16(21) 0 (0)

<1% 43 (37) 30 (29) 9 (12) 0 (0)

NA 40 (34) 56 (57) 50 (67) 68 (100)

Response, n (%) CR 1 (1) 1 (0) 0 (0) 0 (0)

PR 16 (14) 28 (28) 15 (20) 7 (10)

SD 19 (16) 26 (33) 25 (33) 23 (34)

PD 65 (56) 37 (33) 31 (41) 22 (32)

NA/NE 15 (13) 6 (7) 4 (5) 16 (24)

PFS (months) Median 2.6 4.1 4.3 3.5

OS (months) Median 8.5 8.4 12.0 8.0

Abbreviations: %, % of patients with available data; adeno, adenocarcinoma; NA, not available; 
NE, not evaluable; PD, progressive disease; PD-L1, PD-L1 expression; PS, performance status; 
SD, stable disease.
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Figure 1. Schema showing how the final test result is produced from the three classifiers A, 
B and C. Heatmaps within the scheme show log10 values of features used in each classifier 
(x-axis) for the development cohort of 116 samples, grouped by individual classifier results, 
negative or positive. The heatmap below the schema shows the log10 values of all 274 
features used within the test for all samples in the development cohort, grouped by test 
classification (resistant, intermediate or sensitive). Larger versions of the heatmaps are in 
the Supplementary Data.

The test was able to stratify patients into three groups (sensitive, intermediate and 
resistant) with different OS and PFS. Of the 116 samples in the development set, 41 (35%) 
were classified as resistant, 43 (37%) as intermediate and 32 (28%) as sensitive. Kaplan-
Meier plots of OS and PFS by classification groups are shown in Figures 2A and 2B. PFS 
for the resistant subgroup was significantly shorter than for the other groups (resistant 
vs sensitive: HR=0.33 (95% CI:0.19-0.58), P<0.001; resistant vs intermediate: HR=0.59 (95% 
CI: 0.37-0.96), P=0.035). Median PFS was 1.4 (95% CI: 1.3-2.3) months for the resistant group, 
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4.3 (95% CI: 1.4-5.7) months for the intermediate group and 9.1 (95% CI: 2.5-undefined) 
months for the sensitive group. OS for the resistant subgroup was significantly shorter 
than for the sensitive subgroup and numerically shorter than for the intermediate 
group (resistant vs sensitive: HR=0.34 (95% CI: 0.19-0.64), P<0.001; resistant vs intermediate: 
HR=0.63 (95% CI: 0.38-1.06), P=0.083. Median OS was 4.3 (95% CI: 2.0-7.9) months for the 
resistant subgroup, 10.4 (95% CI: 5.9-11.4) months for the intermediate group and 17.3 (95% 
CI: 8.5-undefined) months for the sensitive group. Test classification was also associated 
with response (P<0.001, see Supplemental Data: Results Supplementary Table 12). Eighty-
five percent of patients classified as resistant experienced progressive disease as best 
response and only ten percent had a response (all partial). In the sensitive group, only 
28% of patients had progressive disease as best response and 28% achieved a response 
(1 CR and 8 PRs as best response out of 32 patients).

For differentiating patients with the worst outcome from the remainder of the 
cohort, we compared the resistant subgroup with the “not resistant” group, i.e., the 
combination of intermediate and sensitive subgroups, see Figures 2C and 2D. The 
resistant subgroup had significantly inferior OS and PFS than the other patients 
(HR=0.48 (95% CI:0.30-0.77), P=0.002 for OS and HR=0.46 (95% CI: 0.30-0.71), P<0.001 
for PFS). These differences remained significant for PFS (P=0.015) and trended to 
significance for OS (P=0.062) in multivariate analysis when adjusted for other 
baseline characteristics, including performance status and PD-L1 expression.

The patients with the best outcomes (sensitive subgroup) were compared with 
the “not sensitive” group, i.e., the remainder of the cohort (resistant+intermediate 
subgroups), Figures 2E and 2F. Patients classified as sensitive had significantly better 
OS and PFS than patients classified as not sensitive (HR=0.45; 95% CI: 0.25-0.79, P=0.006 
for OS and HR=0.45; 95% CI: 0.27-0.76, P=0.003 for PFS). Median OS was 17.3 (95% CI: 
8.5-undefined) months for the sensitive group, compared with 6.0 (95% CI: 4.3-9.2) 
months for the not sensitive group; median PFS was 9.1 (95% CI: 2.5-undefined) 
months for the sensitive group, compared with only 1.8 (95% CI: 1.4-2.7) months for 
the not sensitive group. In multivariate analyses, while the effect sizes for OS and 
PFS remained substantial (HR=0.60 and 0.63, respectively), classification sensitive 
vs not sensitive did not retain its independent significance as a predictive factor 
(Supplemental Data: Results Supplementary Tables 13 and 14).

Baseline patient characteristics showed no association with test classification for 
P<0.05 (Supplemental Data: Results Supplementary Table 15). In particular, PD-L1 
expression was not significantly correlated with test classification (P=0.387 for 
ternary classification vs. PD-L1+/PD-L1-/NA).
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Figure 2. A–F, Outcomes by test classification for the development cohort.

Validation
The locked test was applied to samples from validation sets 1 and 2 and the 
chemotherapy cohort. Validation set 1 had been used in a previous investigation26 
and therefore, while it was not used in test development, validation set 1 could not be 
run blinded to clinical data. The chemotherapy cohort was a subset of a previously 
analyzed clinical trial comparing chemotherapy and targeted therapy and hence 
could also not be tested blinded to clinical data. Testing of validation set 2 was 
completely blinded to all clinical data. Statistical consideration of power to detect 
the effect sizes observed in the development cohort for each validation set and the 
chemotherapy cohort is outlined in the supplement.
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Within the validation sets, the number and proportions of patients assigned to each 
classification group were 37 (38%)/32 (43%) resistant, 30 (31%)/19 (25%) intermediate 
and 31 (32%)/24 (32%) sensitive for set 1/set 2 respectively. Kaplan-Meier plots of OS by 
test classification resistant vs. not resistant and sensitive vs. not sensitive are shown 
for the validation sets in Figure 3A-D. In validation set 1, Figures 3A and 3B, patients 
classified as resistant had significantly worse OS than not resistant patients (HR=0.60; 
95% CI: 0.37- 0.97, P=0.037) and patients classified as sensitive had significantly better 
OS than not sensitive patients (HR=0.56; 95% CI: 0.33-0.97, P=0.038). One year survival 
for the sensitive group was 65% and the corresponding median was 15.3 (95% CI: 
8.8-undefined) months. In contrast, median OS was only 4.8 (95% CI: 2.9-9.3) months 
in the resistant group, with 29% OS at one year. PFS was numerically superior 
in the sensitive group and inferior in the resistant group, but the differences in 
outcome were smaller and did not reach statistical significance, see Supplemental 
Data: Results Supplementary Figures 1 and 2. Analysis of the subgroup of patients 
treated with nivolumab in third or higher line (n=40), showed similar behavior in 
OS and PFS, with resistant patients showing a trend to shorter outcomes (HR=0.49; 
95% CI: 0.23-1.04, P=0.062 for OS and HR=0.50; 95% CI: 0.25-1.02, P=0.057 for PFS) and 
sensitive patients showing numerically longer survival (HR=0.48; 95%CI: 0.21-1.10, 
P=0.082 for OS and HR=0.62; 95% CI: 0.31-1.23, P=0.172 for PFS). Kaplan-Meier plots for 
this subgroup are shown in the Supplementary data.

Results for validation set 2 are shown in Figures 3C and 3D. Patients classified as 
resistant had worse OS than not resistant patients (HR=0.39; 95% CI: 0.19-0.77, P=0.007). 
The comparison of OS between the sensitive group and the not sensitive patients 
yielded a HR of 0.58, but did not show a significant difference (P=0.179). However, 
for ternary test classifications, the sensitive group had longer OS than the resistant 
group (HR=0.41; 95% CI: 0.18-0.94, P=0.036). Full analysis for the sensitive/intermediate/
resistant classifications can be found in Supplemental Data: Results. Analysis of PFS 
showed only numerical differences between classification groups.

As results were consistent across cohorts, within the limits of relatively small 
subgroup sizes, a pooled analysis of all patients treated in second line with 
nivolumab was carried out stratified by cohort (n=249). There was no indication of 
any correlation of PD-L1 expression with test classification (P=0.292, 0.810, 0.337 for 
ternary, resistant vs. not resistant, sensitive vs. not sensitive test classifications), 
although positive PD-L1 expression was a predictor of improved OS and PFS in the 
pooled analysis (HR=1.60; 1.01-2.54, P=0.046 for OS and HR=1.61; 1.07-2.44, P=0.023 for PFS). 
Indeed, analysis including test classification and PD-L1 expression demonstrated 
both to be independent predictors of PFS (see Supplementary data). Within the 
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pooled second-line population, multivariate analysis showed that the resistant vs 
not resistant stratification was a significant independent predictor of OS (P<0.001) 
and PFS (P=0.006) when adjusted for multiple baseline factors, Table 2. The sensitive 
vs not sensitive stratification was a significant independent predictor of OS (P=0.009) 
and showed a trend to prediction of PFS (P=0.079).

Figures 3E and 3F show OS for classification groups obtained by applying the test 
to pretreatment samples of the chemotherapy cohort, in which patients received 
docetaxel as second-line therapy. There was no indication that the test was able to 
stratify patients by outcome following this single agent chemotherapy (P=0.471 and 
P=0.165 for OS comparison of resistant vs not resistant and sensitive vs not sensitive, 
respectively).

Protein set enrichment
To examine the potential biological mechanisms underlying the test, the association 
of test classification with various biological processes was assessed using PSEA 
methods22-24. The results are summarized in Table 3. Acute phase response, acute 
inflammatory response, wound healing, and complement activation were identified 
as associated with test classification with P<0.001. Additionally, innate immune 
response and chronic inflammatory response were identified as associated with 
P<0.01. Similar analysis was performed comparing the sensitive subgroup with the 
remaining patients. Only immune tolerance and suppression were identified as 
associated with test classification with P<0.01 (FDR<0.1). Full results for sensitive 
vs not sensitive phenotype are contained in the Supplemental Data: Results 
Supplementary Table 21.
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Figure 3. Kaplan–Meier plots of OS for the validation sets and the chemotherapy cohort. A, 
Validation set 1 resistant versus not resistant. B, Validation set 1 sensitive versus not sensitive. 
C, Validation set 2 resistant versus not resistant. D, Validation set 2 sensitive versus not 
sensitive. E, Chemotherapy cohort sensitive versus not sensitive. F, Chemotherapy cohort 
resistant versus not resistant.
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Table 2. Multivariate analysis of OS and PFS stratified by cohort for the pooled second-
line population for test classification resistant versus not resistant (analysis 1) and test 
classification sensitive versus not sensitive (analysis 2).

OS PFS

Analysis 1 HR (95% CI) P HR (95% CI) P

Test classification 
(vs. resistant)

Not 
resistant

0.52 (0.37-0.74) <0.001 0.64 (0.47-0.88) 0.006

Histology (vs. adeno) Squamous 0.83 (0.54-1.28) 0.403 1.10 (0.75-1.60) 0.639

NA/other 1.10 (0.66-1.85) 0.711 1.09 (0.69-1.70) 0.718

Age (vs. ≥65) <65 1.14 (0.80-1.63) 0.455 1.27 (0.93-1.73) 0.130

Gender (vs. male) Female 0.52 (0.35-0.76) 0.001 0.69 (0.50-0.96) 0.027

PS (vs. 0) 1 1.56 (1.02-2.39) 0.040 1.37 (0.96-1.97) 0.084

2+ 3.66 (2.00-6.67) <0.001 2.30 (1.31-4.06) 0.004

NA 2.29 (1.15-4.54) 0.018 1.90 (1.05-3.46) 0.035

Smoking (vs. ever) Never 1.87 (0.96-3.64) 0.064 1.47 (0.81-2.67) 0.209

NA 0.76 (0.30-1.92) 0.559 0.76 (0.33-1.76) 0.521

PD-L1 (vs. positive) Negative 1.20 (0.74-1.94) 0.461 1.31 (0.85-2.03) 0.218

NA 0.84 (0.52-1.36) 0.474 0.86 (0.57-1.30) 0.476

Analysis 2 HR (95% CI) P HR (95% CI) P

Test classification 
(vs. not sensitive)

Sensitive 0.58 (0.38-0.87) 0.009 0.73 (0.51-1.04) 0.079

Histology (vs. adeno) Squamous 0.84 (0.54-1.30) 0.428 1.12 (0.76-1.63) 0.573

NA/other 1.13 (0.68-1.87) 0.648 1.10 (0.70-1.71) 0.683

Age (vs. ≥65) <65 1.06 (0.75-1.51) 0.750 1.21 (0.89-1.65) 0.227

Gender (vs. male) Female 0.49 (0.33-0.72) <0.001 0.66 (0.47-0.91) 0.011

PS (vs. 0) 1 1.41 (0.92-2.17) 0.116 1.32 (0.92-1.90) 0.136

2+ 3.31 (1.78-6.13) <0.001 2.19 (1.22-3.91) 0.008

NA 2.25 (1.14-4.45) 0.020 1.95 (1.07-3.55) 0.028

Smoking (vs. ever) Never 1.82 (0.93-3.57) 0.082 1.48 (0.81-2.71) 0.205

NA 0.83 (0.33-2.11) 0.693 0.84 (0.36-1.95) 0.676

PD-L1 (vs. positive) Negative 1.22 (0.75-1.98) 0.417 1.34 (0.87-2.07) 0.189

NA 0.97 (0.60-1.55) 0.882 0.94 (0.62-1.41) 0.755

Abbreviations: Adeno, adenocarcinoma; NA, not available; PS, performance status.
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Table 3. Results of PSEA of test classifications resistant versus not resistant.

Biological process P value of
association

FDR

Acute phase response <0.0001 <0.002

Acute inflammatory response 0.0001 <0.002

Wound healing 0.0002 <0.002

Complement activation 0.0005 <0.003

Innate immune response 0.0014 <0.01

Chronic inflammatory response 0.0044 <0.02

Extra cellular matrix 0.0231 <0.08

IFN type 1 0.0315 <0.1

Cellular component morphogenesis 0.0317 <0.1

Immune tolerance and suppression 0.0526 <0.2

B-cell-mediated immunity 0.0526 <0.2

Angiogenesis 0.0753 <0.2

NK-cell-mediated immunity 0.1222 <0.3

Behavior 0.1270 <0.3

Cytokine production involved in immune response 0.3198 <0.5

Glycolysis and positive regulators 0.3560 <0.6

Epithelial-mesenchymal transition 0.4548 <0.6

Type 17 immune response 0.4668 <0.6

Type 1 immune response 0.5102 <0.7

Type 2 immune response 0.7791 <0.9

Response to hypoxia 0.9287 <1

T-cell-mediated immunity 0.9861 <1

IFNγ 0.9884 <1

Abbreviation: NK, natural killer.
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Discussion

Here, we report the establishment of a pretreatment serum proteomic classifier that 
separates those patients who obtain little from those that obtain durable clinical 
benefit from treatment with the PD-1 inhibitor nivolumab as second-line treatment 
for advanced NSCLC. Based on 274 MS features, patients could be classified as being 
resistant, intermediate or sensitive. The difference in OS between resistant and not 
resistant patients was highly significant: the HR was 0.48, and median survival times 
were 4.3 months vs 11.1 months, respectively. The test was validated while blinded 
to clinical outcome data with an independent set of advanced NSCLC patients, 
treated at a different institution. The classifier failed to stratify outcomes within 
a historical cohort of advanced NSCLC patients treated with docetaxel as second-
line therapy. Moreover, test classification, as expected, was independent of well-
established clinical factors and notably showed no evidence of association with 
PD-L1 expression.

A serum test would have obvious advantages, such as ease of detection using one 
blood draw. Also, the test may avoid the issue of intra patient tumor heterogeneity 
and could assess host factors that are not captured by examination of the tumor 
microenvironment in histological samples. Further characterization of the 
classifier revealed that the classification phenotypes identified are associated with 
biological processes known to confer a poor prognosis in lung cancer. Several lines 
of research indicate that complement, as a member of a diverse family of innate 
immune proteins, is involved in dysregulation of mitogenic signaling and escape 
from immune surveillance27,28. Complement activation, as measured by Cd4, a 
stable complement degradation product, in serum of early-stage NSCLC patients 
was significantly associated with poor prognosis29. A number of authors have 
identified the ratio of the acute phase protein, serum C-Reactive Protein, to albumin 
as a negative prognostic factor in both early and advanced NSCLC30. Intratumoral 
wound healing signatures, as measured by mRNA expression arrays, are considered 
to be T-cell suppressive and have been observed in several tumor types, amongst 
them NSCLC31. Interestingly, sera derived from patients with tumors exhibiting 
wound healing signatures elicited identical signatures from non-tumor associated 
fibroblasts, which were found to be a powerful predictor of an unfavorable clinical 
course32. These observations may provide the biological basis of our findings, 
although a direct link between the abundance of these circulating proteins and 
absence of a response to PD-1 inhibitors remains to be established.
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The results obtained in this study do not stand alone. Weber and colleagues 
identified a protein classifier from sera of melanoma patients treated with PD-1 
inhibitors, employing the same technology that was used in our study. This was 
validated in multiple patient cohorts treated with PD-1 inhibitors and CTLA4 
antagonists14. As here, they were able to identify, prior to initiation of treatment, 
patients who had a favorable outcome following treatment. Biological processes 
associated with that classifier included complement, wound healing and acute phase 
pathways, all upregulated in the poor prognosis group, corroborating our results. 
Further evidence that the pretreatment circulating proteome provides important 
information on checkpoint efficacy was provided in the context of a phase II study 
where atezolizumab was compared with docetaxel as second-line treatment in 272 
advanced NSCLC patients33. Similar to our results, a serum protein classifier was 
established that identified patients with poor (median OS 7.3 months, n=60 (45%)) 
and good (median OS not reached, n= 73 (55%)) outcomes. This classifier was shown 
in blinded validation to be predictive for atezolizumab vs. docetaxel for OS and PFS 
(interaction P<0.01). In that study, as in our own, there was no association between 
test classification and tumor PD-L1 expression; there was also no association with 
TMB. Also, among the biological processes that were most significantly associated 
with classification by PSEA, acute inflammation and complement activation ranked 
in the top three.

