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Proteogenomics: what is it?
Proteogenomics is a recently-introduced methodology for obtaining new insights into 

basic biological processes controlling gene expression regulation and the discovery of 

novel disease mechanisms and biomarkers. Proteogenomics is a multi-omics technique 

that leverages data from the genome, transcriptome and proteome of a sample to 

inform one other. Proteogenomics methodology enables the comprehensive elucidation 

of complex, inter-dependent biological systems. The bioinformatics methodologies to 

extract insights from these data are error prone and an active area of research. This 

thesis contains a critical examination of the latest proteogenomics methodologies, 

original research to improve bioinformatics methods used in proteogenomics and 

a demonstration of their potential. In this introduction, I will outline the types of 

important biological questions that can be explored with the help of proteogenomics, 

the key experimental methods that produce the data used in proteogenomics, and the 

bioinformatics methods that make the resulting biological insights possible (Figure 1).

Figure 1: Structure of Chapter 1. LC-MS/MS = liquid chromatography tandem mass spectrometry. 
ORF= open reading frame. Mod = modification.

Biological phenomena in the translation of genome to proteome
In any human cell, intricate regulatory pathways are at play. We have an estimated 

20,000 genes that eventually become perfectly folded, biologically active proteins 

carrying out specific functions exactly when they are needed1. Ultimately, knowledge 
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of the proteome translates closely to understanding of cellular mechanisms. There is, 

however, a lot of activity before a protein is produced. The paradigm one gene, one 

transcript, one protein does not hold in eukaryotes. There is an order of magnitude 

more proteins than genes, and an even greater number of transcripts that either do not 

produce functional protein or do so at wildly varying proportions. The path to protein 

from DNA is controlled by numerous factors. To understand the regulatory factors at 

play, we have to study the genome and all its products.

Alternative splicing

Diversity on the protein level can be largely attributed by alternative splicing (AS)2,3. AS is a 

mechanism by which exons from a gene are joined together in different combinations to 

make various transcripts and thus produce various different proteins. AS is an essential and 

widespread process in multi-exon genes, and an important contributor to genomic diversity 

as well as tissue specificity4. AS begins with transcription of DNA sequence into precursor 

RNA containing both exons and introns of a gene. The spliceosome assembles on the pre-

RNA and catalyzes the removal of introns according to 5’ donor and 3’ acceptor splice sites 

(GU and AG respectively). Different combinations of introns are included and excluded from 

the mature mRNA, which is referred to as AS. There are several categories within AS that 

refer to the alternative use, skipping and/or retention of either exons or introns. 

Transcript diversity is largely attributed to AS and is a reason that humans have 

approximately equal or sometimes fewer genes than some less complex eukaryotic 

organisms such as a freshwater crustacean (Daphnia pulex). This diversity is useful; 

AS allows us to react to a variety of certain cellular needs/environments. In immune 

functions, for example, there is a heavy reliance on AS for T-cell response to antigens5. 

In embryonic development, there is carefully coordinated AS that is location- and time- 

specific6,7. The diversity that AS creates subsequently affects downstream processes 

such as cell signaling and protein-protein interaction networks8,9. These functions are 

so essential that AS malfunction is cause for a variety of cancers and other diseases10–12.

The assumption behind AS is that alternatively spliced transcripts result in changes in 

proteins that are expressed. The reality is more nuanced, since there are translational 

regulatory mechanisms that come in between a spliced, mature transcript and a 

resulting protein13. The signals for this type of regulation are often contained in the 

mRNA sequence itself. Lengths and sequences of the untranslated regions can affect 

interaction with translation machinery, slowing or stopping the production of protein 

from a given transcript14. Certain motifs in 3’ untranslated regions bind to microRNAs 
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(miRNAs), which serve to degrade transcripts thereby inhibiting translation15. Some 

transcripts containing abnormal stop codons are simply destroyed before translation 

through nonsense-mediated decay as a mechanism to prevent the production of 

potentially aberrant proteins16. These are just a few examples of the many mechanisms 

of post-transcriptional regulation in humans. Even if translation inhibition is absent, 

the predicted open reading frame may not be the one that is being translated. Many 

non-canonical open reading frames have been discovered in recent years17. Considering 

the many factors at play, assuming knowledge of which proteins are present from the 

transcriptome alone is misguided.