There are some limitations to our results. Obviously, the number of patients is low 
and all three immunotherapy-treated cohorts come from one geographic area and 
were investigated retrospectively. Also, for historical reasons, validation blinded 
to all clinical data was only possible for validation set 2. Although we made strong 
efforts to obtain sufficient tumor tissue samples, we were not able to obtain PD-L1 
expression data on all patients. Several factors contributed to this: many patients 
are diagnosed on the basis of cytology alone and so have no tissue available for 
PD-L1 analysis; at the time of treatment initiation for these patients, use of PD-L1 
expression was still somewhat investigational; and positive PD-L1 expression status 
is not mandatory for administration of nivolumab in the second and higher line 
setting. Unfortunately, TMB data was not collected. Investigation of larger cohorts 
with more complete information on TMB and PD-L1 expression would be useful 
to examine with more precision the level of association of these markers and how 
much complementary information each can provide to predict outcome. The non-
immunotherapy-treated control set is small and restricted to one therapy. It would 
be of interest to study the performance of the test in larger control cohorts in other 
standard-of-care non-immunotherapy regimens to be able to explore the test’s 
predictive potential.
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Additional validation of the test in other larger cohorts of patients treated with CPIs 
is necessary. So far, we have investigated the ability of the test to stratify outcome 
for patients receiving checkpoint blockade monotherapy in the second- and higher-
line setting, after platinum-based chemotherapy. However, now immunotherapy 
is moving into the first-line setting, either as monotherapy for patients with PD-L1 
expression greater than 50%, or in combination with chemotherapy. It is of interest 
to evaluate the performance of the test in these first-line settings. A prospective 
trial, comparing outcomes between mono- immunotherapy and the chemo-
immunotherapy combination in front-line patients with high PD-L1 expression is in 
the final stages of design. Studies in earlier stage patients receiving durvalumab with 
chemoradiation would also be informative. Evaluation of the test with appropriate 
comparator non-immunotherapy regimens in a prospective, randomized setting 
would be required to unequivocally determine its predictive power and clinical 
utility.
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Supplemental material
Supplementary results

1.  Development of the test
The following pages provide heatmaps for samples in the development cohort 
of the features used for each of classifier A, classifier B, classifier C, and for the 
test. Samples are sorted into the classification groups of each classifier or the 
test. The mass spectral features are labelled on the x-axis. The heatmap plots 
log10 of the feature values, with the red/brown for the largest features and dark 
blue for the smallest features.

2.  Reproducibility of Test Classifications
To assess the reproducibility of the test, the test was run from scratch on samples 
from validation set 1 on two occasions more than one year apart. The classifications 
obtained for run1 and run2 are compared in Supplementary Table  S9 for 
classification sensitive vs. intermediate vs. resistant, in Supplementary 
Table S10 for the binary combination resistant vs. not resistant (intermediate 
and sensitive), and in Supplementary Table S11 for the binary combination not 
sensitive (intermediate and resistant) vs. sensitive. Classification concordance 
is 85% for the three-way classifications, 91% for the resistant / not resistant 
combination and 93% for the not sensitive / sensitive combination.
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Supplementary Figure S3: Heatmap for the samples in the development cohort of the 29 mass 
spectral features (associated with Immune Response type 2) used for classifier C.
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Supplementary Table S9: Classification concordance (sensitive vs. intermediate vs. resistant).

Run2

Resistant (n=37) Intermediate (n=30) Sensitive (n=31)

Run1 Resistant (n=40) 34 6 0

Intermediate (n=22) 2 19 1

Sensitive (n=36) 1 5 30

Supplementary Table S10: Classification concordance (resistant vs. not resistant).

Run2

Resistant (n=37) Not resistant (n=61)

Run1 Resistant (n=40) 34 6

Not resistant (n=58) 3 55

Supplementary Table S11: Classification concordance (sensitive vs. not sensitive).

Run2

Not sensitive (n=67) Sensitive (n=31)

Run1 Not sensitive (n=62) 61 1

Sensitive (n=36) 6 30

3.  Association of response with test classification

Supplementary Table S12: Response by test classification in the development cohort.

Resistant (n=41) Intermediate (n=43) Sensitive (n=32)

n (%) n (%) n (%)

Response CR 0 (0) 0 (0) 1 (3)

PR 4 (10) 4 (9) 8 (25)

SD 1 (2) 11 (26) 7 (22)

PD 35 (85) 21 (49) 9 (28)

NA 1 (2) 7 (16) 7 (22)



Chapter 5

200

4.  Multivariate analysis of the development cohort

Supplementary Table S13: Multivariate analysis of OS and PFS for the development cohort 
by test classification resistant vs. not resistant.

  OS PFS

HR (95% CI) P value HR (95% CI) P value

Test classification 
(not resistant vs. resistant)

0.59 (0.34-1.03) 0.062 0.53 (0.32-0.89) 0.015

ECOG PS (1 vs. 0) 1.71 (0.90-3.22) 0.100 1.36 (0.78-2.35) 0.277

ECOG PS (≥2 vs. 0) 4.67 (2.05-10.66) <0.001 2.50 (1.19-5.25) 0.016

Never vs. ever smoker 1.88 (0.84-4.23) 0.126 1.20 (0.54-2.65) 0.657

Squamous vs. non-squamous 1.02 (0.56-1.84) 0.960 1.04 (0.62-1.76) 0.876

PD-L1 (<1% vs. ≥1%) 1.53 (0.79-2.95) 0.205 1.40 (0.76-2.58) 0.285

PD-L1 (NA vs. ≥1%) 0.85 (0.41-1.77) 0.669 0.86 (0.45-1.65) 0.655

Supplementary Table S14: Multivariate Analysis of OS and PFS for the development cohort 
by test classification sensitive vs. not sensitive.

  OS PFS

HR (95% CI) P value HR (95% CI) P value

Test classification
(sensitive vs. not sensitive)

0.60 (0.30-1.20) 0.150 0.63 (0.35-1.15) 0.132

ECOG PS (1 vs. 0) 1.64 (0.86-3.13) 0.133 1.39 (0.80-2.40) 0.245

ECOG PS (≥2 vs. 0) 4.80 (2.11-10.91) <0.001 2.68 (1.28-5.57) 0.009

Never vs. ever smoker 2.14 (0.92-4.95) 0.077 1.31 (0.58-2.95) 0.512

Squamous vs. non-squamous 0.99 (0.55-1.81) 0.988 1.05 (0.62-1.78) 0.856

PD-L1 (<1% vs. ≥1%) 1.65 (0.86-3.14) 0.130 1.66 (0.92-2.99) 0.091

PD-L1 (NA vs. ≥1%) 1.02 (0.50-2.07) 0.958 1.08 (0.57-2.04) 0.811
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5.  Patient characteristics by test classification

Supplementary Table S15: Patient characteristics by test classification (development cohort).

Resistant 
(n=41)

Intermediate 
(n=43)

Sensitive 
(n=32)

P value

n (%) n (%) n (%)

Gender Male 25 (61) 22 (51) 19 (59) 0.649

Female 16 (39) 21 (49) 13 (41)

Age Median (range) 68 (52-83) 63 (43-80) 64 (49-82) --

Histology Two primary tumors 1 (2) 1 (2) 0 (0) 0.474

Adenocarcinoma 25 (61) 27 (63) 25 (78)

NSCLC-NEC 0 (0) 2 (5) 1 (3)

NSCLC-NOS 2 (5) 4 (9) 2 (6)

Squamous 13 (32) 9 (21) 4 (13)

Performance 
Status (WHO)

0 8 (20) 13 (30) 15 (47) 0.112

1 22 (54) 24 (56) 14 (44)

2 8 (20) 3 (7) 1 (3)

3 2 (5) 1 (2) 0 (0)

NA 1 (2) 2 (5) 2 (6)

Smoking Status Current 10 (24) 6 (14) 7 (22) 0.431

Former 26 (63) 35 (81) 20 (63)

Never 4 (10) 2 (5) 4 (13)

NA 1 (2) 0 (0) 1 (3)

Brain metastases 
at start of therapy

No 31 (76) 32 (74) 24 (75) >0.999

Yes 10 (24) 11 (26) 8 (25)

Previous
radiotherapy

No 13 (32) 15 (35) 15 (47) 0.389

Yes 28 (68) 28 (65) 17 (53)

Previous thoracic 
radiotherapy

No 30 (73) 24 (56) 25 (78) 0.087

Yes 11 (27) 19 (44) 7 (22)

PD-L1 expression Positive (≥1%) 10 (24) 13 (30) 10 (31) 0.387

Negative (<1%) 16 (39) 19 (44) 8 (25)

NA 15 (37) 11 (26) 14 (44)
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6.  Power considerations for validation of the test on validation set 1, validation set 
2 and the chemotherapy cohort
For each sample set, the power to detect the effect sizes between test classification 
groups observed in the development cohort was estimated using the proportions 
of each classification observed in development and the proportions of each 
classification observed in the sample set upon testing. All calculations assume 
fully mature clinical data and α=0.05, two-sided.

i.  Validation set 1 (n=98)
The expected number of patients of each classification group given 
development set data are 35 resistant, 36 intermediate and 27 sensitive. On 
running the test on the samples of validation set 1, 37 samples were classified 
as resistant, 30 as intermediate and 31 as sensitive.

Supplementary Table S16: Power to detect effect size observed in the development set in 
validation set 1.

PFS OS

Comparison Classifications 
predicted

Classifications 
assigned

Classifications 
predicted

Classifications 
assigned

Resistant vs. 
intermediate

60% 57% 49% 47%

Intermediate vs. 
sensitive

57% 57% 62% 62%

Resistant vs. sensitive 99% >99% 99% 99%

Resistant vs. not 
resistant

96% 96% 94% 94%

Sensitive vs. not 
sensitive

94% 96% 94% 96%

ii.  Validation Set 2 (n=75)
The expected number of patients of each classification group given the 
development set data are 26 resistant, 28 intermediate and 21 sensitive. On 
running the test on the samples of validation set 2, 32 samples were classified 
as resistant, 19 as intermediate and 24 as sensitive.
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Supplementary Table S17: Power to detect effect size observed in the development set in 
validation set 2.

PFS OS

Comparison Classifications 
predicted

Classifications 
assigned

Classifications 
predicted

Classifications 
assigned

Resistant vs. 
intermediate

49% 45% 40% 36%

Intermediate vs. 
sensitive

47% 43% 52% 47%

Resistant vs. sensitive 97% 98% 96% 98%

Resistant vs. not 
resistant

89% 91% 86% 88%

Sensitive vs. not 
sensitive

87% 87% 87% 87%

iii.  Chemotherapy Cohort (n=68)
The expected number of patients of each classification group given 
development set data are 24 resistant, 25 intermediate and 19 sensitive. On 
running the test on the samples of the chemotherapy cohort, 18 samples 
were classified as resistant, 21 as intermediate and 29 as sensitive.

Supplementary Table S18: Power to detect effect size observed in the development set in the 
chemotherapy cohort.

PFS OS

Comparison Classifications 
predicted

Classifications 
assigned

Classifications 
predicted

Classifications 
assigned

Resistant vs. 
intermediate

46% 38% 37% 30%

Intermediate vs. 
sensitive

43% 48% 48% 53%

Resistant vs. sensitive 95% 96% 94% 95%

Resistant vs. not 
resistant

86% 81% 82% 76%

Sensitive vs. not 
sensitive

84% 90% 84% 90%
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7.  Kaplan-Meier plots of OS by test classification sensitive vs. intermediate vs. 
resistant in the validation sets

Supplementary Figure 5: Kaplan-Meier plots of OS by test classification sensitive vs. 
intermediate vs. resistant in the validation sets.

8.  Kaplan-Meier plots of PFS for the validation sets
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Supplementary Figure 6: Kaplan-Meier plots of PFS by test classification in the validation 
sets.
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9.  Kaplan-Meier plots of OS and PFS by test classification for the subgroup of 
validation set 1 treated with CPIs in third or higher line

Supplementary Figure 7: Kaplan-Meier plots of OS and PFS by test classification for patients 
in validation set 1 treated with CPIs in third or higher lines.

10.  Association of PD-L1 status with test classification in the pooled analysis of 
second line patients

Supplementary Table 19: PD-L1 status by test classification (pooled second line patients)

Resistant (n=96) Intermediate (n=80) Sensitive (n=73)

PD-L1 Positive (≥1%) 21 (22) 20 (25) 16 (22)

PD-L1 Negative (< 1%) 25 (26) 28 (35) 16 (22)

NA 50 (52) 32 (40) 41 (56)

NA, not available
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Supplementary Figure 8: Dot plot of PD-L1 staining by test classification in the pooled 
analysis of second line patients with known staining. Less than 1% is shown as 0. Whiskers 
show minimum and maximum. Boxes show the median and quartiles. Median and first 
quartile are both 0% for resistant and intermediate. Median and first quartile are 0% and 
0.5% for sensitive.

11.  Additional Univariate and Multivariate Analyses of the Pooled Second-Line 
Cohort

Supplementary Table 20: Cox proportional hazards analyses stratified by cohort with test 
classification and PD-L1 status as explanatory variables.

OS PFS

Analysis 1 HR (95% CI) P value HR (95% CI) P value

Test Classification 
(vs. resistant)

not resistant 0.50 (0.36-0.70) <0.001 0.60 (0.44-0.81) 0.001

PD-L1 (vs. positive) negative 1.51 (0.95-2.40) 0.081 1.52 (1.00-2.29) 0.049

NA 0.96 (0.62-1.50) 0.861 0.92 (0.62-1.37) 0.681

Analysis 2 HR (95% CI) P value HR (95% CI) P value

Test Classification 
(vs. not sensitive)

sensitive 0.54 (0.36-0.80) 0.002 0.66 (0.47-0.92) 0.015

PD-L1 (vs positive) negative 1.53 (0.96-2.43) 0.072 1.55 (1.03-2.35) 0.037

NA 1.09 (0.70-1.69) 0.717 1.01 (0.69-1.50) 0.951
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12. Kaplan-Meier plots of OS by test classification resistant vs. intermediate vs. 
sensitive in the chemotherapy set

 

 

 

 

 

 

  
Supplementary Figure 9: Kaplan-Meier plots of OS by test classification sensitive vs. 
intermediate vs. resistant in the chemotherapy set.

13.  Kaplan-Meier plots of PFS for the chemotherapy set

Supplementary Figure 10: Kaplan-Meier plots of OS by test classification sensitive vs. 
intermediate vs. resistant in the chemotherapy cohort.
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14.  Protein set enrichment analysis of association of biological processes with test 
classification sensitive vs. not sensitive

Supplementary Table 21: PSEA for association of biological processes with test classification 
sensitive vs. not sensitive

Biological Process P value of association FDR

Immune tolerance and suppression 0.0035 <0.1

Acute inflammatory response 0.0154 <0.2

Acute phase response 0.0170 <0.2

Cytokine production involved in immune response 0.0665 <0.4

Complement activation 0.1372 <0.5

Innate immune response 0.1523 <0.5

Angiogenesis 0.1532 <0.5

NK cell mediated immunity 0.1717 <0.5

B cell mediated immunity 0.2683 <0.7

Wound healing 0.2760 <0.7

Type 2 immune response 0.3887 <0.8

Extra cellular matrix 0.4302 <0.8

Epithelial-Mesenchymal Transition 0.4332 <0.8

Chronic Inflammatory response 0.5087 <0.8

IFN type 1 0.5488 <0.8

IFN-Gamma 0.5558 <0.8

Type 17 immune response 0.5576 <0.8

Response to hypoxia 0.5601 <0.8

Cellular component morphogenesis 0.6322 <0.8

T cell mediated immunity 0.6769 <0.8

Type 1 immune response 0.7802 <0.9

Glycolysis and positive regulators 0.8013 <0.9

Behavior 0.8487 <0.9
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Abstract

Objectives:
Molecular profiling of tumors has become the mainstay of diagnostics for 
metastasized solid malignancies and guides personalized treatment, especially in 
non-small cell lung cancer (NSCLC). In current practice, it is often challenging to 
obtain sufficient tumor material for reliable molecular analysis. Cell-free (cfDNA) 
in blood or other bio-sources could present an alternative approach to obtain genetic 
information from the tumor. In a retrospective cohort we analyzed the added value 
of cfDNA analysis in pleural effusions for molecular profiling.

Methods:
We retrospectively analyzed both the supernatant and the cell pellet of 44 pleural 
effusions sampled from 39 stage IV patients with KRAS (23) or EGFR (16) mutated 
tumors to detect the original driver mutation as well as for EGFR T790M resistance 
mutations. Patients were diagnosed with either NSCLC (n=32), colon carcinoma 
(n=4), appendiceal carcinoma (n=2) or adenocarcinoma of unknown primary 
(n=1). Samples collected in the context of routine clinical care were stored at the 
Netherlands Cancer Institute biobank. We used droplet digital PCR for analysis.

Results:
The driver mutation could be detected in 36 of the 44 pleural effusions by analysis of 
both supernatant (35 out of 44 positive) and cell pellet (31 out of 44 positive). In 7 out 
of 20 pleural effusions from patients with EGFR mutation-positive tumors, a T790M 
mutation was detected. All 7 supernatants and cell pellets were positive.

Conclusions:
CfDNA in pleural effusion can be used to detect driver mutations as well as resistance 
mechanisms like EGFR T790M in pleural effusion with high accuracy and is therefore 
a valuable bio-source.
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Introduction

In current practice, molecular profiling of tumors has become essential to offer 
targeted therapy for several types of metastasized malignancies. Especially in 
non-small cell lung cancer (NSCLC), targeted therapy has been shown to be highly 
effective, and multiple tyrosine kinase inhibitors (TKI) for activating mutations or 
rearrangements in genes like EGFR (epidermal growth factor receptor), BRAF (B-Raf 
proto-oncogene serine/threonine kinase), ALK (anaplastic lymphoma kinase) and 
ROS1 (Ros oncogene 1 receptor tyrosine kinase) have become available1. Also, early 
detection of resistance mutations like EGFR T790M is important as they can guide 
the next line of therapy2.

Unfortunately, obtaining tumor tissue for molecular analysis can be challenging. The 
site of the tumor can be difficult to reach and it often requires invasive procedures to 
obtain adequate amounts of vital tumor. In this respect, pleural effusion could be an 
attractive alternative bio-source for molecular analysis, especially as approximately 
~30% of NSCLC patients develop pleural effusion3. Usually, DNA is isolated from a 
cell block or a Giemsa slide, but analysis of cell-free (cfDNA) in the supernatant 
has shown promising results4-9. Moreover, since the amount of tumor cells or the 
tumor cell percentage is often insufficient for analysis, this cell-free compartment 
is highly interesting.

Here we explore the diagnostic yield of cfDNA analysis in pleural effusion samples 
from patients with NSCLC and other cancer types for EGFR and KRAS (KRAS 
proto-oncogene GTPase) driver mutation detection, as well as for EGFR resistance 
mutations. Analyses of cfDNA from the supernatant were compared head-to-head 
with analyses of the cell pellets (figure 1).
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Figure 1. A schematic overview of the collection of pleural effusion. After pleurocentesis the 
fluid was centrifuged in order to separate the supernatant from the cell pellet.
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Methods

Supernatant and corresponding cell pellets from 39 stage IV patients, presented at 
the Netherlands Cancer Institute (Amsterdam, The Netherlands) between 2009 and 
2016, with EGFR (n=16) or KRAS (n=23) mutation-positive tumors were obtained from 
the Netherlands Cancer Institute biobank. In total, 44 paired (supernatant and cell 
pellet) samples were available from 39 patients diagnosed with NSCLC (n=32), colon 
carcinoma (n=4), appendiceal carcinoma (n=2), and adenocarcinoma of unknown 
primary (n=1) (Table 1). The reason for pleurocentesis was either diagnostic (n=16) 
or therapeutic (n=28). These samples were leftover material that had been stored as 
routine laboratory assessment after diagnostics.

This study was approved by the Institutional Research Board of the Netherlands 
Cancer Institute (CFMPB497).

All driver gene and EGFR T790M mutations were detected in tumor tissue or cytology 
samples with clinically validated assays using high resolution melting, fragment 
analysis, Sanger sequence analysis, MassARRAY technology or next-generation 
sequencing (NGS) (data not shown). These analyses were done in multiple hospitals 
in the Netherlands.

The supernatant was separated from the cell pellet after centrifugation (1700xg for 
10 min). The pellet was resuspended in 0.5 ml of 0.9% NaCl. Both samples were stored 
at -30°C. In total, 400µl from the cell pellet was isolated using the QIAsymphony DSP 
DNA Midi Kit (Qiagen, Hilden, Germany). At least 10% from the sample was analyzed, 
from a median eluted volume of 200µl. CfDNA was isolated from a median (range) of 
1 (0.75-4) ml pleural effusion using the QIAsymphony Circulating DNA kit (Qiagen). 
At least 20% of the sample was analyzed, from a median eluted volume of 90µl. The 
Bio-Rad (Hercules, CA, USA) QX200 droplet digital PCR (ddPCR) was used for mutation 
detection using Bio-Rad PrimePCR ddPCR mutation assays for KRAS (KRAS Screening 
Multiplex 186-3506), EGFR T790M (dHsaCP2000019 and dHsaCP2000020), EGFR exon 19 
deletion screening assay10, EGFR L858R (dHsaCP2000021 and dHsaCP2000022), EGFR 
G719X (validated laboratory-developed method using IDT (Coralville, IA, USA), EGFR 
wild-type for G719 (HEX), EGFR G719S and EGFR G719A (both FAM). The limit of blank 
and the limit of detection were determined for each individual assay using a Clinical 
and Laboratory Standards Institute (CLSI) EP17 protocol11. Results were analyzed 
using Quantasoft software version 1.6.6 (www.quantasoft.com). Supernatant results 
were normalized to the amount of cfDNA in 1 ml of fluid.
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Table 1. Patient and sample characteristics
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Patients/samples 39 44 15 4 1 24

Tumor type

Non-small cell lung cancer 32 35 15 4 1 17

Colon carcinoma 4 4 4

Appendiceal carcinoma 2 2 2

Adenocarcinoma of unknown primary 1 1 1

Data are presented as n.
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Results

The majority of the 44 paired samples were either both positive (30 out of 44) or 
both negative (8 out of 44) for the original driver mutation. In five cases the driver 
mutation was only detected in the supernatant and in one case only in the cell pellet 
(Table 2). Thus, in 36 of the 44 paired samples a driver mutation was detected using 
both the supernatant and the cell pellet. Testing only the supernatant would detect 
35 of the 36 drivers (97%) and analysis of only the cell pellet would detect 31 of the 
36 drivers (86%). These results indicated that the supernatant was an excellent bio-
source for ddPCR driver detection. Optimal sensitivity was reached when both the 
cell pellet and supernatant were analyzed.

In five paired samples the driver mutation was only detected in the supernatant. 
Reviewing the cytology reports for these cases showed that in two of these samples 
no tumor cells were seen, in two cases no cytologically analysis was performed, and 
in one case the tumor cell percentage was only 1%. In four of these cell pellets no 
mutant copies were found and in one the amount was below the limit of detection. 
In one sample only the cell pellet was positive for the primary driver mutation. This 
cell pellet had a very low estimated tumor cell percentage and a borderline result of 
only 1 mutant copy/µl in the cell pellet (Table S1). No mutant copies were detected 
in the supernatant by ddPCR. The cfDNA was isolated from 0.75 ml of supernatant 
and showed a very low concentration of 0.005 ng/µl measured by Qubit (Invitrogen, 
Carlsbad, CA, USA). Therefore, the mutation could easily be missed in our analysis.

To evaluate whether pleural effusion could be used as a bio-source for resistance 
analysis after progression on EGFR TKIs we analyzed 20 paired pleural effusions 
sampled from the 16 patients with EGFR-positive tumors for the presence of EGFR 
T790M. EGFR T790M was detected in seven out of the 20 paired samples. All seven 
supernatants and cell pellets were positive (Table 3). Four out of the seven EGFR 
T790M mutation-positive pleural effusion samples had very low estimated tumor cell 
percentages and in one case no tumor cells were seen by the pathologist (Table S1). 
Five of the seven pleural effusions were sampled from patients progressing on first-
generation EGFR TKIs (erlotinib, gefitinib). Furthermore, two cases with a positive 
supernatant, but with a cell pellet showing a borderline result of 1 copy/µl, identified 
two patients with a durable response to osimertinib. The cytology reports of these 
pleural effusion samples showed that in one sample no tumor cells were seen and in 
one sample the tumor cell percentage was very low (Table S1). These results indicated 
that the supernatant is a good bio-source to detect EGFR T790M. In four patients EGFR 
T790M had already been detected in tumor tissue samples by clinically validated 
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diagnostic assays. EGFR T790M was confirmed in all four matched supernatants 
and cell pellets. Two out of the seven samples were initially taken specifically for 
molecular resistance analysis by NGS/TSACP V1.0 (MiSeq; Illumina, San Diego, 
CA, USA) using the cell pellet: in one of these samples NGS could be successfully 
performed but no T790M mutation was found, while for the other sample in the end 
no NGS was done due to a low estimated tumor cell percentage. Both samples had 
tumor cell percentages ≥5% (Table S1).

Table 2. Detection of original driver mutations by droplet digital PCR in paired samples 
(supernatant and cell pellet available) of pleural effusions.

Supernatant Cell pellet

Driver positive Driver negative Total

Driver positive 30 5 35

Driver negative 1 8 9

Total 31 13 44

Data are presented as n.

Table 3. Detection of EGFR T790M by droplet digital PCR in paired samples (supernatant and 
cell pellet available) of pleural effusions

Supernatant Cell pellet

T790M positive T790M negative Total

T790M positive 7 0 7

T790M negative 0 13 13

Total 7 13 20

Data are presented as n.
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Discussion

This study investigated whether cfDNA from the supernatant of pleural effusions 
could be used for detecting driver mutations and EGFR resistance mutations. Our 
results clearly show that the cell-free fraction of pleural effusions is an excellent 
source for cfDNA and that it can be used to detect driver as well as resistance mutations 
effectively with ddPCR. We showed a high concordance rate between supernatant 
and cell pellet, which is in line with a previous study6, but a slightly lower rate has 
been reported elsewhere7. Furthermore, our results suggest that by using cfDNA in 
pleural effusion as a bio-source, the molecular testing has gained in sensitivity and 
that optimal sensitivity can be reached by analyzing both the supernatant and the 
cell pellet. In addition to analysis of cfDNA in pleural effusion from NSCLC patients, 
we could also detect KRAS mutations in the supernatant samples from patients 
with colon carcinoma, appendiceal carcinoma and adenocarcinoma of unknown 
primary, which has not been reported before.

In five pleural effusion samples driver mutations were detected only in the 
supernatant even though no or very few tumor cells were seen in the cytopathological 
results. In our study, mutations were only called when the amount of copies found 
by ddPCR was above the limit of detection, determined according to the CLSI EP17 
protocol11. The limit of detection was set with a confidence level of 99% to prevent 
false-positive results. Tumor DNA in the five corresponding cell pellets was not 
present or too low to detect the driver mutation. Importantly, since the detection 
of a driver mutation in the supernatant provides no proof of actual presence of 
tumor cells it can at present not be used for staging purposes. The origin of cfDNA 
in the supernatant has not been well studied, although several theories have been 
described5,8,9. Most likely this cfDNA is released from necrotic cells in the pleural cavity, 
but may also have been leaked from the circulation as a transudate. Alternatively, 
the cfDNA could have been derived from tumor cells damaged in the pre-analytical 
phase, e.g. by centrifugation5, or from exosomes secreted by the tumor8,9. Therefore, a 
high detection rate in the supernatant is expected and also observed in our study. In 
one pleural effusion sample only the cell pellet was positive for the driver mutation. 
Most likely too little tumor DNA was present in the supernatant.

Resistance mutations are subclonal events in the tumor that often occur during 
TKI treatment. The EGFR T790M mutation, for example, is common in tumors of 
patients progressing on first-generation EGFR TKI (erlotinib, gefitinib)2. Osimertinib 
is frequently given as alternative treatment after this mutation is detected in a 
biopsy of a progressive lesion2. As obtaining tumor tissue is challenging and EGFR 
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T790M is a subclonal event, sensitive techniques are needed for molecular testing. 
Plasma genotyping is an alternative approach, but the sensitivity of detecting EGFR 
T790M in plasma is only 70%11. Therefore, other bio-sources for molecular testing 
could be useful. In our study, seven paired samples were positive for EGFR T790M, 
of which all were concordant between the supernatant and the cell pellet. Based 
on these results, both the supernatant and the cell pellet performed equally well as 
bio-sources for detecting EGFR T790M. The pleural effusion samples from four of the 
five patients progressing on first-generation EGFR TKIs showed a higher amount 
of T790M copies in both the supernatant and the cell pellet compared with the two 
patients showing a durable response to osimertinib. In prospective studies it will be 
interesting to see if the amount of EGFR T790M copies, measured by ddPCR in the 
supernatant and the cell pellet of pleural effusions, correlates to outcome in patients 
with EGFR-positive tumors treated with osimertinib.

This study is limited by the small sample size. The supernatant performed better as a 
bio-source than the cell pellet for detecting EGFR or KRAS primary driver mutations, 
but not for detecting EGFR T790M. Studies with a larger sample size are needed to 
confirm our results. Besides this, we could only compare a subset of the paired 
samples with results obtained in molecular diagnostics with NGS/TSACP version 
1.0 using the cell pellet. A direct comparison with a larger set of paired samples could 
confirm the additive value of using cfDNA in the supernatant as a bio-source for 
molecular profiling in a clinical setting.

In conclusion, we showed that analysis of cfDNA in pleural effusion can robustly 
detect EGFR and KRAS driver mutations and EGFR resistance mutations. Therefore, 
cfDNA is a valuable bio-source for molecular testing, even when tumor cell purity 
is low.
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Supplemental Material
Supplementary Tables

Table  S1 (part 1). Sample characteristics with initial clinical application in molecular 
diagnostics 

Molecular diagnostics performed in clinical practice

Diagnosis Driver mutation 
(TISSUE)

EGFR T790M 
detected in 

tumor tissue

Reason for 
pleurocentesis

Time of 
sampling

Clinical 
application 

Assay Results Tumor cell 
percentage 

(estimated by 
pathologist on 
Giemsa slide)

NKI-1 NSCLC EGFR L858R   diagnostic progressive 
disease 
during 

erlotinib 
treatment

molecular 
profiling + 

T790M

NGS EGFR L858R 
NO T790M

5%

NKI-2 NSCLC KRAS   diagnostic   unknown sanger seq KRAS 10%

NKI-3 NSCLC KRAS   therapeutic         20%

NKI-4 NSCLC KRAS   therapeutic         20%

NKI-5 NSCLC EGFR L858R   therapeutic progressive 
disease 
during 

erlotinib 
treatment

      30%

NKI-6 NSCLC KRAS   diagnostic         50%

NKI-7 NSCLC KRAS   therapeutic         60%

NKI-8 appendiceal carcinoma KRAS   therapeutic         60%

NKI-9 NSCLC KRAS   diagnostic         60%

NKI-10 NSCLC EGFR exon 19 del   therapeutic         unknown

NKI-11 NSCLC EGFR exon 19 del EGFR T790M diagnostic progressive 
disease 
during 

gefitinib 
treatment

T790M not possible   <5%

NKI-12 NSCLC EGFR L858R   therapeutic         <5%

NKI-13 NSCLC EGFR exon 19 del   therapeutic         10-20%

NKI-14 NSCLC EGFR exon 19 del   diagnostic   molecular 
profiling + 

T790M

NGS EGFR exon 19 del 
NO T790M

20-80%

NKI-15 NSCLC KRAS   therapeutic         40-50%

NKI-16 NSCLC EGFR exon 19 del   diagnostic         high
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Supplemental Material
Supplementary Tables

Table  S1 (part 1). Sample characteristics with initial clinical application in molecular 
diagnostics 

Molecular diagnostics performed in clinical practice

Diagnosis Driver mutation 
(TISSUE)

EGFR T790M 
detected in 

tumor tissue

Reason for 
pleurocentesis

Time of 
sampling

Clinical 
application 

Assay Results Tumor cell 
percentage 

(estimated by 
pathologist on 
Giemsa slide)

NKI-1 NSCLC EGFR L858R   diagnostic progressive 
disease 
during 

erlotinib 
treatment

molecular 
profiling + 

T790M

NGS EGFR L858R 
NO T790M

5%

NKI-2 NSCLC KRAS   diagnostic   unknown sanger seq KRAS 10%

NKI-3 NSCLC KRAS   therapeutic         20%

NKI-4 NSCLC KRAS   therapeutic         20%

NKI-5 NSCLC EGFR L858R   therapeutic progressive 
disease 
during 

erlotinib 
treatment

      30%

NKI-6 NSCLC KRAS   diagnostic         50%

NKI-7 NSCLC KRAS   therapeutic         60%

NKI-8 appendiceal carcinoma KRAS   therapeutic         60%

NKI-9 NSCLC KRAS   diagnostic         60%

NKI-10 NSCLC EGFR exon 19 del   therapeutic         unknown

NKI-11 NSCLC EGFR exon 19 del EGFR T790M diagnostic progressive 
disease 
during 

gefitinib 
treatment

T790M not possible   <5%

NKI-12 NSCLC EGFR L858R   therapeutic         <5%

NKI-13 NSCLC EGFR exon 19 del   therapeutic         10-20%

NKI-14 NSCLC EGFR exon 19 del   diagnostic   molecular 
profiling + 

T790M

NGS EGFR exon 19 del 
NO T790M

20-80%

NKI-15 NSCLC KRAS   therapeutic         40-50%

NKI-16 NSCLC EGFR exon 19 del   diagnostic         high
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Table S1 (part 1). Continued

Molecular diagnostics performed in clinical practice

Diagnosis Driver mutation 
(TISSUE)

EGFR T790M 
detected in 

tumor tissue

Reason for 
pleurocentesis

Time of 
sampling

Clinical 
application 

Assay Results Tumor cell 
percentage 

(estimated by 
pathologist on 
Giemsa slide)

NKI-17 NSCLC KRAS   therapeutic         low

NKI-18 NSCLC EGFR exon 19 del EGFR T790M therapeutic durable 
response to 
osimertinib 
treatment

      very low

NKI-19 NSCLC EGFR exon 19 del   therapeutic progressive 
disease 
during 

erlotinib 
treatment

      very low 

NKI-20 NSCLC EGFR exon 19 del   therapeutic         very low 

NKI-21 NSCLC EGFR L858R EGFR T790M therapeutic progressive 
disease 
during 

erlotinib 
treatment

      unknown

NKI-22 NSCLC KRAS   therapeutic         unknown

NKI-23 appendiceal carcinoma KRAS   therapeutic         unknown

NKI-24 NSCLC KRAS   therapeutic         unknown

NKI-25 NSCLC KRAS   diagnostic         50%

NKI-26 NSCLC EGFR G719X   diagnostic         5-10%

NKI-27 NSCLC EGFR exon 19 del   diagnostic   molecular 
profiling

fragment 
analysis

EGFR exon 19 del 30%

NKI-28 colon carcinoma KRAS   therapeutic         1%

NKI-29 NSCLC EGFR exon 19 del   diagnostic   T790M not possible   no tumor

NKI-30 NSCLC EGFR exon 19 del   therapeutic         no tumor

NKI-31 NSCLC EGFR exon 19 del EGFR T790M therapeutic durable 
response to 
osimertinib 
treatment

      no tumor

NKI-32 NSCLC KRAS   therapeutic         no tumor

NKI-33 NSCLC KRAS   diagnostic         no tumor

NKI-34 NSCLC EGFR exon 19 del   therapeutic         unknown

NKI-35 colon carcinoma KRAS   therapeutic         unknown
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Table S1 (part 1). Continued

Molecular diagnostics performed in clinical practice

Diagnosis Driver mutation 
(TISSUE)

EGFR T790M 
detected in 

tumor tissue

Reason for 
pleurocentesis

Time of 
sampling

Clinical 
application 

Assay Results Tumor cell 
percentage 

(estimated by 
pathologist on 
Giemsa slide)

NKI-17 NSCLC KRAS   therapeutic         low

NKI-18 NSCLC EGFR exon 19 del EGFR T790M therapeutic durable 
response to 
osimertinib 
treatment

      very low

NKI-19 NSCLC EGFR exon 19 del   therapeutic progressive 
disease 
during 

erlotinib 
treatment

      very low 

NKI-20 NSCLC EGFR exon 19 del   therapeutic         very low 

NKI-21 NSCLC EGFR L858R EGFR T790M therapeutic progressive 
disease 
during 

erlotinib 
treatment

      unknown

NKI-22 NSCLC KRAS   therapeutic         unknown

NKI-23 appendiceal carcinoma KRAS   therapeutic         unknown

NKI-24 NSCLC KRAS   therapeutic         unknown

NKI-25 NSCLC KRAS   diagnostic         50%

NKI-26 NSCLC EGFR G719X   diagnostic         5-10%

NKI-27 NSCLC EGFR exon 19 del   diagnostic   molecular 
profiling

fragment 
analysis

EGFR exon 19 del 30%

NKI-28 colon carcinoma KRAS   therapeutic         1%

NKI-29 NSCLC EGFR exon 19 del   diagnostic   T790M not possible   no tumor

NKI-30 NSCLC EGFR exon 19 del   therapeutic         no tumor

NKI-31 NSCLC EGFR exon 19 del EGFR T790M therapeutic durable 
response to 
osimertinib 
treatment

      no tumor

NKI-32 NSCLC KRAS   therapeutic         no tumor

NKI-33 NSCLC KRAS   diagnostic         no tumor

NKI-34 NSCLC EGFR exon 19 del   therapeutic         unknown

NKI-35 colon carcinoma KRAS   therapeutic         unknown
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Table S1 (part 1). Continued

Molecular diagnostics performed in clinical practice

Diagnosis Driver mutation 
(TISSUE)

EGFR T790M 
detected in 

tumor tissue

Reason for 
pleurocentesis

Time of 
sampling

Clinical 
application 

Assay Results Tumor cell 
percentage 

(estimated by 
pathologist on 
Giemsa slide)

NKI-48 unknown origin KRAS   therapeutic         very low

NKI-49 NSCLC EGFR exon 19 del   therapeutic         very low

NKI-50 NSCLC KRAS   therapeutic         unknown

NKI-51 NSCLC EGFR exon 19 del   therapeutic         no tumor

NKI-52 colon carcinoma KRAS   therapeutic         no tumor

NKI-53 NSCLC KRAS   diagnostic   molecular 
profiling

not possible   no tumor

NKI-54 colon carcinoma KRAS   diagnostic         no tumor

NKI-55 NSCLC KRAS   diagnostic   molecular 
profiling

not possible   no tumor

NKI-56 NSCLC KRAS   diagnostic         no tumor

Table S1 (part 2). Concentrations of the original driver mutation and EGFR T790M in the 
supernatant and/or the cell pellet measured by ddPCR

Supernatant       Cell pellet      

Original driver 
copies /ml

WT original driver 
copies /ml

EGFR T790M 
copies /ml

WT EGFR T790M 
copies /ml

Original driver 
copies /µl

WT original driver 
copies /µl

EGFR T790M copies 
/µl

WT EGFR T790M 
copies /µl

NKI-1 369 781 72 1298 22 1530 4 1613

NKI-2 28820 80300     300 8820    

NKI-3 2110 7150     3778 11780    

NKI-4 103 418     94 565    

NKI-5 13662 27588 12474 26136 341 4500 259 4670

NKI-6 594 1474     955 1160    

NKI-7 3018 11242     325 13450    

NKI-8 8716 4906     41 22    

NKI-9 881 4077     7265 12150    

NKI-10 2160 13772 0 13200 165 4755 0 5035

NKI-11 2231240 2063600 1196800 3080000 865 5765 429 6045

NKI-12 90 2948 0 3322 210 22500 0 21840

NKI-13 23835 123464 0 155100 483 1690 0 1950

NKI-14 99568 17248 0 112068 7987 4195 0 11725
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Table S1 (part 1). Continued