RNA and protein abundance

Since mRNA presence is prerequisite for protein production, the abundance of RNA is 

often used as the proxy for protein. However, variance in protein abundance explained 

by mRNA abundance ranges from 30-80% depending on the biological system, 

experimental setup and statistical models18. Although the two abundances correlate 

poorly to one another, the abundance of mRNA is a good proxy for presence (versus 

absence) of detectable protein in cells19. Regulation at the level of mRNA abundance is 

thus setting the “on” or “off” state of the gene20. Other post-transcriptional regulation 

mechanisms such as  RNA interference are responsible for the fine-tuning of protein 

levels21. Even taking into account post-translational regulatory processes would lead to 

an inaccurate estimation of protein levels, as there are additional regulatory feedback 

loops between transcription and translation that are not completely understood22.

Genetic variation

Diversity in transcripts and proteins can also arise from genetic variation. Large-scale 

sequencing efforts have led to the creation of a reference human genome and a better 

understanding of the true extent of genetic variation23–26. There are many types of 

genetic variations, but the most common and interesting from a molecular function 

perspective are small-scale. Single nucleotide polymorphisms (SNPs) involve a single 

nucleotide change at a particular position on the DNA sequence that could be present in 

either coding or non-coding regions. SNPs are the most common human variants. There 

are 4-5 million in any individuals’ genome. SNPs are associated with a wide range of 

phenotypic traits27,28. While the effects of individual SNPs on disease are typically small, 

their collective effects, summarized in genetic risk scores, can be large. Rare variations 

in the genome tend to have even larger effects on disease risk and are responsible for 

the majority of monogenetic disease29,30. 
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The reason that single base pair perturbations can cause disease is because of their 

ability to alter or disable a molecular function. A variant can cause multiple types of 

functional disruption with varying severity depending on where it is located. If the 

variants occurs in regions where proteins are coded, it can affect the functioning of a 

protein and disease phenotype31,32. Missense variants, a type of variant that causes a 

single amino acid substitution in a protein, are an important class of variants that are 

responsible for a reported 60% of Mendelian diseases33. A missense variant can alter/

destroy the functionality of the protein it occurs in, referred to as deleterious, or it 

could remain completely unchanged. A variant could also fall in intronic or intergenic 

regions. These variants are generally less impactful than those in coding regions, but 

there is evidence of non-coding variants having pathogenic effects34,35. In general, a 

more disruptive variant is more likely to be the cause of disease, but exact mechanisms 

must be experimentally verified to infer causation. 

The number of catalogued rare variants is increasing, as is our need to understand 

their possible link to disease36. Finding the cause of a disease requires a deeper 

understanding of the specific way a variant disrupts the system in question. The latest 

high-throughput experimental methods to measure variants’ effect on phenotype 

such as deep mutational scanning do not predict clinical phenotypes and still struggle 

to scale genome-wide, making computational prediction preferable37,38. It is possible 

to computationally predict variant effects by simply comparing the coordinate of 

the variant with the annotation at that location. However, some predictions require 

additional information to determine the extent of protein disruption. For missense 

variants, chemical properties of amino acids/protein structures as well as sequence 

conservation at the position of the substitution in an alignment with homologous 

sequences are two of the most important determining factors. Specific software such 

as PolyPhen239, SIFT40 and CADD41 use one or both of these factors in a classifier to 

determine the deleteriousness of a missense variant, and by extension, the likelihood 

of the variant in question to be associated with disease.

Experimental methods enabling proteogenomics
The biological questions that proteogenomics addresses requires a plethora of data 

which has only recently become practical to collect. Experimental methods to collect that 

data have improved rapidly in recent years, becoming more accurate, higher throughput 

and more easily accessible than ever before. The correct data is the indispensable basis 

for understanding the complex, individualized journey from DNA to protein. 
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Genomic sequencing and variant calling

Next generation sequencing (NGS) refers to post-Sanger high throughput sequencing of 

DNA and RNA, and is hallmarked by resolving short sequences from millions of fragments 

in parallel. State-of-the-art NGS platforms allow the elucidation of whole human genomes 

as well as comprehensive transcriptomes and genetic variants. Most technologies in NGS 

re-purpose DNA replication machinery to arrange fluorescent molecules for detection 

by a machine. The most widespread NGS technology on the market today is Illumina 

sequencing, a sequencing-by-synthesis (SBS) method utilizing reversible dye terminators42. 