Molecular diagnostics performed in clinical practice

Diagnosis Driver mutation 
(TISSUE)

EGFR T790M 
detected in 

tumor tissue

Reason for 
pleurocentesis

Time of 
sampling

Clinical 
application 

Assay Results Tumor cell 
percentage 

(estimated by 
pathologist on 
Giemsa slide)

NKI-48 unknown origin KRAS   therapeutic         very low

NKI-49 NSCLC EGFR exon 19 del   therapeutic         very low

NKI-50 NSCLC KRAS   therapeutic         unknown

NKI-51 NSCLC EGFR exon 19 del   therapeutic         no tumor

NKI-52 colon carcinoma KRAS   therapeutic         no tumor

NKI-53 NSCLC KRAS   diagnostic   molecular 
profiling

not possible   no tumor

NKI-54 colon carcinoma KRAS   diagnostic         no tumor

NKI-55 NSCLC KRAS   diagnostic   molecular 
profiling

not possible   no tumor

NKI-56 NSCLC KRAS   diagnostic         no tumor

Table S1 (part 2). Concentrations of the original driver mutation and EGFR T790M in the 
supernatant and/or the cell pellet measured by ddPCR

Supernatant       Cell pellet      

Original driver 
copies /ml

WT original driver 
copies /ml

EGFR T790M 
copies /ml

WT EGFR T790M 
copies /ml

Original driver 
copies /µl

WT original driver 
copies /µl

EGFR T790M copies 
/µl

WT EGFR T790M 
copies /µl

NKI-1 369 781 72 1298 22 1530 4 1613

NKI-2 28820 80300     300 8820    

NKI-3 2110 7150     3778 11780    

NKI-4 103 418     94 565    

NKI-5 13662 27588 12474 26136 341 4500 259 4670

NKI-6 594 1474     955 1160    

NKI-7 3018 11242     325 13450    

NKI-8 8716 4906     41 22    

NKI-9 881 4077     7265 12150    

NKI-10 2160 13772 0 13200 165 4755 0 5035

NKI-11 2231240 2063600 1196800 3080000 865 5765 429 6045

NKI-12 90 2948 0 3322 210 22500 0 21840

NKI-13 23835 123464 0 155100 483 1690 0 1950

NKI-14 99568 17248 0 112068 7987 4195 0 11725
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Table S1 (part 2). Continued

Supernatant       Cell pellet      

Original driver 
copies /ml

WT original driver 
copies /ml

EGFR T790M 
copies /ml

WT EGFR T790M 
copies /ml

Original driver 
copies /µl

WT original driver 
copies /µl

EGFR T790M copies 
/µl

WT EGFR T790M 
copies /µl

NKI-15 185790 40700     25570 5340    

NKI-16 25628 42680 0 29260 28568 34640 0 61840

NKI-17 557 35596     8 980    

NKI-18 1329 3614 125 6226 257 5 1 76

NKI-19 4463800 9042000 45100 11550000 2193 7570 38 9200

NKI-20 7121 16500 0 6710 531 8100 0 8850

NKI-21 2596 28622 1364 25872 334 1354 217 1542

NKI-22 25740 27940     622 3315    

NKI-23 317900 1337600     468 2308    

NKI-24 1650 1650     124 1194    

NKI-25 113850 135300     810 2640    

NKI-26 1102200 839300 0 1958000 13160 1080 0 13960

NKI-27 18 1276 0 1364 807 9330 0 10550

NKI-28 167 2332     0 484    

NKI-29 84 6248 0 6578 1 138 0 7365

NKI-30 13 968 0 1276 0 2820 0 2800

NKI-31 88 7193 44 6795 1 802 1 579

NKI-32 3718 29304     6 4870    

NKI-33 2420 8778     0 1300    

NKI-34 35 1518 0 1540 0 2625 0 2800

NKI-35 242 3322     0 110    

NKI-48 0 645     1 317    

NKI-49 0 1056 0 1034 0 9060 0 9420

NKI-50 0 9438     0 5990    

NKI-51 0 1320 0 1012 0 4770 0 5005

NKI-52 0 15972000     0 23980    

NKI-53 0 814     0 426    

NKI-54 0 42724     0 27560    

NKI-55 0 566720     0 9170    

NKI-56 0 7612000     0 6560    

WT, wildtype
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Table S1 (part 2). Continued

Supernatant       Cell pellet      

Original driver 
copies /ml

WT original driver 
copies /ml

EGFR T790M 
copies /ml

WT EGFR T790M 
copies /ml

Original driver 
copies /µl

WT original driver 
copies /µl

EGFR T790M copies 
/µl

WT EGFR T790M 
copies /µl

NKI-15 185790 40700     25570 5340    

NKI-16 25628 42680 0 29260 28568 34640 0 61840

NKI-17 557 35596     8 980    

NKI-18 1329 3614 125 6226 257 5 1 76

NKI-19 4463800 9042000 45100 11550000 2193 7570 38 9200

NKI-20 7121 16500 0 6710 531 8100 0 8850

NKI-21 2596 28622 1364 25872 334 1354 217 1542

NKI-22 25740 27940     622 3315    

NKI-23 317900 1337600     468 2308    

NKI-24 1650 1650     124 1194    

NKI-25 113850 135300     810 2640    

NKI-26 1102200 839300 0 1958000 13160 1080 0 13960

NKI-27 18 1276 0 1364 807 9330 0 10550

NKI-28 167 2332     0 484    

NKI-29 84 6248 0 6578 1 138 0 7365

NKI-30 13 968 0 1276 0 2820 0 2800

NKI-31 88 7193 44 6795 1 802 1 579

NKI-32 3718 29304     6 4870    

NKI-33 2420 8778     0 1300    

NKI-34 35 1518 0 1540 0 2625 0 2800

NKI-35 242 3322     0 110    

NKI-48 0 645     1 317    

NKI-49 0 1056 0 1034 0 9060 0 9420

NKI-50 0 9438     0 5990    

NKI-51 0 1320 0 1012 0 4770 0 5005

NKI-52 0 15972000     0 23980    

NKI-53 0 814     0 426    

NKI-54 0 42724     0 27560    

NKI-55 0 566720     0 9170    

NKI-56 0 7612000     0 6560    

WT, wildtype
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Summary and future perspectives

The primary objective of this thesis was to identify novel biomarkers that can 
improve the pretreatment selection for PD-1 blocking agents in advanced non-small 
cell lung cancer (NSCLC), specifically for patients who are less likely to benefit from 
this treatment.

Chapter 2 of this thesis focused on the assessment of biomarkers that are direct 
effectors of the anti-tumor immune response. One of the direct effectors, PD-1T tumor 
infiltrating lymphocytes (TILs), emerged as a key biomarker capable of predicting 
clinical benefit to PD-1 blockade in NSCLC with a high negative predictive value 
(NPV). Chapter 3 assessed whether combining PD-1T TILs with other established 
immune-related biomarkers could improve the predictive accuracy of PD-1T TILs. 
To facilitate the clinical application of PD-1T TILs as biomarker, chapter 4 of this 
thesis focused on the development of a gene signature closely associated with PD-1T 
TILs. This signature was constructed using NanoString technology, a robust clinical-
grade platform known for its proficiency in mRNA profiling, particularly from 
formalin-fixed paraffin-embedded (FFPE) tissue samples. Chapter 5 and 6 of this 
thesis highlight alternative bio-sources for biomarker testing, aimed to mitigate the 
need for invasive tumor biopsy procedures. All chapters will be discussed in more 
detail in the following sections.

Chapter 2; PD-1T TILs as key effectors in the anti-tumor immune response, emerging 
as a promising biomarker beyond PD-L1
Pharmacological blockade of the inhibitory immune receptor PD-1 and its ligand 
PD-L1 has transformed the treatment landscape of advanced stage NSCLC. These 
immune checkpoint blocking (ICB) agents have demonstrated the capacity to induce 
durable responses, with estimated 5-year overall survival (OS) rates ranging from 
16% to 23%1. Nevertheless, a substantial proportion of patients, approximately 60% 
to 70%, experience disease progression within the first six months after treatment 
initiation2–4. This raises concerns about the unnecessary exposure of patients to 
adverse effects, the financial burden, and the potential delay in exploring alternative 
(experimental) therapeutic options. Hence, the identification of biomarkers capable of 
selecting patients that will not derive benefit from PD-(L)1 blockade monotherapy has 
become an urgent necessity. Crucially, false negative test results should be minimized, 
as the impressive long-term responses observed with PD-(L)1 blockade have made 
clinicians hesitant to withhold this treatment from their patients. To achieve this 
goal, a sensitivity and NPV of ≥90% are considered necessary to avoid undertreatment. 
Concurrently, a specificity of ≥50% is required to effectively reduce overtreatment.
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Tumor specific CD8+ T cells possess the capacity to recognize and eliminate cancer 
cells. However, they are often functionally impaired in the tumor microenvironment 
(TME), for instance via the PD-1/PD-L1 signaling pathway. Therapeutic blockade 
of this pathway has the potential to reinvigorate dysfunctional T cells, which are 
characterized by high expression of inhibitory receptors such as PD-1, CTLA-4 and 
TIM-3, and secrete CXCL13. Furthermore, they show an increased capacity for tumor 
recognition5–7. We hypothesized that a new biomarker could be developed by assessing 
such direct effectors of the anti-tumor immune response. In chapter 2 we validated 
PD-1T tumor infiltrating lymphocytes (TILs), a dysfunctional CD8+ TIL subpopulation7, 
as a novel biomarker for prediction of treatment benefit to PD-1 blockade in NSCLC. 
Importantly, the high NPV of this biomarker may allow for reliable identification of 
patients unlikely to benefit from PD-1 blockade. Furthermore, PD-1T TILs have been 
found across cancer types and have shown similar predictive potential8, making 
it interesting to test this biomarker in other cancer types for which PD-1 blockade 
monotherapy is available.

Unlike PD-1T TILs, which serve as a direct indicator of an effective tumor-specific T 
cell response, the commonly used biomarker in routine clinical practice, PD-L1, is 
primarily considered a surrogate marker. In essence, PD-L1, expressed on the surface 
of tumor cells, binds to the PD-1 receptor on activated T cells, leading to an inhibitory 
effect. PD-(L)1 blocking agents target this interaction, thereby enhancing the ‘pre-
existing’ anti-tumor immune activity. Nevertheless, a subset of patients with low 
PD-L1 expression or PD-L1 negative tumors can still show long-term disease control 
when treated with agents targeting the PD-1/PD-L1 axis1,9. Importantly, in chapter 2, 
we demonstrated that PD-1T TILs outperformed the PD-L1 tumor proportion score 
(TPS), and the combination of both did not improve predictive accuracy. This suggests 
that PD-1T TIL scoring has the potential to serve as a biomarker for response to PD-1 
blockade monotherapy, irrespective of PD-L1 status.

Further, in chapter 2, we describe that PD-1T TILs predominantly reside in tertiary 
lymphoid structures (TLS)7. TLS are characterized by the presence of a central cluster 
of B cells surrounded by a border zone of T cells. They tend to form in chronic 
inflammation and in various cancer types, including NSCLC10–12. TLS have been 
associated with favorable responses and improved survival outcomes following ICB 
treatment8,13–16. We observed that using TLS as a single biomarker resulted in lower 
predictive accuracy compared to PD-1T TILs. It remains to be investigated whether 
factors such as spatial heterogeneity of TLS in peri- and intratumoral regions may 
account for this outcome. Our findings revealed that the frequency of TLS did 
not significantly differ between PD-1T high (≥90 per mm2) and PD-1T low (<90 per 
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mm2) tumors. In contrast, PD-1T high tumors showed a higher number of PD-1T TILs 
both within and outside TLS, potentially explaining the difference in predictive 
performance. These results suggest that the expansion of PD-1T TILs, both within 
TLS and within the tumor parenchyma, is essential for an effective response to PD-1 
blockade therapy. Digitally quantifying PD-1T TILs in both tumor regions separately 
and across larger study cohorts is necessary to confirm these results. Additionally, 
spatial profiling of TLS-associated and intratumoral PD-1T TIL subsets would be 
valuable to investigate whether TLS actively participate in the anti-tumor immune 
response during ICB treatment or if they are solely a characteristic of an inflamed 
TME. Therefore, gaining insight into how TLS shape the state and reactivation of 
tumor-specific T cells is imperative. This understanding could potentially improve 
biomarker development and, for instance, by inducing TLS formation, create 
opportunities for novel therapeutic strategies.

Chapter 2; confounding factors on the predictive potential of PD-1T TILs
In clinical practice, biopsy sampling for biomarker testing is typically guided by 
factors such as the size of the lesion, accessibility, and the likelihood of obtaining 
accurate information. Usually, only one lesion is sampled, even in cases of advanced 
disease with multiple metastases. In stage IV disease, this commonly involves core 
needle biopsies or, in cases of oligoprogression, surgical resection of a metastasic 
lesion. Previous clinical trials of PD-(L)1 blockade monotherapy, which included 
PD-L1 immunohistochemical (IHC) testing, did not impose specific requirements 
regarding the type or location of the biopsy samples (i.e. primary versus metastases), 
resulting in a heterogenous mix of samples. PD-L1 IHC results can be influenced by 
several factors such as heterogeneity within the same tumor (spatial heterogeneity), 
sampling time between two different treatments (temporal heterogeneity), as well as 
differences in sampling between primary and metastatic tumor sites18–21. This leads 
to an important question: ‘How should clinicians define the optimal sample that is 
most representative?’

To this end, we examined several potential confounding factors at the sample level 
for PD-1T TILs. We observed a trend toward increased predictive accuracy of PD-1T TILs 
when assessing tumor resections compared to biopsies. This aligns with expectations, 
as regional differences within the same tumor can be more precisely delineated in 
resected specimens. To investigate spatial heterogeneity, we quantified PD-1T TILs in 
randomly selected small areas of resected specimens. While we did observe a certain 
degree of variability, the samples were classified as either PD-1T high or PD-1T low. We 
established this biomarker cut-off as the most predictive for discriminating treatment 
benefit from disease progression. Our findings indicate that it is possible to detect PD-1T 
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TIL infiltration in relatively small biopsy samples, which is a promising development 
considering the challenges associated with biopsy sampling in NSCLC. In our study, 
we identified temporal heterogeneity, a phenomenon previously noted in PD-L1 
IHC assessments18,19. Our results suggest that samples collected immediately before 
the initiation of PD-1 blockade monotherapy provided more accurate predictions of 
clinical benefit. It is worth noting that we excluded substantially older samples from 
our analysis, as archival samples might no longer accurately represent the tumor’s 
immunological status. No difference in predictive accuracy was observed between 
samples collected from primary or metastatic sites.

In chapter 2 we further highlight that lesion-specific response better correlated 
with the frequency of PD-1T TILs compared to the overall response assessment by 
RECIST 1.1 criteria. Specifically, only a minority of the PD-1T high lesions progressed 
compared to the PD-1T low lesions. This observation may contribute to the reduced 
specificity and positive predictive value (PPV) of our biomarker, given that a 
significant number of tumors from patients with PD were PD-1T high. Previous work 
by Osorio and colleagues examined the dynamics of individual metastases following 
PD-1 blockade monotherapy and demonstrated that progression tended to occur 
heterogeneously across different metastatic sites22. Therefore, the PD-1T TIL status 
may reflect the local, and less likely the systemic anti-tumor immunity. Hence, we 
expect that the frequency of these tumor-reactive TILs may vary among different 
metastatic lesions.

While it may not always be clinically feasible to obtain fresh tumor tissue or biopsy 
multiple lesions within a patient, clinicians should recognize the limitations of 
biomarkers. Biomarkers can serve as valuable diagnostic tools in shared decision-
making for therapeutic strategies. There is potential for further refinement 
of PD-1T TILs as a biomarker by integrating it into multimodal predictors that 
comprehensively capture the tumor-immune microenvironment and other tumor-
related factors. This aspect is explored in chapter 3 of this thesis. Additionally, a 
more in-depth characterization of the tumor reactive TIL subset holds promise for 
the development of novel gene signature biomarkers, a subject that is investigated 
in chapter 4 of this thesis.

Chapter 3; The additive value of biomarker combinations
The interaction between tumors and the immune system constitutes a complex 
spatiotemporal process, involving various stimulating and inhibitory factors acting 
at different stages of the cancer immunity cycle23. PD-(L)1 blockade therapy relies on 
promoting a dynamic anti-tumor immune response, and is not limited to targeting 
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a single oncogenic alteration or other autonomous features of cancer cells for 
which tyrosine kinase inhibitor therapy or chemotherapy is available. Therefore, 
we hypothesized that a predictive model should contain more than one biomarker 
to capture the complex interplay of different components within the TME. Previous 
studies have already shown the additive value of combining PD-L1 with tumor 
mutational burden (TMB)24,25 and PD-L1 with CD8 TILs26,27. As demonstrated in 
chapter 2, combining PD-1T TILs with either 50% or 1% PD-L1 TPS did not improve 
predictive accuracy. A more comprehensive analysis was performed in chapter 3, 
where we evaluated individual and pairs of biomarkers as continuous variables. 
The tested biomarkers included various T cell markers (CD8 TILs, PD-1T TILs, CD3 
TILs), a B-cell marker (CD20), TLS, PD-L1 TPS and the tumor inflammation signature 
(TIS). The TIS is an mRNA signature that has demonstrated predictive potential in 
different cancer types treated with PD-1 blockade monotherapy28–30. Our findings in 
chapter 3 indicated that composite biomarkers did not provide improved predictive 
performance compared to the use of PD-1T TILs or TIS alone.

In contrast to PD-1T TILs, a distinct tumor-reactive TIL subset7, we assessed general 
TIL density as this biomarker has been correlated to response to PD-1 blockade 
monotherapy in different cancer types26,31–34. In addition, the specific localization 
of CD8 TILs within the tumor and the peritumoral compartment (i.e. stroma) has 
been proposed as a biomarker for response to PD-blockade monotherapy31,35. In 
our study, combining CD8 or CD3 density with intratumoral localization of CD8 
showed limited discriminatory ability in the validation cohort. Notably, PD-1T TILs 
showed the highest predictive performance among all the biomarkers, particularly 
in identifying patients with no long-term benefit. These findings align with other 
studies that have observed that not all TILs are in a state to recognize and eliminate 
tumor cells7,36,37.

Chapter 3 also demonstrates that combining PD-1T TILs with any of the other 
biomarkers did not improve predictive capacity. This observation can be attributed 
to the interdependence between biomarkers, as they all reflect aspects of the anti-
tumor immune response. Consequently, we propose combinations of PD-1T TILs 
with alternative biomarkers that capture distinct facets of the anti-tumor immune 
response. For example, TMB can serve as an indicator of immunogenic neoantigens 
resulting from somatic mutations38. Additionally, mutations in STK11/LKB1 and 
KEAP1 are associated with a TME characterized by T-cell exclusion, low or absent PD-
L1 expression, downregulation of MHC class II in STK11 mutated tumors, and down-
regulation of type I interferon and other cytokines in KEAP1 mutated tumors. These 
subgroups have been linked with primary resistance to PD-1 blockade monotherapy 
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in KRAS mutated NSCLC tumors39. Furthermore, high levels of Beta-2-microglobulin 
(B2M) mRNA, a component of MHC class I molecules, in baseline tumor samples 
have been correlated with an enhanced response to PD-1 blockade monotherapy in 
melanoma40. Lastly, the expansion of immune-inhibitory populations within the 
TME, such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), 
has been associated with poor patient survival41–43.