In Illumina sequencing, millions of template DNA strands are bound to a glass slide and 

amplified in-situ. During sequencing, each template is extended one base at a time with 

fluorescent bases in subsequent cycles of reagent administration and washing. During each 

cycle, the intensity and positions of the fluorescent signals are captured by a microscope. 

After each cycle, a restoration step occurs wherein all modified bases are converted back 

to regular bases, priming the system for the next round of base extension. At completion 

of the run, the colors are matched back to their subsequent base in a process referred to 

as basecalling. The bases recorded from a single template position form a “read”, which is 

typically up to 150 base pairs43.

With this technology we can observe human variation, but calling it is harder. Simply 

put, positions that deviate from the reference sequence with enough read support are 

called as variants. There are plenty of technical challenges involved with calling variants 

from NGS-derived raw sequencing reads. Even when primers and low-quality bases 

are removed from the reads, artifacts may still be present in the data that could be 

confused for variation44,45. This post-processing can be more complicated, for instance 

if targeted sequencing protocols were used. Subsequently, the reads must be mapped 

to a reference genome, a non-trivial task for which over 60 mapping algorithms have 

been designed46. The performance of these mappers varies and is dependent on the 

sequencing quality, read length and sequencing error rate. After mapping, a variant-

calling algorithm will call variants in the sample by iteratively assessing each position 

of interest and combining information from all the reads mapped to that position. 

The number of times a position is observed in the sequencing data (depth) is a major 

consideration as it influences the computational load of the algorithms but also the 

accuracy of the variant calling47,48.  

Despite cost-effectiveness and high accuracy of short-read sequence technologies 

such as Illumina SBS, these technologies are associated with intrinsic limitations. Large 

genomic regions with high inter-individual (structural) variation are problematic to 
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assess. RNA sequencing can be performed when RNA is converted to cDNA, but isoform 

variation in RNA transcriptomes is difficult to observe. Long-read sequencing has been 

quite successful in addressing these49–52. Two distinct technologies dominate the long-

read sequencing scene: Pacific Biosciences’ single molecule real-time sequencing 

(SMRT) and Oxford Nanopore Technologies’ nanopore sequencing (ONT) (Figure 2). 

SMRT sequencers detect fluorescence corresponding to nucleotides that are added by 

an immobilized polymerase on the bottom of a well. ONT sequencing measures ionic 

current fluctuations that result from single stranded nucleic acids passing through a 

biological nanopore; resistances in the pore vary with the different nucleotides. While 

sequencing accuracy of these technologies was initially much lower compared to short-

read sequencing, it has improved dramatically since their introduction, and has shown 

to be further improved with consensus of multiple sequencing “passes” of the same 

read53,54. Having recently resolved the last unknown portions of the human genome24,55, 

long-read sequencing has successfully established its indispensability in the genome 

sequencing space. There is now a thriving ecosystem of an estimated number of 350 

bioinformatics tools to process long-read data56.

Figure 2: Under the hood of next generation sequencing approaches.
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Long-read sequencing shows promise over short-read sequencing, particularly in 

transcript isoform detection51,57,58. It is difficult to use short reads to resolve full 

transcript structures (mRNAs), which are on average 2 kilobase (kb) in length59,60, but 

can be as long as 20 kb. Performing de novo assembly of the short reads to detect 

new transcripts cannot overcome the limitation, because there are too many exon 

combination possibilities based on available reads, even sophisticated algorithms 

struggle61,62. Long read sequencing is addressing the limitations by outputting reads 

that are 3kb on average, clearing the length of the bulk of human transcripts. Similar 

to short read data, reads from long-read sequencing are typically first aligned to the 

genome before assembly. Specific alignment software/settings must be used with long 

reads since they more frequently have features such as sequencing errors and short 

exons63–65. Although long-reads reduce the ambiguity of the assembled transcriptome, 

there are still conflicting assembly methods/definitions of transcript novelty that 

cause considerable variation in output between assemblers66–68. Some definitions 

consider short exons, non-canonical splice junctions and/or alternative 3 and 5’ ends 

on transcripts (with otherwise known splicing patterns) to be novel transcripts. Other 

more conservative tools assume that one or more of these events are artifactual and 

“correct” them away using reference junction coordinates. Some research suggests that 

the best way to resolve this ambiguity is to combine long and short read sequencing in 

a hybrid approach69,70.