Chapter 4; A dysfunctional T cell gene signature that is more suitable for routine 
clinical diagnostics
In chapter 2, we reported a reliable automated method for digital quantification 
of PD-1T TILs using IHC, based on an approach from earlier work7. However, IHC 
staining results may vary, primarily due to preanalytical factors such as tissue 
and slide preparation, and analytical factors such as antibody validation and the 
use of different staining platforms. Furthermore, a substantial degree of user 
involvement is necessary for the digital quantification of PD-1T TILs, particularly 
as the delineation of tumor regions requires manual annotation. Computational 
pathology, using artificial intelligence (AI) techniques, holds the potential to 
enhance standardization across different medical centers. AI can perform complex 
visual pattern recognition by compiling subtle visual cues that are related to 
cell counts, cellular morphology, textures, and spatial patterns. For instance, the 
digital quantification of PD-L1 expression levels can be accomplished through IHC 
using machine learning techniques44,45. However, AI-based biomarkers come with 
several limitations. For example, it requires high-quality training data because the 
presence of artefactual images can introduce noise, necessitating a substantial 
number of images for the model to attain satisfactory performance. Furthermore, 
multiple datasets are needed to accurately represent diverse real-world patient 
populations, which can vary significantly between different hospitals. Therefore, 
data standardization and quality control systems are essential before application 
in routine clinical diagnostics46.

An ideal platform for biomarker assessment in routine diagnostic applications 
should deliver sensitive, specific, and reproducible results while requiring minimal 
complexity for hands-on laboratory work and data analysis. The Nanostring nCounter 
platform has demonstrated its ability to meet this criteria, even when dealing with 
low-quality RNA samples obtained from FFPE samples47. This technique hybridizes 
fluorescent barcodes directly to specific nucleic acid sequences, enabling individual 
counting without the need of amplification, and it offers enhanced precision 
compared to microarray and RNA sequencing47,48. Importantly, the Nanostring 
nCounter platform has previously demonstrated its clinical applicability49.
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To facilitate the translation of the PD-1T TILs biomarker into clinical practice, 
chapter 4 aimed to develop a robust method suitable for use in routine clinical 
diagnostics. Using the Nanostring nCounter platform, we developed an mRNA 
signature that reflects a tumor’s PD-1T TIL status and predicts the clinical outcome of 
NSCLC patients treated with PD-1 blockade monotherapy. The PD-1T gene expression 
signature showed equally high sensitivity and NPV as the digital image analysis-
based IHC quantification of PD-1T TILs. This mRNA signature enables accurate 
identification of patients with long-term benefit (DC 12m) from PD-1 blockade 
monotherapy as well as those with a low chance of benefitting from it.

The PD-1T signature successfully matches the dysfunctional expression profile of 
PD-1T TILs, as it includes the co-inhibitory signaling molecules LAG3 and CTLA4. 
High expression of these genes, alongside PD-1, characterizes T cells in a late stage 
of differentiation marked by a loss of proliferative capacity and impaired cytotoxic 
function. This impairment is largely attributable  to chronic tumor antigen 
stimulation within the TME7,50. Importantly, it is noteworthy that all of these markers 
have been correlated to tumor reactivity7,36. Interestingly, another gene in the PD-1T 
signature is CXCL13, a chemokine constitutively expressed and secreted by PD-1T TILs. 
CXCL13 serves as a B cell attractant, contributing to the formation and maintenance 
of TLS. PD-1highCXCL13+ T cells predominantly localize in TLS7. A recent study has 
established a correlation between CXCL13+CD8+ T cells and favorable responses 
to ICB51, underscoring the robustness of CXCL13 as a marker for tumor-reactive 
T cells and as a predictive biomarker. The PD-1T signature also includes genes 
related to interferon signaling (IFIT2, OAS1, STAT1), antigen presentation (TAP1) and 
angiogenesis (HEY1) as well as the cytokine IL6 and the well known co-inhibitory 
molecule CD274 (i.e. PD-L1). Collectively, these PD-1T signature genes characterize 
both a pre-existing adaptive immune response and the immunosuppressive stimuli 
associated with T cell dysfunction52,53. As mentioned earlier, it is thought that PD-1 
blockade therapy can reinvigorate these dysfunctional T cells.

We can conclude that the digital-image based IHC method can reliably be replaced 
by a matching gene expression signature. Since we developed the PD-1T signature 
on the Nanostring nCounter platform, a well-established industry-standard 
technology, the biomarker is now more suitable for implementation. Importantly, 
chapter 4 illustrates that the approach used has the potential to pave the way for 
the integration of other expression-level-based biomarkers into routine clinical 
diagnostics. These biomarkers can play an important role in supporting shared 
decision-making for therapeutic strategies.
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Integration of the PD-1T signature into prospective trials
Biomarkers hold a pivotal role in guiding treatment decisions, but how can we 
integrate them into clinical trial designs? The treatment landscape for advanced 
NSCLC has evolved, with ongoing investigations into the synergistic potential of 
immunotherapy combination therapies. A noteworthy development is the adoption 
of the combination of chemotherapy and pembrolizumab as the standard of care 
for newly diagnosed advanced NSCLC patients without targetable oncogenes. This 
is a result of the improved OS observed within the cohort receiving pembrolizumab 
plus chemotherapy, in contrast to those receiving chemotherapy alone. Importantly, 
this effect was observed irrespective of the patients’ tumor PD-L1 status54,55. A debate 
persists concerning the methodological and essential aspects of PD-L1 IHC testing 
to determine the ideal candidates for combined chemotherapy and pembrolizumab 
versus those who should receive pembrolizumab monotherapy. Many physicians 
tend to favor pembrolizumab monotherapy for patients with a PD-L1 TPS of 
50% or higher. This preference is based on the observation that pembrolizumab 
monotherapy offers improved tolerability and improved health-related quality of 
life compared to chemotherapy54,57,58. However, it is important to note that no trial has 
conducted a direct comparison between pembrolizumab plus chemotherapy and 
pembrolizumab monotherapy59. Consequently, the majority of patients in clinical 
practice are prescribed the dual therapy. This current approach underscores the 
need for more accurate and robust biomarkers in the field.

How can the PD-1T signature be incorporated in a clinical diagnostic routine where 
PD-L1 IHC testing is already widely implemented? As previously mentioned, the 
predictive utility of PD-L1 remains limited to the subgroup characterized by a TPS 
≥50%. The PD-1T signature biomarker may be strategically used to improve patient 
stratification within this PD-L1 above 50% group (PD-L1high) or in the PD-L1 below 50% 
group (PD-L1low). To address these considerations, a prospective observational study 
could be devised to investigate the following clinical questions: 1) Is the omission 
of chemotherapy in the PD-1T signature high (PD-1T-high) + PD-L1low group feasible? 
2) Should chemotherapy be added in the PD-1T signature low (PD-1T-low) + PD-L1high 
patients? The concurrent assessment of PD-L1 TPS and PD-1T signature scores 
can be determined in parallel with minimal tissue sample requirements. A third 
clinical question of interest could be: Is leaving out pembrolizumab (so patients 
will only receive chemotherapy) in the PD-1T-low + PD-L1low group non inferior to the 
combination of chemotherapy plus pembrolizumab? This question is complicated 
to assess since the effect of chemotherapy on the tumor-reactive capacity of PD-
1T TILs is currently unknown. There is a possibility that chemotherapy creates an 
immunogenic environment, potentially priming new tumor-reactive T cells and 



Summary and future perspectives

243

7

thus enhancing susceptibility to PD-1 blockade therapy. Historical outcome- and 
survival data of chemotherapy-only treated patients are needed to differentiate 
the distinct effects of chemotherapy and PD-1 blockade therapy. It is noteworthy 
that conducting a future phase three clinical trial excluding PD-1 blockade therapy 
in PD-1T-low + PD-L1low patients may face challenges. A subset of patients may not 
participate in the trial to avoid the risk of being randomized into the chemotherapy 
treated arm. The reluctance comes from the high demand for ICB treatment, and 
de-escalation studies encounter a lack of popularity. This sentiment refers to the 
principal that ‘favoring more extensive treatment is a prevailing preference over 
opting for less intervention’. However, patients allocated to the chemotherapy-only 
arm should retain the option to receive PD-1 blockade monotherapy as a second-line 
intervention upon disease progression. Furthermore, PD-1 blockade overtreatment 
leads to unnecessary side effects in patients and health care systems deal with a 
substantial increase in costs. Consequently, it is crucial to improve personalized 
medicine to guide treatment decisions, thereby reducing costs. The resources 
saved could, for instance, be allocated to studies evaluating alternative treatment 
modalities tailored for patients who show primary or secondary resistance to PD-1 
blockade therapy.

Chapter 5 and 6; Serum and pleural effusion as bio-sources for diagnostic 
biomarker tests
In chapter 5 and 6 of this thesis we investigated alternative bio-sources for biomarker 
assessment. In current diagnostics, a tissue biopsy is a requisite in the majority of 
cases and, as such, continues to serve as a golden standard. However, it is an invasive, 
cumbersome procedure and small tumors may require multiple attempts to secure 
an adequate tumor tissue sample. In contrast, liquid biopsies offer a minimally 
invasive approach, enabling the retrieval of information from all tumor sites, thereby 
circumventing the loss of critical information attributed to tumor heterogeneity.

Mass spectrometry (MS) is a powerful tool for analyzing the proteomic landscape 
within blood samples. In combination with machine learning algorithms, this 
approach can be used to develop proteomic signatures with predictive capacity. 
In chapter 5 of this thesis, we performed a MS-based proteomic analysis using 
pretreatment sera derived from 289 advanced-stage NSCLC patients who received 
second-line nivolumab treatment, with the aim of constructing a predictive protein 
signature. By using machine learning, which incorporated spectral data alongside 
clinical information, we stratified patients into three distinct groups with good 
(“sensitive”), intermediate, and poor (“resistant”) outcomes following treatment. Our 
results demonstrated a strong association between the signature and PFS as well 
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as OS across two validation cohorts. In pooled analysis, a trend in better PFS was 
observed, and a significantly improved OS was demonstrated for patients categorized 
as “sensitive” compared to those categorized as “not sensitive”. For “resistant” versus 
“not resistant” patients, both PFS and OS were significant independent predictors. 
In contrast, our test did not show the ability to stratify patients based on treatment 
outcome within a historical cohort of patients treated with chemotherapy.

Recently, Roder and colleagues conducted a blind and retrospective validation of 
our protein signature, now referred as the ‘Primary Immune Response’ (PIR) test, 
in the POPLAR and OAK trials60. This study also showed prolonged PFS and OS in 
the “not resistant” group compared to the “resistant” group in both cohorts. When 
comparing the “sensitive” and “not sensitive” groups, both PFS and OS demonstrated 
superiority in the POPLAR cohort. In the OAK cohort, only OS showed improvement, 
and these findings remained consistent even after adjusting for PD-L1 expression60. 
As previously described, it is of interest to assess the performance of the test in 
the present clinical setting, particularly considering that the standard first-line 
treatment for advanced NSCLC patients lacking targetable driver mutations now 
involves dual therapy comprising chemotherapy and pembrolizumab.

Advanced-stage NSCLC patients harboring tumors with molecular alterations such as 
EGFR mutations, ALK and ROS1 rearrangements, or the BRAFV600E mutation are eligible 
for specific targeted therapies. Therefore, it is imperative that all newly diagnosed 
patients receive comprehensive molecular tumor profiling. Also, the detection of 
resistance mechanisms during treatment with tyrosine kinase inhibitors (TKI) can 
guide the next line of therapy. In chapter 6, we emphasize the utility of cell-free DNA 
(cfDNA) in the supernatant of pleural effusion as an alternative bio-source, rather 
than relying on the cell pellet. In this study, driver and resistance mutations were 
detected with high accuracy in patients with NSCLC, colon and appendiceal cancer 
using droplet digital PCR. Notably, the supernatant showed a consistently high level 
of concordance with the cell pellet. Interestingly, its sensitivity surpassed that of 
the cell pellet, as mutations could still be detected in the supernatant even tumor 
purity was very low. As a result, the analysis of cfDNA in the supernatant has been 
institutionally implemented at the Netherlands Cancer Institute.
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Conclusion

This thesis has made several contributions to the field of biomarkers and its 
diagnostic approaches related to predicting clinical outcomes in advanced-stage 
NSCLC patients treated with PD-1 blockade therapy. The key findings can be 
summarized as follows:

1)  We have established the presence of a distinct population of tumor-reactive T 
cells, known as PD-1T TILs, as a novel biomarker for long-term benefit to PD-1 
blockade in NSCLC with high NPV.

2)  We have observed that selected biomarker combinations did not improve 
predictive accuracy when compared to PD-1T TILs as a single biomarker.

3)  We have developed a robust PD-1T gene signature, reflecting a tumor’s PD-1T TIL 
status, offering a more practical and readily implementable option for routine 
clinical diagnostics.

4)  A serum-based protein signature has been constructed, allowing for outcome 
stratification without the need for invasive tissue biopsies.

5)  Finally, we have demonstrated the efficacy of cfDNA extracted from the 
supernatant of pleural effusion for the accurate detection of targetable oncogenes 
and resistance mechanisms.

Together, these findings advance our capacity to tailor treatment strategies and 
diagnostic approaches for advanced-stage NSCLC patients undergoing PD-1 blockade 
therapy.
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Achtergrond

Longkanker vormt wereldwijd een groot gezondheidsprobleem en staat op de tweede 
plaats van veelvoorkomende kankers. Daarnaast is longkanker de belangrijkste 
oorzaak van kanker gerelateerde sterfte. In 2019 werden in Nederland 14.000 patiënten 
met longkanker gediagnosticeerd en 10.000 patiënten kwamen te overlijden aan de 
gevolgen van longkanker. In gemiddeld 80% van de patiënten met longkanker is 
roken de oorzaak. Het meest voorkomende tumortype (85% van de patiënten) is niet-
kleincellige longkanker (NSCLC, i.e. non-small cell lung cancer). Ongeveer de helft 
van de NSCLC-patiënten krijgt de diagnose longkanker in een gevorderd stadium 
(stadium IV), wat betekent dat er metastasen op afstand van de primaire tumor te 
vinden zijn. In dit stadium kan de ziekte niet meer chirurgisch worden behandeld 
en spelen systemische therapieën een centrale rol in het behandeltraject.

Historisch gezien bestond de behandeling van stadium IV NSCLC voornamelijk uit 
chemotherapie. Deze aanpak veranderde drastisch na de introductie van doelgerichte 
therapieën, welke gericht ontworpen zijn voor tumoren met een specifiek moleculair 
profiel. Deze therapeutische middelen, bekend als tyrosinekinase-remmers (TKI, 
i.e. tyrosine kinase inhibitors), lieten een significant verbeterde overleving zien in 
ongeveer 30% van de stadium IV NSCLC patiënten. Om patiënten te selecteren die 
mogelijk in aanmerking komen voor TKI-behandeling wordt nu in de Nederlandse 
richtlijn aanbevolen om een uitgebreide moleculaire analyse uit te voeren bij alle 
nieuw gediagnosticeerde patiënten met stadium IV NSCLC.

Voor de patiënten zonder oncogene driver mutatie heeft de ontwikkeling van 
immuuntherapie, met name de immuun checkpointremmers (ICI, i.e. immune 
checkpoint inhibitors), geleid tot een paradigmaverschuiving in de behandeling. Een 
voorbeeld van dit type behandeling is anti-PD-1 therapie, dat gericht is op het blokkeren 
van de interactie tussen PD-L1 (programmed death-ligand 1), een receptoreiwit dat 
tot expressie komt op tumorcellen, en PD-1 (programmed cell death protein 1), dat 
tot expressie komt op geactiveerde T- cellen. Hierdoor kunnen tumorcellen zichzelf 
minder goed beschermen tegen cytotoxische (CD8+) T-cel-gemedieerde celdood. 
Hoewel anti-PD-1 therapie nu onderdeel uitmaakt van de eerstelijnsbehandeling 
voor patiënten zonder oncogene driver mutatie, ondervindt ongeveer 60-70% 
ziekteprogressie binnen zes maanden na de start van de behandeling. Dit gegeven 
benadrukt de noodzaak voor zogenaamde 'voorspellende biomarkers' die de respons 
op anti-PD-1 therapie kunnen voorspellen. Daarnaast is het essentieel om patiënten 
te onderscheiden die geen baat hebben bij anti-PD-1 therapie. Biomarkers met een 
hoge negatief voorspellende waarde (NPV, i.e. negative predictive value) kunnen 
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betrouwbaar aangeven welke patiënten geen therapeutisch voordeel zullen behalen. 
Een sensitiviteit en NPV van ≥90% wordt noodzakelijk geacht om onderbehandeling 
te voorkomen. Tegelijkertijd is een specificiteit van ≥50% vereist om overbehandeling 
substantieel te verminderen. Dit type biomarker biedt patiënten de mogelijkheid om 
in een vroege fase alternatieve behandelingsopties te verkennen. Daarnaast wordt 
het risico op bijwerkingen geminimaliseerd en draagt het bij aan het verminderen 
van de kosten van de gezondheidszorg.

De expressie van PD-L1 op tumorcellen is als een van de eerste biomarkers onderzocht. 
Hierbij wordt het percentage PD-L1 positieve tumorcellen geschat met behulp 
van een immuunhistochemische (IHC) kleuring voorafgaand aan behandeling. 
Verschillende onderzoeken hebben een positieve correlatie aangetoond tussen 
een hoge PD-L1 score (TPS, i.e. tumor proportion score) en verbeterde overleving 
na behandeling met anti-PD-1 therapie. Sindsdien wordt deze biomarkertest 
routinematig uitgevoerd in de diagnostiek. Echter zijn er tegenstrijdige resultaten 
die aangeven dat tumoren met een lage of negatieve PD-L1 TPS ook goed kunnen 
responderen op anti-PD-1 therapie. Daarom zijn er betere voorspellende biomarkers 
nodig.

Het primaire doel van dit proefschrift was het identificeren van biomarkers die beter 
kunnen voorspellen welke patiënten met stadium IV NSCLC kunnen responderen 
op anti-PD-1 therapie en welke patiënten niet.

Hoofdstuk 2 en 3; PD-1T TILs als veelbelovende biomarker en de toegevoegde waarde 
van biomarkercombinaties
Tumor-specifieke cytotoxische CD8+ T-cellen hebben de capaciteit om tumorcellen 
te herkennen en te elimineren. Echter kunnen ze functioneel beperkt zijn in de 
omgeving van de tumor (TME, i.e. tumor micro-environment), bijvoorbeeld via de 
PD-1-PD-L1 interactie. In de literatuur wordt verondersteld dat anti-PD-1 therapie 
disfunctionele T-cellen weer kan reactiveren. De frequentie van tumorinfiltrerende 
lymfocyten (TILs) in de TME heeft voorspellende waarde getoond als biomarker voor 
respons op anti-PD-1 therapie. Echter is er steeds meer wetenschappelijk bewijs dat 
niet alle TILs een actieve rol spelen in de immuunrespons tegen tumorcellen. Uit 
een eerdere studie bleek dat cytotoxische CD8+ T-cellen met een hoge expressie van 
PD-1, bekend als PD-1T TILs, gericht tumorcellen kunnen herkennen en elimineren. 
Bovendien is er een sterke correlatie aangetoond tussen de aanwezigheid van PD-
1T TILs en de respons op anti-PD-1 therapie in een klein cohort van patiënten met 
stadium IV NSCLC.
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Hoofdstuk 2 van dit proefschrift beschrijft de voorspellende waarde van PD-1T 

TILs in een cohort van 120 stadium IV NSCLC-patiënten behandeld met anti-PD-1 
therapie. Hierbij werd de frequentie van PD-1T TILs in tumorweefsel, afgenomen 
voor start van de therapie, digitaal gescoord met een PD-1 IHC-algoritme. PD-1T TILs 
als biomarker behaalde een sensitiviteit van 77% en een specificiteit van 67% na 
6 maanden behandeling zonder progressie van ziekte, en respectievelijk 93% en 
65% na 12 maanden. Een ander belangrijk gegeven is dat de hoge NPV (88% op 6 
maanden en 98% op 12 maanden) zorgde voor een nauwkeurige identificatie van 
een kleine groep patiënten die geen baat had bij anti-PD-1 therapie. Een hoog aantal 
PD-1T TILs was bovendien gecorreleerd aan een langere progressievrije overleving 
(HR 0.39, 95% BI: 0.24-0.63, P<0.0001) en algehele overleving (HR 0.46, 95% BI: 0.28-0.76, 
P<0.01). De voorspellende waarde van PD-1T TILs was ook nauwkeuriger wanneer 
alleen naar de respons van de gebiopteerde laesie werd gekeken en als tumorweefsel 
werd gebruikt dat kort voor de start van de behandeling was afgenomen. Daarnaast 
werd aangetoond dat PD-1T TILs een nauwkeurigere biomarker was dan PD-L1. Een 
combinatie van beide biomarkers toonde geen verbetering in voorspellende waarde.

Uit een eerdere studie is bekend dat PD-1T TILs voornamelijk voorkomen in 
tertiaire lymfoide structuren (TLS). TLS worden gekenmerkt door de aanwezigheid 
van een centraal cluster van B-cellen, omgeven door een zone van T-cellen. TLS 
kunnen worden gevormd ten gevolge van een chronische ontsteking, evenals door 
verschillende soorten kanker zoals NSCLC. Hoofdstuk 2 beschrijft dat TLS een lagere 
voorspellende waarde heeft in vergelijking met PD-1T TILs. Mogelijk hebben factoren 
zoals ruimtelijke heterogeniteit van TLS in peri- en intratumorale gebieden invloed 
op dit resultaat, echter moet dit nog worden onderzocht.

Verschillende factoren in de TME kunnen de immuunrespons tijdens anti-PD-1 
therapie beïnvloeden. Daarom is het onwaarschijnlijk om één perfecte biomarker 
te vinden. In hoofdstuk 3 is onderzocht of de voorspellende waarde verbeterd 
kan worden door biomarkers te combineren. De volgende biomarkers werden, 
zowel individueel als in combinatie van 2 biomarkers, onderzocht in een cohort 
van 135 stadium IV NSCLC patiënten behandeld met anti-PD-1 therapie: CD8+ TILs, 
intratumorale (IT) lokalisatie van CD8+ TILs, PD-1T TILs, CD3+ TILs, CD20+ B cellen, TLS 
en de tumor inflammation signature (TIS). De TIS is een genexpressie biomarker 
opgebouwd uit een set van 18 genen. Eerdere studies hebben de voorspellende 
waarde van deze biomarker aangetoond in verschillende soorten kanker behandeld 
met anti-PD-1 therapie.
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Hoofdstuk 3 concludeert dat samengestelde biomarkers geen toegevoegde voorspellende 
waarde hebben in vergelijking met PD-1T TILs en TIS als individuele biomarkers. Dit was 
zowel voor het primaire eindpunt op 6 maanden, als voor het secundaire eindpunt op 
12 maanden zonder progressie van ziekte. PD-1T TILs en TIS identificeerde patiënten 
met een langdurige respons van meer dan 12 maanden met een hoge sensitiviteit 
(86% en 100%) en hoge NPV (95% en 100%). Patiënten die geen of weinig baat hadden 
bij behandeling met anti-PD-1 therapie werden het meest nauwkeurig geïdentificeerd 
door PD-1T TILs (specificiteit PD-1T TILs 74% versus TIS 39% op 12 maanden).

Hoofdstuk 4; Een PD-1T signatuur dat geschikter is voor de dagelijkse diagnostiek
Hoofdstuk 2 beschrijft een digitaal PD-1 IHC algoritme dat het aantal PD-1T TILs 
kan kwantificeren in tumorweefsel. Echter is deze methode complex en wordt 
beperkt door verschillende – voornamelijk technische – vormen van bias, waardoor 
de implementatie van deze biomarker in de diagnostiek lastig is. Voorbeelden van 
bias zijn pre-analytische factoren, zoals het voorbereidingsproces van weefsel 
tot coupe en analytische factoren, zoals de validatie van antilichamen en het 
gebruik van verschillende IHC-kleuring apparatuur. Bovendien vereist het digitaal 
kwantificeren van PD-1T TILs handmatige annotatie van de tumorgebieden. 
Hoofdstuk 4 onderzocht een betrouwbare methode om het signaal van PD-1T TILs in 
tumoren te kunnen weergeven. Een voorwaarde is dat deze methode ook eenvoudig 
moet kunnen worden toegepast in de dagelijkse praktijk.

Een optimaal platform voor de evaluatie van biomarkers in diagnostische 
toepassingen moet gevoelige, specifieke en reproduceerbare resultaten opleveren. 
Tegelijkertijd is er voor laboratoriumwerk en data-analyse een minimale 
complexiteit vereist. Het Nanostring nCounter-platform heeft aangetoond te 
voldoen aan deze criteria, zelfs bij het verwerken van lage kwaliteit RNA-monsters 
verkregen uit FFPE- (formalin-fixed, paraffin-embedded) materiaal. Deze techniek 
hybridiseert fluorescerende barcodes rechtstreeks aan nucleïnezuursequenties, 
waardoor individuele telling mogelijk is zonder amplificatiestap. Bovendien zijn 
Nanostring analyses gevoeliger in vergelijking met microarrays en RNA-sequencing 
en heeft het platform eerder zijn klinische toepasbaarheid aangetoond.

Hoofdstuk 4 beschrijft de ontwikkeling en de validatie van een mRNA genexpressie 
signatuur dat de PD-1T TIL status in tumoren detecteert en een voorspelling maakt 
van de klinische uitkomst van stadium IV NSCLC patiënten behandeld met anti-PD-1 
therapie. Hierbij werd gebruik gemaakt van het Nanostring nCounter-platform. De 
resultaten van deze studie toonden aan dat de PD-1T TIL IHC-biomarker succesvol 
kon worden omgezet in een mRNA genexpressie signatuur. De PD-1T genexpressie 
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signatuur toonde namelijk een vergelijkbare voorspellende waarde als de digitale 
IHC-kwantificeringsbenadering. Een hoge NPV van 100% toonde aan dat patiënten 
met weinig of geen respons na behandeling met anti-PD-1 therapie betrouwbaar 
konden worden geïdentificeerd. Op basis van deze resultaten en het gebruikte 
platform wordt verwacht dat de PD-1T signatuur gemakkelijker kan worden 
toegepast in de dagelijkse praktijk.

Hoofdstuk 5 en 6; Bloedserum en pleuravocht als biologische bronnen voor 
diagnostische biomarker-testen
Hoofdstuk 5 en 6 van dit proefschrift onderzochten alternatieve biologische bronnen 
voor het testen van biomarkers. In de huidige diagnostiek is een weefselbiopsie in de 
meeste gevallen vereist. Deze procedure is echter invasief, tijdrovend en bij kleine 
tumoren zijn er mogelijk meerdere pogingen nodig om voldoende tumorweefsel te 
verkrijgen. Daarentegen bieden vloeibare biopsieën, ook wel liquid biopsies genoemd, 
een minimaal invasief alternatief. Via het bloed kan bijvoorbeeld informatie vanuit 
alle tumorgebieden worden verzameld en is het verlies van cruciale informatie als 
gevolg van lokale tumorheterogeniteit beperkt.

Massaspectometrie (MS) is een gevoelige methode voor het analyseren van eiwitten 
in bloed. Hoofdstuk 5 onderzocht bloedsera, afgenomen voorafgaande aan anti-PD-1 
therapie van 289 stadium IV NSCLC patiënten met behulp van MS. Het doel was om 
een voorspellende eiwit-signatuur te ontwikkelen met behulp van machine learning, 
waarbij spectrale gegevens samen met klinische informatie werden geïntegreerd. 
Patiënten werden geclassificeerd in drie verschillende groepen: voorspelde goede 
("sensitieve"), intermediaire en slechte ("resistente") resultaten na de behandeling. 
Er werd in twee validatiecohorten een sterke associatie gevonden tussen de eiwit-
signatuur en zowel de progressie-vrije, als de algehele overleving.

Na het samenvoegen van de twee validatiecohorten werd een significant betere 
algehele overleving aangetoond in patiënten die als "sensitief" waren geclassificeerd 
in vergelijking met degenen die als "niet sensitief" waren geclassificeerd. Voor 
"resistente" patiënten ten opzichte van "niet resistente" patiënten waren zowel de 
progressie-vrije, als de algehele overleving significante onafhankelijke voorspellers. 
Daarentegen was de eiwit-signatuur niet voorspellend voor respons in een historisch 
cohort van patiënten behandeld met chemotherapie.

Stadium IV NSCLC patiënten met tumoren die moleculaire veranderingen tonen 
zoals EGFR of BRAF V600E mutaties en ALK of ROS1 translocaties komen in aanmerking 
voor behandeling met TKI's. Daarom krijgen alle nieuw gediagnosticeerde stadium 
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IV NSCLC patiënten een uitgebreide moleculaire analyse van de tumor. Tevens kan 
het detecteren van resistentiemechanismen tijdens de behandeling met TKI's een 
eventuele volgende stap in de behandeling bepalen. Hoofdstuk 6 beschrijft het nut 
van cel-vrij DNA (cfDNA, i.e. cell free DNA) in het supernatant van pleuravocht 
als alternatieve biologische bron voor moleculaire biomarker testen, in plaats van 
het cel sediment. De resultaten van deze studie laten zien dat mutaties in cfDNA 
betrouwbaar konden worden gedetecteerd in patiënten met NSCLC, colon- en 
appendixcarcinoom bij gebruik van droplet digital PCR. De resultaten van het 
supernatant kwamen overeen met de resultaten van het cel sediment. Echter was de 
gevoeligheid voor het detecteren van mutaties in het supernatant hoger dan in het 
cel sediment, omdat mutaties vaker konden worden gedetecteerd in pleuravochten 
met een zeer laag percentage tumorcellen. Naar aanleiding van de studieresultaten 
is de analyse van cfDNA in het supernatant institutioneel geïmplementeerd in het 
Nederlands Kanker Instituut.
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Conclusie

Dit proefschrift heeft bijgedragen aan de kennis over voorspellende biomarkers en 
de bijbehorende diagnostische toepassingen bij patiënten met stadium IV NSCLC 
die zijn behandeld met anti-PD-1 therapie. De belangrijkste bevindingen kunnen 
als volgt worden samengevat:

1)  We hebben aangetoond dat de aanwezigheid van een tumorreactieve T- cel 
populatie, bekend als PD-1T TILs, kan fungeren als een voorspellende biomarker 
voor zowel langdurige respons als geen of nauwelijks respons op behandeling 
met anti-PD-1 therapie bij stadium IV NSCLC.

2)  We hebben vastgesteld dat een combinatie van biomarkers de voorspellende 
waarde niet verbeterde in vergelijking met PD-1T TILs als individuele biomarker.

3)  We hebben een PD-1T genexpressie signatuur ontwikkeld die de aanwezigheid 
van PD-1T TILs in een tumor weergeeft. Deze biomarker biedt een praktische en 
een direct toepasbare optie voor de routinematige diagnostiek.

4)  We hebben een op bloedserum gebaseerde eiwit-signatuur ontwikkeld waarmee 
klinische uitkomststratificatie mogelijk is zonder de noodzaak van een biopsie.

5)  Ten slotte hebben we aangetoond dat cfDNA, geëxtraheerd uit het supernatant 
van pleuravocht, kan worden gebruikt voor het nauwkeurig detecteren van 
zowel moleculaire veranderingen in de tumor als resistentiemechanismen.

Concluderend bevorderen de bevindingen in dit proefschrift onze mogelijkheid 
om behandelingsstrategieën en diagnostische toepassingen op maat te maken voor 
patiënten met stadium IV NSCLC die worden behandeld met anti-PD-1 therapie.
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Methods 
1.  Acquisition of Mass Spectra from Serum Samples

a.  Processing of Serum Samples

Samples were thawed and 3 µl aliquots of each test sample and quality control/reference 
serum (a pooled sample obtained from serum of five healthy patients, “SerumP3”) 
spotted onto serum cards (Therapak). The cards were allowed to dry for 1 hour at 
ambient temperature after which the whole serum spot was punched out with a 6mm 
skin biopsy punch (Acuderm). Each punch was placed in a centrifugal filter with 0.45 
µm nylon membrane (VWR). One hundred µl of HPLC grade water (JT Baker) was added 
to the centrifugal filter containing the punch. The punches were vortexed gently for 10 
minutes then spun down at 14,000 rcf for two minutes. The flow-through was removed 
and transferred back on to the punch for a second round of extraction. For the second 
round of extraction, the punches were vortexed gently for three minutes then spun 
down at 14,000 rcf for two minutes. Twenty µl of the filtrate from each sample was then 
transferred to a 0.5 ml eppendorf tube for mass spectral analysis.

All subsequent sample preparation steps were carried out in a custom designed 
humidity and temperature control chamber (Coy Laboratory). The temperature was 
set to 30 °C and the relative humidity at 10%.

An equal volume of freshly prepared matrix (25 mg of sinapinic acid per 1 ml of 50% 
acetonitrile: 50% water plus 0.1% TFA) was added to each 20 µl serum extract and 
the mix vortexed for 30 sec. The first three aliquots (3 x 2 µl) of sample: matrix mix 
were discarded into the tube cap. Eight aliquots of 2 µl sample: matrix mix were then 
spotted onto a stainless steel MALDI target plate (SimulTOF). The MALDI target was 
allowed to dry in the chamber before placement in the MALDI mass spectrometer.

b.  Qualification of Mass Spectrometer

The instrument qualification procedure is performed periodically to assess the 
reproducibility and quality of spectra compared to a defined ‘Gold Standard’ 
run. The machine qualification sample set used for this analysis contains 40 serum 
samples representative of expected diversity in human serum. The serum samples 
are prepared as a batch and spectra acquired as defined for the experimental 
samples. Spectral processing is performed using parameters defined in the machine 
qualification standard operating procedures, with methods similar to those 
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defined here for the experimental samples. A visual inspection of the spectra is 
performed. A concordance analysis compares a set of 85 feature values from the 
machine qualification batch with those of the Gold Standard run. Concordance plots 
for all 85 features, plotting the feature values for the run against those for the ‘Gold 
Standard’ run, are generated and examined. A summary statistic is computed, which 
assesses how close the slopes of the 85 concordance plots are to the ideal slope of 1. 
Qualification metrics assessing spectral quality and concordance of the spectra with 
the Gold Standard must be met for the mass spectrometer to be qualified for spectral 
acquisition from experimental samples.

c.  Spectral Acquisition

Spectra were obtained using a qualified MALDI-TOF mass spectrometer (SimulTOF 
100 s/n: LinearBipolar 11.1024.01 from Virgin Instruments, Sudbury, MA, USA). The 
instrument was set to operate in positive ion mode, with ions generated using a 349 
nm, diode-pumped, frequency-tripled Nd:YLF laser operated at a laser repetition rate 
of 0.5 kHz. External calibration was performed using a mixture of standard proteins 
(Bruker Daltonics, Germany) consisting of insulin (m/z 5734.51 Da), ubiquitin (m/z, 
8565.76 Da), cytochrome C (m/z 12360.97 Da), and myoglobin (m/z 16952.30 Da).

Spectra from each MALDI spot were collected as 800-shot spectra that were ‘hardware 
averaged’ as the laser fires continuously across the spot while the stage is moving at 
a speed of 0.25 mm/sec. A minimum intensity threshold of 0.01 V was used to discard 
any ‘flat line’ spectra. All 800-shot spectra with intensity above this threshold were 
acquired without any further processing.

2.  Mass Spectral Processing

Spectral processing is necessary for two main reasons. First, it is used to average 
together many of the 800-shot ‘raster’ spectra that were collected on the mass 
spectrometer to create the Deep MALDI1 averages. This allows a deeper and less noisy 
probing of the serum proteome. Second, spectral processing is essential to render the 
deep MALDI average spectra reproducible and comparable across samples.

a.  Processing of Raster Spectra to Deep MALDI averages

Raster spectra were rescaled in the mass/charge (m/Z) axis relative to a standard 
reference spectrum to correct for any overall alignment issues in m/Z. To improve 
the signal to noise ratio of the spectra, a ripple filter was then applied. For a finer 



Chapter 5 - Supplemental material: methods

267

A

adjustment of alignment in the m/Z axis, background was subtracted from the 
raster spectra and peaks are located. This peak list was then used to align raster 
spectra prior to background subtraction, using a set of 41 fixed alignment points, 
Supplementary Table 1.

Supplementary Table 1: Points in m/Z used to align the raster spectra

3168 7202 8919 12173 15127 28298

4153 7563 8994 12572 15263

4183 7614 9133 12864 15869

4792 7934 9310 13555 17253

5773 8034 9427 13763 18630

5802 8206 10739 13882 21066

6433 8684 10938 14040 23024

6631 8812 11527 14405 28090

The raster spectra were then filtered to keep only spectra where at least 20 peaks 
were found and at least 5 of the alignment points in Supplementary Table 2 were 
used in their alignment. Deep MALDI, 400,000 laser-shot averages were then created 
by averaging together 500 randomly selected from the pool of filtered raster spectra.

b.  Processing of Deep MALDI Average Spectra

“Spectrum” refers to a Deep MALDI average spectrum. The background in each 
spectrum was estimated and subtracted. Spectra were then normalized in several 
stages. First, a coarse normalization was performed using a partial ion current 
(PIC) approach using regions of the spectra that showed low variability across the 
population of interest and that showed no sign of association with outcomes. Spectral 
regions known to be intrinsically unstable were excluded from the regions used for 
normalization. The regions used in this normalization step were defined using the 
development set of spectra and then held fixed as fully specified parameters of the 
test. For each spectrum the area under the spectra within each m/Z region used for 
normalization was calculated and summed to produce a normalization coefficient. 
Each spectrum was then divided by its own normalization coefficient to yield the 
normalized spectrum. Supplementary Table 2 gives the upper and lower limits in 
m/Z of the regions used in normalization.
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Supplementary Table 2: m/Z regions used for coarse normalization

Lower limit m/Z Upper limit m/Z

6100 7500

8500 10700

13100 15000

Spectra then underwent an additional baseline-smoothing background subtraction 
using Eilers’ method (Eilers PHC, Boelens HFM. Baseline Correction with Asymmetric 
Least Squares Smoothing. 2005 Leiden Univ. Medical Centre Report.

https://zanran_storage.s3.amazonaws.com/www.science.uva.nl/ContentPag-
es/443199618.pdf) aimed at increasing spectral reproducibility and limiting batch-
to-batch variation and a second partial ion current normalization was carried using 
the m/Z regions in Supplementary Table 3.