LC-MS/MS to observe genomic variation

Support for the extent of diversity in the transcriptome can be provided in the form 

of protein evidence. The most common way to provide this on a whole-proteome 

level is with mass spectrometry proteomics71. Liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) in proteomics is a commonly-used method that involves the 

separation of proteins by chemical properties and subsequent analysis to determine 

presence of proteins in a biological sample72. 

In a typical shotgun proteomics protocol, proteins are first extracted from the sample 

and fractionated to reduce sample complexity and increase sensitivity. Proteins are then 

broken down into peptides using enzymatic cleavage, typically with Trypsin. Peptides 

are then separated based on hydrophobicity in an LC step and then ionized, generating 

charged ions. In data-dependent acquisition (DDA) mode, selected precursor ions are 

fragmented with a fragmentation technique depending on the MS instrument. Resulting 

product ions are analyzed to determine the amino acid sequence of the peptide, which 

is then bioinformatically matched back to the protein of origin.
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DDA has intrinsic detection limitations, however73. Since only the highest abundant 

precursor ions are selected for fragmentation, the detection rate of low abundant 

peptides is hampered74. Also, precursor selection has some randomness that limits 

reproducibility75. 

Since AS events and genetic variants can only be observed in a small number of 

peptides, relatively higher coverage is necessary to detect these events. Some details of 

the protocol can be optimized for the desired amount of coverage without the need for 

additional replicates. For instance, separating the isolate in more fractions can increase 

the amount of the sample going through the mass spectrometer and thus increase the 

number of peptide spectra produced76. The use of additional digestion enzymes other 

than trypsin can expand the variety of peptides, increasing the chance of covering the 

event with a optimally detectable peptide77. Precursor selection processes including 

parallel reaction monitoring (commonly referred to as targeted proteomics) can be 

utilized to increase sensitivity to certain variant peptides, but they require the use of 

synthetic peptides chosen beforehand78.

Bioinformatics methods encompassing proteogenomics
Terabytes worth of biological data can be generated, but discovery only happens after 

making sense of the data using bioinformatics. The methodological improvements seen 

in the last years have begun to provide the necessary measurements, but bioinformatic 

post-processing is the last piece of the puzzle to provide answers to our aforementioned 

biological questions. Accurate peptide identification is the backbone of discovery in the 

field of proteogenomics, as the answers to all the biological questions can ultimately be 

found in the proteome. 

Unfortunately, the accurate identification of peptide spectra is the biggest challenge 

at present. Even if we manage to experimentally acquire the spectra of non-standard 

peptides, there are difficulties in identifying them as such79. A major issue lies in the 

creation of the database used to identify the peptides. Peptides acquired in a DDA 

experiment are usually identified using a database search method wherein peptides 

are compared against all proteins that can be expected to be in the sample80. In human-

derived samples, this would be all human proteins from Uniprot plus a “junk” database 

containing proteins from common lab reagents. A standard database search would 

thus at best yield only identifications from proteins that are already known, and yield 

incorrect identifications at worst81. De novo sequencing in proteomics eliminates the 

need for a peptide search database, but suffers from prediction accuracies around 35%, 
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making database-search the more reliable identification method in general82. In a typical 

proteomics workflow, less than half of the acquired spectra go unidentified and are 

thus discarded83. In general, proteo(geno)mics aims to increase that yield by screening 

for peptides outside of the refence proteome. Computational proteomics focuses on a 

data-driven approach while proteogenomics uses a data-informed approach to address 

obstacles in the identification of unidentified spectra (Figure 3).

Figure 3: Approaches to enable variant peptide identification
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Computational proteomics methods to increase identifications

Although technically not proteogenomics, computational proteomics also seeks to 

increase the accurate identification of peptides not found in the database. Computational 

proteomics encompasses computational methods such as de novo sequencing to 

increase sensitivity. Improvement in this area focuses on resolving ambiguities in 

acquired spectra that underpin the challenges in peptide identification.

Some of these spectral ambiguities are technical in nature, originating from MS/MS 

protocol/machinery. When using search databases to identify peptides, generated 

spectra are matched to theoretical spectra and the quality of the match is scored. It is 

straightforward to predict peptide sequences from full protein sequences using an in 

silico digest, as enzymes such as Trypsin digest amino acid sequences  in a predictable 

manner84. Predicting the expected spectral peak heights and m/z values from any known 

peptide sequence is more complex. B- and y-ions are the most abundant products from 

fragmentation since the peptide bond is most easily broken, so most theoretical spectra 

are based on these. There are, however, many other fragmentation products that can 

be produced and contribute to the end peptide spectrum, which results in imperfect 

matches in the real world85. Spectral library searching is a method used to address this 

issue. It utilizes a collection of previously identified full spectra, resulting in a gain of 

sensitivity and selectivity. However, it is limited to previously-observed spectra and, 

similar to database searching, does not aid the discovery of novel peptides/proteins86.

There are also biological explanations for spectral ambiguities; m/z values may 

deviate due to post-translational modifications (PTMs), for instance. PTMs such as 

phosphorylation are common in proteins and essential for protein regulation and cellular 

signaling87. Spectra from PTM-containing peptides may have slightly shifted peak(s) as 

compared to their non-PTM containing counterparts, and they are thought to make up 

a third of unassigned spectra88. There are over 1,500 different PTMs which can produce 

mass shifts on any given spectra89. Despite their prevalence and importance, many 

popular peptide search engines fail to accurately identify most of these PTMs90. This 

issue extends to amino acid substitutions; peptides with single amino acid substitutions 

originating from (potentially disease-informative) genomic variation such as SNPs can 

manifest into a mass shift indistinguishable from that from a PTM. 

In computational proteomics, machine learning techniques have been instrumental 

efforts to resolve the ambiguity around PTM and variant mass shifts. Improvements of 

identification methods using such can help reduce the size of search space, such as in 

the so-called “open modification search” 91. Sequence tag-based peptide identification 
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is one such method that utilizes short stretches of de novo sequencing (tags) combined 

with sequence database search to allow for flexibility in identification by removing 

all candidates without the de novo sequenced tag from the database92,93. The mass 

differences between pairs of peptides with the same sequence tag can improve 

differentiation between PTMs. The use of additional information from the LC-MS/MS 

protocol itself can also be used to aid identification efforts. For example, retention time, 

or the time it takes for a peptide to be eluted from a chromatography column, is a 

measure that has been successfully used to identify false positive identifications94,95. 

Better modeling of the real-world effects of MS protocol leads to improved theoretical 

spectra with which to match. Peak intensity prediction for matching was improved by 

training an ML model on large spectral library sets, allowing for the benefits of spectral 

library matching on unseen peptides96,97. 

Peptide identification using informed sequence databases

The basis of all proteogenomics approaches involves the inclusion of DNA and/or RNA 

sequences and their predicted protein products, but the balance between the power 

of additional genomic information and the costs in proteomic detectability is a delicate 

one. In order to correctly identify a peptide, it must be present in the search database 

(completeness), but have an identification strategy that is both sensitive and specific. 

Unfortunately, the more sequences included in a search database, the higher the 

likelihood that the best scoring match is incorrect98. Using a more complete database 

can ironically result in fewer identifications than using a more limited consensus 

database99,100. Prudent usage of transcriptome and SNP information from the sample 

in question is advisable to harness the increasing availability of nucleotide sequencing 

data to inform peptide matches. 