Supplementary Table 3: m/Z regions used for second normalization

Lower limit m/Z Upper limit m/Z

6931.26 6963.03

6963.58 6978.64

6979.01 7011.52

7012.07 7030.07

7030.26 7039.99

7066.99 7084.26

13864.91 13924.11

13925.45 13959.08

13959.98 14002.58

14008.41 14076.57

14077.02 14122.31

14124.55 14179.70

14180.60 14228.58

14229.93 14279.70

14280.60 14323.20

14412.88 14457.73

14464.45 14514.23

14516.47 14570.28

14571.18 14618.26

21006.87 21124.88

21125.85 21221.13

21221.61 21322.70
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Although spectral alignment is typically very good, due to the alignment carried 
out in the raster processing, the averaged spectra were aligned to address minor 
differences in peak positions that might still be present. This was carried out using 
a fixed set of alignment points, which are listed in Supplementary Table 4.

Supplementary Table 4: Points in m/Z used to align the spectra

3315 8916 15872 28293

4153 9423 16078

4457 9714 17256

4710 12868 17383

5066 13766 18631

6433 14045 21069

6631 14093 21168

7934 15131 28084

Features were defined on the mass spectra. These were defined by visual inspection 
of an indication representative set of spectra. A feature is an m/Z region in the mass 
spectrum, specified by its lower m/Z limit and its upper m/Z limit. While features 
were defined based on the location of mass spectral peaks in typical spectra, for 
any individual spectrum the feature may or may not contain a well-defined mass 
spectral peak. Once the features were defined, their definitions became parameters 
in the fully-specified test. For each feature and spectrum, a feature value was defined 
as the integrated area under the spectrum within the feature. For this test 282 
features were defined, of which 274 were used during classifier development. The 
mass spectral ranges defining the 274 features used in classifier development are 
listed in Supplementary Table 5.
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Supplementary Table 5: Mass spectral ranges (mass/charge regions) defining the 274 features 
used in classifier development

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

3071.22 3085.19 3099.16 4397.29 4407.28 4417.26 5685.16 5693.39 5701.62

3099.64 3111.21 3122.77 4427.4 4433.22 4439.04 5701.82 5708.3 5714.77

3125.22 3137 3148.78 4439.75 4443.96 4448.18 5714.97 5720.49 5726.01

3149.02 3156.94 3164.86 4449.38 4461.23 4473.07 5726.03 5734.42 5742.81

3165.7 3177.13 3188.57 4502.53 4508.75 4514.98 5743.56 5750.24 5756.93

3189.67 3198.85 3208.03 4553.3 4565.57 4577.84 5757.29 5764.16 5771.03

3208.33 3216.82 3225.3 4580.87 4586.84 4592.81 5771.12 5778.62 5786.11

3231 3243.53 3256.07 4593.22 4599.59 4605.96 5786.29 5794.96 5803.62

3256.9 3267 3277.1 4618.51 4625.99 4633.46 5803.89 5810.08 5816.27

3305.44 3314.98 3324.51 4633.75 4642.42 4651.09 5816.42 5822.76 5829.11

3353.79 3366.37 3378.94 4667.54 4679.99 4692.43 5832.02 5840.46 5848.89

3384.77 3396.02 3407.27 4698.76 4713.31 4727.86 5850.08 5863.91 5877.73

3410.04 3422.21 3434.37 4747.49 4755.82 4764.15 5879.59 5888.74 5897.9

3434.51 3443.9 3453.3 4770.57 4776.34 4782.12 5898.07 5909.77 5921.47

3454.74 3466.38 3478.02 4782.62 4790.85 4799.08 5922.62 5934.73 5946.84

3540.72 3555.53 3570.35 4807.16 4819.05 4830.95 5949.41 5963.9 5978.4

3583.14 3593.09 3603.05 4845.9 4857.7 4869.49 5978.83 5987.76 5996.69

3667.06 3681.88 3696.7 4885.05 4893.33 4901.61 5998.01 6008.58 6019.14

3697.35 3705.33 3713.31 4910.19 4919.12 4928.06 6020.13 6028.93 6037.72

3747.09 3755.81 3764.52 4928.26 4938.24 4948.23 6054.61 6061.94 6069.27

3766.63 3776.4 3786.17 4949.44 4964.3 4979.15 6069.47 6082.86 6096.26

3811.87 3821.31 3830.74 4989.38 5000.07 5010.76 6099.57 6109.12 6118.68

3832 3841.64 3851.28 5012.17 5020.4 5028.63 6134.48 6148.68 6162.88

3860.09 3867.51 3874.93 5033.64 5041.17 5048.71 6165.75 6175.04 6184.34

3877.78 3888.14 3898.49 5048.95 5054.98 5061 6186.65 6194.45 6202.25

3899.28 3907.43 3915.58 5061.1 5070.88 5080.67 6202.33 6209.35 6216.38

3915.7 3927.75 3939.8 5093.87 5106.47 5119.06 6216.68 6224.86 6233.04

3943.3 3952.26 3961.21 5120.38 5127.97 5135.56 6275.16 6284.15 6293.14

3999.11 4011.41 4023.71 5162.99 5185.8 5208.61 6293.16 6301.49 6309.82

4023.91 4031.43 4038.96 5209.58 5224.44 5239.3 6322.27 6331.46 6340.64

4039.25 4051.4 4063.54 5240.4 5251.05 5261.69 6378.77 6393.09 6407.42

4080.14 4094.83 4109.53 5274.04 5288.09 5302.14 6409.41 6479.04 6548.68

4112.17 4119.37 4126.57 5351.59 5362.36 5373.12 6553.89 6564.68 6575.47

4127.25 4133.39 4139.52 5396.97 5404.07 5411.16 6575.85 6589.26 6602.67

4198.95 4210.81 4222.68 5411.52 5418.07 5424.63 6604.74 6675.06 6745.39
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Supplementary Table 5: Continued

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

4258.83 4266.5 4274.18 5424.89 5431.54 5438.18 6779.07 6798.12 6817.17

4276.79 4289.24 4301.69 5442.72 5449.54 5456.36 6825.83 6837.67 6849.52

4332.05 4341.63 4351.22 5512.62 5520.5 5528.38 6849.89 6859.44 6868.99

4351.4 4359.83 4368.27 5540.44 5552.25 5564.06 6869.08 6878.92 6888.75

4372.4 4381.03 4389.66 5564.15 5573.62 5583.09 6889.03 6896.99 6904.95

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

6911.6 6920.97 6930.34 9066.55 9077.91 9089.26 11927.82 11938.26 11948.69

6930.88 6939.55 6948.22 9089.32 9096.91 9104.51 11974.12 11997.34 12020.56

6948.87 6956.18 6963.49 9112.47 9133.46 9154.45 12084.48 12116.9 12149.32

6963.58 6971.11 6978.64 9196.31 9207.88 9219.45 12151.24 12160.63 12170.03

6979.01 6995.27 7011.52 9234.27 9243.94 9253.6 12266.86 12290.16 12313.47

7011.77 7019.83 7027.88 9254.17 9263.3 9272.44 12552.61 12629.48 12706.34

7029.37 7033.6 7037.84 9272.68 9289.41 9306.14 12723.06 12738.33 12753.59

7037.91 7046.82 7055.73 9308.35 9319.83 9331.31 12769.89 12789.06 12808.24

7055.81 7060.15 7064.5 9341.1 9374.82 9408.53 12834.49 12917.52 13000.55

7065.49 7072.9 7080.31 9411.21 9454.03 9496.84 13018.32 13031.4 13044.48

7118.24 7143.95 7169.66 9560.23 9585.25 9610.26 13049.54 13076.86 13104.18

7178.66 7189.32 7199.97 9613.48 9626.56 9639.65 13119.56 13135.29 13151.02

7234.04 7243.67 7253.3 9639.94 9647.57 9655.2 13265.3 13276.12 13286.94

7279.59 7292.85 7306.11 9688.55 9723.57 9758.58 13304.84 13325.96 13347.09

7309.51 7318.12 7326.73 9903.45 9934.33 9965.21 13351.99 13364.15 13376.31

7327.41 7332.74 7338.06 10128.04 10139.87 10151.71 13501.19 13524.33 13547.48

7375.19 7390.07 7404.95 10152.46 10161.84 10171.22 13554.22 13569.52 13584.82

7406.19 7448.51 7490.84 10171.98 10184.57 10197.16 13602.38 13612.58 13622.78

7731.02 7736.79 7742.56 10197.54 10211.07 10224.6 13708.2 13723.6 13739

7742.75 7751.34 7759.93 10249.52 10262.23 10274.94 13740.4 13762.02 13783.64

7760.24 7767.77 7775.3 10295.62 10305.69 10315.75 13783.92 13795.98 13808.04

7776.52 7788.92 7801.31 10328.34 10350.14 10371.93 13832.96 13846 13859.04

7803.18 7820.32 7837.46 10435.64 10450.45 10465.26 13860.73 13881.13 13901.52

7984.8 7994.91 8005.01 10465.61 10482.62 10499.63 13905.76 13917.74 13929.71

8006.66 8018.69 8030.72 10518.75 10564.38 10610.01 13929.96 13944.37 13958.78

8131.01 8153.05 8175.09 10615.18 10638.37 10661.56 13959.98 13981.28 14002.58

8192.54 8215.68 8238.82 10711.79 10737.82 10763.85 14014.11 14067.59 14121.06

8306.66 8314.7 8322.74 10764.79 10775.15 10785.51 14122.86 14174.53 14226.2

8353.19 8366.02 8378.85 10828.47 10847.99 10867.5 14229.93 14254.82 14279.7
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Supplementary Table 5: Continued

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

8401.71 8411.17 8420.63 10951.44 10963.37 10975.3 14280.6 14301.9 14323.2

8420.71 8428.79 8436.87 11028.77 11056.4 11084.03 14401.51 14431.22 14460.94

8466.84 8474.84 8482.84 11090.89 11107.43 11123.96 14462.27 14541.41 14620.56

8483.32 8489.05 8494.77 11132.45 11152.43 11172.4 14623.06 14642.87 14662.69

8516.01 8528.96 8541.91 11285.82 11305.1 11324.39 14684.56 14699.66 14714.76

8555.29 8565.12 8574.94 11378.42 11392.26 11406.11 14764.89 14786.87 14808.84

8575.31 8592.03 8608.74 11428.16 11442.74 11457.32 14859.96 14882.15 14904.35

8650.35 8659.11 8667.86 11468.24 11485.3 11502.35 18248.47 18271.03 18293.59

8754.04 8766.76 8779.48 11513.71 11530.99 11548.26 18548.49 18570.16 18591.84

8799.09 8820.53 8841.97 11567.26 11584.42 11601.59 18603.02 18630.68 18658.34

8860.56 8871.76 8882.96 11611.34 11634.82 11658.3 18708.84 18730.03 18751.21

8882.98 8891.91 8900.84 11670.69 11686.46 11702.22 18811.43 18848.65 18885.87

8904.09 8925.16 8946.24 11719.74 11732.72 11745.69 19343 19378.06 19413.11

8954.36 8961.34 8968.33 11746.38 11756.13 11765.89 20886.02 21156.71 21427.39

8968.81 8978.23 8987.65 11769.8 11786.1 11802.4 21669.84 21804.69 21939.55

8988.02 8998.68 9009.33 11826.75 11843.48 11860.2 22566.7 22604.25 22641.79

9010.43 9019.53 9028.62 11876.81 11889.88 11902.95 22999.81 23033.14 23066.47

9028.78 9037.31 9045.84 11903.39 11913.25 11923.11 23097.51 23130.26 23163.02

Lower 
m/Z

Center 
m/Z

Upper 
m/Z

23213.01 23246.92 23280.82

23305.86 23353.04 23400.22

23429.2 23467.05 23504.91

25144.7 25185.27 25225.84

25429.35 25473.61 25517.87

25519.61 25570.37 25621.14

25624.4 25686.01 25747.63

27915.48 27962.78 28010.08

28037.85 28133.53 28229.2

28237.01 28338.55 28440.09

28800.67 28859.9 28919.13

28924.34 28972.72 29021.1

29030.65 29078.6 29126.55
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To ensure that spectral data can be reproducibly generated, the QC/reference samples 
that were included at the beginning and end of each batch of samples run were 
used to batch correct the feature values of each batch of samples. Batch correction 
parameters were determined by comparing the feature values of the QC/reference 
samples within the batch to gold standard values for the QC/reference sample 
defined from those contained within the first batch of the development set samples 
that were run. Note that development set samples and test samples were not used 
in determining batch correction parameters. Once the batch correction parameters 
were obtained for a particular batch, all feature values for each spectrum in the batch 
were corrected. This process adjusted for small m/Z dependent changes in mass 
spectral performance of the mass spectrometer or between mass spectrometers.

The final step in processing of the spectra was another partial ion current 
normalization step. Using the development set of spectra, a subset of the 274 identified 
features was defined for final spectral normalization comprising features that had 
low coefficients of variation and were not associated with the clinical outcome 
variables in the development set. The m/Z regions (also features) used and fixed as 
parameters in the fully-specified test are listed in Supplementary Table 6.

Supplementary Table 6: m/Z regions used for final normalization

Lower limit m/Z Upper limit m/Z

4351.40 4368.27

4372.40 4389.66

4553.30 4577.84

5396.97 5411.16

8353.19 8378.85

8401.71 8420.63

8954.36 8968.33

8968.81 8987.65

8988.02 9009.33

9028.78 9045.84

9089.32 9104.51

9196.31 9219.45

9254.17 9272.44

9639.94 9655.20

10128.04 10151.71

10171.98 10197.16

10197.54 10224.60

14401.51 14460.94
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The final normalization coefficient was calculated for each spectrum and all feature 
values were divided by the normalization coefficient for the spectrum/sample to 
produce the final processed feature values. These were the feature values that were 
used for the development set samples for the creation of the test and these would be 
the feature values that would be input into the test classification algorithm when 
performing the fully specified test on a new sample.

3.  Machine Learning: Development of the Classification Algorithm

A test classification is generated using a combination of 3 binary classifiers. Each 
classifier was created using the classifier development approach outlined in the 
next section.

a.  A hierarchical classifier development platform designed for problems 
where the number of available instances is smaller than the number of 
measured attributes

Each classifier was created using a hierarchical classifier development platform 
designed specifically to work well in settings where the number of attributes 
(features) measured for each instance (sample) exceeds the number of instances 
available for classifier training. It incorporates aspects of traditional and modern 
machine learning, including bagging, boosting, and regularization using dropout, 
with the aim of producing classifiers with reliable performance estimates from 
relatively small sample sets while minimizing chances of overfitting to peculiarities 
in the development set data. This platform has been used in several other 
personalized medicine projects. Details of the approach can be found in Roder J, 
Roder H. Classification generation method using combination of mini-classifiers 
with regularization and uses thereof. United States patent US 2016; 9,477,906. (ed. 
Office, U.S.P.a.T.) (Biodesix, USA, 2016), and references [14] and [17].

b.  Training Class Definition and a Semi-Supervised Approach to Simultaneous 
Refinement of Training Class Labels and Classifier

This approach used supervised learning, i.e., training class labels were needed 
for each instance (sample). To solve this particular classification problem using 
supervised learning one would need to know which patients received durable 
benefit from immune therapy and which did not. It was not a priori clear how 
to unambiguously define durable benefit from time-to-event data in a way that 
revealed underlying information in the molecular data. We employed an approach 
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that simultaneously refined training class labels for classifier development at the 
same time as the classifier itself. This approach is explained in detail in [17].

c.  Classifier A: Redevelopment of BDX008 to use current mass spectral 
preprocessing and feature definitions

The development of BDX008 has been outlined in detail in Ascierto et al13. This used 
different spectral processing and feature definitions than we use here. Hence, an 
alternative version of this test was developed to allow standardization of spectral 
processing and mass spectral features across all three classifiers. The redevelopment 
used spectra from 113 of the 119 serum samples obtained from patients with 
melanoma prior to treatment with nivolumab originally used to develop BDX008. 
All 274 mass spectral features defined herein were used in the approach. All other 
parameters were kept the same as in BDX008 development.

d.  Sample subsets and parameters used to define classifiers B and C

Supplementary Table 7: Parameters used in classifier development of classifiers B and C

Classifier C Classifier B

Samples used for 
development

96 development set samples 
that were not both BDX008+ 

and from a patients with 
performance status =0

76 development set samples 
that were not both BDX008- 
and in the poor prognosis 

group of Classifier C

k (for kNN) 11 11

# training/test split 
realizations

625 625

# dropout iterations 20,000 200,000

Averaging over dropout 
iterations

Weight-based Weight-based

Filtering metric PFS Hazard ratio between 
classes

PFS Hazard ratio between 
classes

Initial assignment of 
training classes

PFS time < median vs PFS 
time > median

PFS time < median vs PFS 
time > median

MS features used 29 features associated with 
Immune Response Type 2 

(See Supplementary Table 8)

All 274 features
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The mass spectral features associated with Immune Response Type 2 were determined 
by protein set enrichment analysis using the 49-sample reference set with both mass 
spectral data and protein expression data using the methods described in Grigorieva 
et al21. They are listed in Supplementary Table 8.

Supplementary Table 8: Subset of mass spectral features identified as being associated with 
immune response type 2 and used in development of Classifier C. The center m/Z rounded 
to whole Daltons is provided.

Rounded center m/Z Rounded center m/Z Rounded center m/Z

3111 5795 11584

3157 5935 11843

3177 6009 11890

3396 6175 11913

3888 8216 11997

4642 9934 13796

5186 10848 14787

5693 11056 14882

5734 11443 23353

5750 11531
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Commentary

Summary
Analysis of tumor-infiltrating lymphocyte (TIL) functional states, particularly 
tumor-reactive PD-1T TILs, within specific spatial context, can serve as a biologically 
informed predictive marker of immunotherapy that may be superior to standard 
clinical biomarkers. High-plex quantitative immune cell phenotyping within their 
spatial context has tremendous potential in immuno-oncology.

In this issue of  Clinical Cancer Research, Hummelink and colleagues report on 
programmed cell death protein 1 (PD-1T) TILs, a tumor-reactive tumor-infiltrating T 
lymphocyte (TIL) pool, as a predictive biomarker for immunotherapy in non–small 
cell lung cancer1 (NSCLC). PD-1T TILs represent an intratumoral CD8+ T-cell population 
with high PD-1 expression, distinct transcriptional profiles, and increased tumor 
recognition capacity2. This subset of PD-1+ tumor-infiltrating T cells is preferentially 
recruited in tertiary lymphoid structures (TLS) and can be identified by bright PD-1 
expression that can be digitally quantified and distinguished from other PD-1+ 
cells1,2. Hummelink and colleagues report their findings on the predictive accuracy 
of PD-1T TILs in the context of immune checkpoint inhibitor (ICI) therapy for patients 
with NSCLC receiving nivolumab or pembrolizumab. Following a digital workflow 
for PD-1T TIL quantification in formalin-fixed paraffin-embedded tissue, the authors 
evaluated the association of PD-1T TIL density with clinical outcomes, focusing on 
disease control at 6 months (a surrogate endpoint also known as durable clinical 
benefit3) as their primary endpoint. The predictive accuracy of PD-1T TIL density 
(AUC ROC, 0.72–0.79) was superior to that of programmed death-ligand 1 (PD-L1) TPS 
score, commonly used in NSCLC to identify tumors more likely to regress with ICIs 
(AUC ROC, 0.58). Notably, the predictive nature of PD-1T TILs may be enhanced for 
determining long-term clinical outcome and sustained clinical response past 6 
months (ROC AUC, 0.79–0.89 for prediction of disease control at 12 months). As PD-
1T TILs were predominantly found in TLSs1,2 and the role of mature TLS in antitumor 
immune responses in the context of immune checkpoint blockade4, the authors 
investigated the incremental value of assessing PD-1T TILs over the number of TLS 
within the analyzed tumors; these analyses showed that the predictive value of PD-
1T TILs was not driven by TLS density alone (ROC AUC for the latter 0.62). Taken 
together, these findings build on the previously reported role of this functionally 
distinct subset of CD8+ intratumoral T cells2 and support PD-1T TILs as a putative 
determinant of response to immune checkpoint blockade and suggest that 
prospective validation in larger cohorts should be prioritized.
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The study of Hummelink and colleagues, emphasizes that a nuanced spatially 
informed quantitative analysis, that captures T-cell populations with unique 
functional properties and tumor recognition capacities, may more accurately identify 
individuals more likely to respond to immune checkpoint blockade compared with 
conventionally used biomarkers. Currently established predictive biomarkers of ICI 
response include microsatellite instability5 (MSI), which is detected in <5% of human 
cancers, as well as PD-L1 expression and tumor mutation burden (TMB), that both 
suffer from technical and biological limitations. The clinical utility of PD-L1 testing 
varies on the basis of the cancer type evaluated and the ICI therapy considered6, 
with several phase III trials failing to reproduce the association between PD-L1 
expression and ICI response7,8. Similarly, with the exception of MSI-high tumors, the 
predictive value of TMB is cancer-lineage dependent9 and not consistently predictive 
of ICI response10,11. In contrast to PD-L1 expression or TMB that serve as surrogates 
of an antitumor immune response, PD-1T TILs are an indicator that an effective 
tumor-specific T-cell response has occurred and can therefore serve as a biologically 
relevant measure of clinical outcomes. Furthermore, as PD-1T TIL density was largely 
independent from PD-L1 TPS in the study by Hummelink and colleagues; it is 
conceivable that PD-1T TIL density may be informative for PD-L1 negative tumors as 
well as tumors with PD-L1 TPS in the gray zone of 1% to 50% (Figure 1). Conceptually, 
PD-1T TILs can be used as a footprint for active tumor-specific adaptive immune 
responses and therefore might enable patient selection for ICIs in cancers with 
marginal anti–PD-1 response rates, for example ovarian and breast cancer.

The value of TILs in reflecting adaptive antitumor immune responses and 
ultimately clinical responses with ICI therapy has been previously demonstrated12, 
with emerging studies supporting the additive benefit of considering TIL functional 
profiles and their spatial localization within the tumor microenvironment (TME). To 
this end, spatially resolved multiplex immunofluorescence analyses have uniquely 
enabled spatial mapping of immune cells and assessment of their heterogeneity in 
the TME13-15, revealing relationships among TIL subpopulations that are linked with 
differential ICI clinical outcomes16. Furthermore, evaluation of PD-1/PD-L1 proximity 
rather than PD-L1 expression alone may more optimally distinguish tumors more 
likely to regress with ICI therapy17. In addition to evaluation of the PD-1/PD-L1 axis, 
spatially resolved quantitative immunofluorescence approaches have the potential 
to interrogate interactions and localization of immunoregulatory molecules 
such as IDO-1, LAG-3, TIGIT, TIM-3, and VISTA, providing a unique opportunity to 
understand mechanisms of response and resistance to novel checkpoint inhibitors 
currently tested in clinical trials. Overall, these approaches have been shown to 
more accurately predict ICI response compared with PD-L1 expression and TMB18.
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Figure 1. Impact and roles for spatially resolved high-plex assays in immunotherapy 
treatment and biomarker discovery. Spatially resolved high-plex methods, including 
quantitative immunofluorescence and digital spatial profiling, are high-throughput 
approaches that allow for simultaneous identification of multiple biomarkers in their spatial 
context. These methods have the unique potential to provide insights in the phenotype and 
spatial localization of immune cell subsets and thus serve as biology-informed biomarkers 
reflecting the quality and architecture of antitumor immune responses. As such, they can 
be incorporated in patient selection strategies for cancer immunotherapy and be used as a 
platform for novel biomarker discovery. (Adapted from an image created with BioRender.
com.)

Similarly, spatial phenotyping by reconstruction of cellular neighborhoods has 
pointed towards local enrichment in immune cell subpopulations and differential 
organization of the TME that is reflective of distinct antitumor immunity states19. 
Implementation of photo-cleavable oligonucleotide tags attached to antibodies or 
RNA probes has further increased the multiplexing capacity, dynamic range and 
level of detection of digital spatial profiling approaches. Spatial transcriptomics 
represent another avenue of interrogation of immune cell spatial heterogeneity, 
with neoantigen-reactive T-cell clones shown to harbor unique transcriptomic 
profiles that are further differentiated in the TME of ICI responsive tumors20. While 
spatially resolved and high-plex assays may uniquely assess the immune contexture 
of tumors at a single-cell resolution, further standardization is required to generate 
analytical platforms that allow for measurement of complex spatial associations. 
Notably, these approaches are more likely to succeed when representative of spatial 
and functional interactions, following the paradigm of the study by Hummelink 
and colleagues that relied on interrogation of a TIL subset previously functionally 
characterized and found to be tumor-reactive2.
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Collectively, high-plex quantitative evaluation of immune cell subpopulation 
phenotypes, in their spatial context, holds unique promise as a near-term improved 
biomarker of treatment response and has tremendous potential for ICI biomarker 
discovery, especially for the subset of tumors with low PD-L1 expression and/or low 
TMB.
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Toen ik in 2017 aan mijn PhD-traject begon, kon ik alleen maar dromen van dit 
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er soms pittige periodes waren, heb ik vooral veel plezier beleefd aan het tot stand 
komen van dit proefschrift. Graag neem ik nu de tijd om iedereen te bedanken die 
heeft bijgedragen aan dit werk.

Promotieteam
Kim, als eerste wil ik jou bedanken. Wij leerden elkaar kennen toen ik als ANIOS 
pathologie op de afdeling begon. Al snel werkten we samen aan verschillende 
biomarkerstudies, waarbij jouw enthousiasme en ambities mij overtuigden om aan 
een PhD-traject te beginnen. Ik denk met plezier terug aan onze lange gesprekken 
en discussies in jouw groene, met planten gevulde kantoor, waar altijd ruimte was 
voor een koffietje en een lolletje. Ik heb veel geleerd van jouw kritische, scherpe 
en pragmatische blik op het uitvoeren van translationeel biomarkeronderzoek. 
Bijvoorbeeld hoe je onderzoeksvragen zorgvuldig formuleert, de aannames die je 
maakt kritisch afweegt en deze vertaalt naar het klinische probleem dat je probeert 
op te lossen. Daarnaast heb je me geleerd om in de diagnostiek niet te verzanden in 
details, maar te focussen op de consequenties van je handelen voor de patiënt. Ook 
heb ik door jou meer inzicht gekregen in de moleculaire biologie van longkanker. 
Deze kennis zal ik zeker meenemen in mijn eigen verdere carrière. Dank ook voor 
je enorme toewijding tijdens dit lange traject. Het verliep niet altijd even snel, maar 
ik ben trots op de resultaten die we samen hebben bereikt!

Gerrit, dank voor je vertrouwen in mij. Ik herinner me nog goed hoe ik, onervaren en 
net afgestuurd in de geneeskunde, bij jou binnenkwam. Je hebt me de vele facetten 
van translationeel onderzoek bijgebracht en wist me steeds bij te sturen als ik 
vastliep. Ook in moeilijke momenten kon ik bij je aankloppen voor goede raad. Je kon 
me wijzen op de hiaten in mijn kennis en me zo prikkelen om me meer te verdiepen. 
Ik bewonder je kritische blik en de enorme hoeveelheid kennis die je bezit, zowel als 
onderzoeker en als patholoog. Je wist altijd op het juiste moment de scherpste vragen 
te stellen. Ook zal ik jouw advies om in de pathologie niet te vervallen in picture 
matching, zeker meenemen in mijn verdere opleiding tot patholoog.

Daniela, since our first meeting during my second year of my PhD trajectory, I 
have witnessed the start of what has become a truly fruitful collaboration. At that 
time, you had just published your groundbreaking research on PD-1T TILs in Nature 
Medicine, which inspired the promotion team to validate this promising biomarker 
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in larger NSCLC cohorts. I am incredibly grateful that you became my second co-
promotor and that this topic has become a central part of my thesis. Thank you for 
sharing your exceptional knowledge about cancer and the immune system. I have 
also learned a great deal from you about structuring and writing a paper, as well 
as the importance of figures in illustrating findings. I admire your dedication and 
relentless pursuit of excellence in research. I wish you all the best in your future 
endeavors and will continue to follow your work with great interest.

Egbert, als vooraanstaande en ervaren longarts was jouw bijdrage aan mijn 
promotieteam van grote waarde. De resultaten in dit proefschrift waren niet 
mogelijk geweest zonder jouw waardevolle inbreng. We hebben interessante 
discussies gevoerd over de eisen waaraan biomarkers moeten voldoen in de huidige 
praktijk van (over)behandeling met immuun checkpoint remmers. Ik bewonder 
jouw kennis en tomeloze inzet om NSCLC-patiënten in Nederland de best mogelijke 
behandeling te kunnen bieden. Dank voor al je opbouwende feedback en het altijd 
vrijmaken van tijd om met mij te brainstormen.

Lees- en promotiecommissie
Prof. dr. P. J. Van Diest, prof. dr. E. E. Voest, prof. dr. W. L. de Laat, prof. dr. M. M. van den 
Heuvel en dr. D. Cohen, hartelijk dank voor de tijd die jullie hebben genomen om mijn 
proefschrift te lezen en voor jullie deelname als opponent tijdens mijn verdediging.

Co-auteurs
Heel veel dank aan alle co-auteurs die aan dit proefschrift hebben meegewerkt; 
zonder jullie zou dit eindresultaat niet mogelijk zijn geweest. Graag wil ik een aantal 
personen in het bijzonder uitlichten.

Vincent, aan het begin van mijn PhD zag ik behoorlijk op tegen de statistiek die 
bij translationeel biomarkeronderzoek komt kijken. Dankzij jouw enthousiasme 
heb ik onze meetings echter altijd als zeer plezierig ervaren en kijk ik terug op een 
fijne samenwerking. Ik heb veel geleerd en kan nu artikelen veel beter op waarde 
schatten. De kennis die ik heb opgedaan zal zeker van pas komen in mijn verdere 
carrière. Hartelijk dank daarvoor!

Mirte, dank voor de fijne samenwerking, de gezelligheid en de vele leuke uitstapjes, 
zowel in het binnen- als buitenland. Onze hoogtepunten waren ongetwijfeld de 
overnachting in het Amstel hotel en de trip naar Barcelona! Samen met Robert en 
Michel heb je een uitgebreide klinisch geannoteerde patiëntendatabase opgebouwd. 
Hierbij mijn dank aan jullie drieën voor het delen van deze database met mij.
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Annegien, dank voor je betrokkenheid en hulp bij onder andere mijn PALGA-
aanvragen voor het verzamelen van tumorsamples, de AVG-kwesties en alle 
laboratorium ondersteuning die ik heb ontvangen om mijn analyses te kunnen 
doen. Dennis, ook jij bedankt voor je laboratorium ondersteuning, in het bijzonder 
voor het opzetten van de PD-1 immunohistochemische kleuring.

Daan, dank voor de fijne samenwerking en het delen van je waardevolle kennis 
over liquid biopsies.

Renaud, thank you for your significant contribution to the development of 
the PD-1T signature. I am very proud that we were able to publish this work in a 
reputable journal like Clinical Cancer Research.
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In het bijzonder wil ik alle collega’s van de TGO-groep bedanken die mij in 2017 
volledig opnamen in de groep, ondanks dat we niet direct samenwerkten aan een 
onderzoeksproject. Na een week hard werken heb ik enorm genoten van de gezellige 
vrijdagmiddagborrels in Radion, waar de beste verhalen op tafel kwamen na enkele 
(of meerdere) speciaal biertjes. De gezelligheid werd verder gekenmerkt door 
onze lunches om 11:37u stipt, de congressen, de boottochtjes door de Amsterdamse 
grachten, het squashen en het samen sushi eten. Jullie zijn een toegewijde en hechte 
groep die altijd klaarstond om mij te helpen wanneer ik ergens niet uitkwam. Ik 
bewonder de mooie wetenschappelijke successen die jullie hebben behaald en wens 
jullie het allerbeste voor de toekomst. Ik zal jullie werk zeker blijven volgen!

CFMPB, NKI-AvL
Ik ben alle collega’s van de CFMPB, van administratieve medewerkers tot de analisten 
van het lab, enorm dankbaar voor de ondersteuning die zij mij hebben geboden bij 
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en gesequenced worden. Zonder jullie hulp had ik dit niet kunnen realiseren!
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Dank aan alle longartsen van de thorax-oncologie voor de leerzame momenten 
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als tijdens mijn opleiding extra tijd aan mijn proefschrift te besteden.
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Buiten mijn werk om heb ik een hele fijne groep mensen om me heen die zeer 
dierbaar voor mij zijn en die ik voor geen goud zou willen missen! Dank dat jullie 
deel uitmaken van mijn leven. Nu wil ik graag het woord tot jullie richten.

Paranimfen
Lieve Dorothée, koffiemaatje, toen ik jou leerde kennen was mijn promotie al een 
paar jaar onderweg. Koffie heeft ons verbonden, en ik heb altijd genoten van onze 
koffiemomenten op het werk. Vooral in de ochtend als we nog even wakker moesten 
worden! Zelfs als ik het te druk had om met je mee te gaan, zorgde je ervoor dat ik 
koffie kreeg zonder dat ik erom vroeg. Eeuwige dank! Al snel leerden we elkaar 
beter kennen en groeide onze relatie van collega’s naar vriendinnen die elkaar ook 
buiten het werk zien. We delen dezelfde humor en kunnen enorm lachen samen. 
Festivals bezoeken is altijd een feest met jou! Daarnaast konden we alles met elkaar 
bespreken, en was je mijn luisterend oor tijdens proefschriftperikelen. Dank dat je 
aan mijn zijde wilt staan als paranimf.

Lieve Jeanine, we go ‘way back’, al vanaf ons eerste jaar als studenten in Nijmegen tot 
nu; jij als gepromoveerde en ik als bijna gepromoveerde! Nadat we ons geneeskunde 
diploma hadden behaald, was jij degene die mij kennis liet maken met Amsterdam. 
Samen door de straten struinen, leuke eettentjes ontdekken en natuurlijk feesten. 
Je gaf me het gevoel dat ik me hier echt thuis zou kunnen voelen. Als mede-
promovendus konden we alles met elkaar delen. Het was altijd een opluchting om 
mijn frustraties met je te kunnen delen of samen successen te vieren. Wij samen 
betekent gezelligheid, in een deuk liggen, dansjes wagen, lekker eten (en drinken), 
en alles met elkaar delen. Hoewel we inmiddels geen buren meer zijn, weten we 
allebei dat deze vriendschap voor altijd is! Ik ben heel blij dat je naast me wil staan 
als paranimf op deze bijzondere dag.

Vriendinnen
Lieve Caroline, Angelique, Renske, Ilse en Imke (Team Tequila), dank voor alle 
interesse en steun die ik gedurende mijn PhD-jaren van jullie heb ontvangen. We 
kennen elkaar al heel lang, en dat maakt deze groep zo bijzonder. Vanaf het eerste 
jaar geneeskunde hebben we samen vele onvergetelijke momenten, avonturen en 
mijlpalen beleefd. We wonen niet meer bij elkaar in de buurt maar we zien elkaar 
nog steeds regelmatig en dat waardeer ik enorm!

Lieve Lies, hoewel we elkaar pas als coassistenten hebben leren kennen, was dat het 
begin van een bijzondere en hechte vriendschap. We begonnen als sportmaatjes, 
maar al snel werd onze tijd vooral gevuld met veel geklets, samen eten, wandelingen 
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maken, shoppen, vakanties en vooral veel feesten. We klikten meteen omdat we 
zoveel gemeen hebben; we houden van dezelfde dingen en hebben zelfs dezelfde 
kledingsmaak (hoe vaak hebben we niet hetzelfde gekocht?)! Onze wilde tijden 
liggen inmiddels een tijdje achter ons en er is veel veranderd in ons werkende 
en gewone leven. Toch kan ik me een leven zonder onze vriendschap niet meer 
voorstellen. Het voelt altijd vertrouwd om weer bij jou te zijn.

Familie
Lieve familie Verhorst; Rina, Leendert, Remco, Leonie, Olivia, Quinn, Lisette, Olger, 
Sofieke en Jona, een warme familie met veel gezelligheid. Ik ben erg blij dat ik jullie 
dankzij Erik heb leren kennen.

Mijn roots liggen een flink stuk van Amsterdam vandaan, in de Achterhoek, in 
Zöwent zoals we daar zeggen. Daar is het echt thuuskomm’n. Ik ben ontzettend blij en 
trots om eindelijk tegen jullie te kunnen zeggen: het boekje is klaar! Lieve Monique, 
Jeannette, Luuk en Koen dank voor jullie onvoorwaardelijke steun gedurende dit 
lange traject. Ik geniet altijd van het samenzijn met de hele familie aan de lange 
tafel. De tafel die net groot genoeg is voor ons allemaal. Lieve Owen en Elin, jullie 
zijn nog klein maar ooit zal ik jullie vertellen over dit PhD-avontuur. Ik geniet altijd 
van jullie aanwezigheid en jullie zijn mij zeer dierbaar.

Lieve Coen en papa, we hebben al zoveel samen meegemaakt sinds mijn jonge jaren. 
Dank voor het vertrouwen, de steun en de liefde die ik altijd van jullie heb ontvangen, 
zowel in de mooie als in de moeilijke periodes van mijn leven. Jullie weten als geen 
ander hoe groot mijn wens was om dit PhD-traject te volgen en hoeveel werk het 
mij heeft gekost. Dit is waarschijnlijk mijn eerste en laatste boek, maar het betekent 
veel voor mij om deze mijlpaal samen met jullie te vieren.

Lieve mama, je bent er niet meer maar toch draag ik je altijd bij me. Mijn doel was 
om de wetenschap een stukje verder te brengen als eerbetoon aan jou. Ik ben er trots 
op dat dit gelukt is. Ik draag daarom dit proefschrift op aan jou.

Het slot van dit dankwoord is voor mijn rots in de branding, mijn grote liefde en 
beste vriend tegelijkertijd, lieve Erik. Jij hebt een groot deel van het proces naar dit 
eindresultaat meegemaakt. We hebben samen mijn publicaties gevierd, en je was er 
altijd om mij te steunen tijdens moeilijke momenten. Jij geeft mij rust en een echt 
thuisgevoel, een plek waar ik mijn batterij kan opladen en waar je me altijd weer 
kunt laten lachen. Geen woorden kunnen volledig beschrijven hoe dankbaar ik ben 
dat jij in mijn leven bent. Op naar nog vele jaren samen!
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