Short versus long read sequencing data in the search database

As the peptide search database is populated with RNA sequencing information, the quality 

of the methods used to assemble the transcriptome directly impacts the quality of the 

proteomic findings. Short-read sequencing is unable to confidently resolve full isoforms, 

particularly with more lowly expressed transcripts101. Therefore, complex computational 

methods are necessary to identify novel transcripts and their corresponding protein 

products using short-read data102–104. For example, splice-graph based databases are 

used to include all possible protein products of short-read-detected spice junctions in 

the search database. Such methods, however, are not ideal since the corresponding 

amino acid sequence from these splice junctions cannot be confirmed among the 
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multiple possibilities. In practice, this means choosing between the enforcement of one 

reading frame that may not be correct105 or the addition of many redundant entries in 

the database (6 frame translation) 106. Long read RNA sequencing is better suited to aid 

discovery in the proteome by reducing the amount of noise in the search database as 

compared to short read sequencing. However, it is important to define what constitutes 

novelty in the transcriptome (see genomics sequencing section above). The use of a 

looser definition including e.g. non-canonical junctions and alternative 3/5’ ends results 

in more ‘novel’ transcripts but likely more false positive transcripts and a larger search 

space if used in the peptide search database.

Open reading frame prediction

Novel transcripts discovered by long-read RNA sequencing must be converted into 

(predicted) protein sequences before being incorporated into the search database. 

There are several options for ORF prediction. The most comprehensive solution is a 

full six-frame translation (6FT), which creates six predicted protein sequences per 

transcript taking into account all possible frames of translation that could occur107–109. 

The correct ORF will be present in the six, but one or multiple incorrect amino acid 

fragments are also included, reducing specificity99. One simple way to reduce six frames 

to three is to include strand information. A few other common strategies to eliminate 

unlikely ORFs in 6FT include imposition of a minimum length threshold for the predicted 

protein product, selection based on homology to known coding sequences and the use 

of ORF prediction software110–113. Identification of certain nucleotide features that point 

to codingness has led to statistical models that output accurate ORF predictions114–116. 

CPAT is one such example that uses a logistic regression model to predict transcript 

codingness and likely ORF sequence using sequence features such as hexamer (6NT 

window) and codon usage biases. 

Options for adding variants to search database

Ultimately, taking all the above considerations in account makes it more likely that 

the non-reference sequences that are added to the proteogenomic search database 

are accurate. Depending on the goals of the study, the search database can be further 

refined by including genetic variants (based on WGS/WES) or alternative isoforms 

from an individual. In cases where the variants of the individual are not known, it is 

still possible to identify them by incorporating known variants from popular databases 

such as dbSNP and COSMIC 117–119. In the same vain, alternative isoforms can be inferred 

from publicly available Expressed Sequence Tags 120–122. An attractive option to reduce 
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the database size is to only include protein sequences that correspond to transcripts 

that were found to be expressed in the sample. It is however still common practice 

to also include all canonical proteins when adding variants to the search database, 

regardless of whether their transcripts were expressed because RNA sequencing in a 

typical experiment does not have full coverage. 

Confidence in peptide identification

In peptide identification, pairings are made with the closest match between theoretical 

spectra derived from peptide sequences and observed spectra (peptide-spectrum 

matches, PSMs). The resemblance between the theoretical and observed spectrum 

is reflected in a score. As many PSMs are incorrect, a scoring system combined with a 

confidence threshold will help remove the majority of the false positive matched. False 

discovery rate (FDR) estimation is a commonly used procedure to help determine a 

statistically sound decision when removing false positives123. The most common method 

is the target-decoy model; reversed or shuffled peptide sequences called decoys are 

added alongside the true (target) peptides in the search database124,125. The underlying 

assumption is that the score distribution of decoy matches and incorrect target matches 

will be similar. The list of reported discoveries is sorted by score and filtered such that the 

proportion of decoy matches in the final list is less than a desired threshold, thus removing 

the lower-scoring incorrect target matches. FDR itself is estimated by dividing the number 

of decoy identifications by the number of target identifications above a certain threshold.

This method of FDR estimation has been widely accepted but is imperfect. Larger 

databases, which are common in proteogenomics, yield fewer peptide identifications at 

the same FDR threshold126,127. It can also unfavor certain subcategories of peptides, such 

as variant peptides128. Global FDR estimation fails in those settings due to the relatively 

smaller size and heterogeneous nature of identifications in this subcategory98,129. Other 

refined methods of calculating FDR for variant/subgroup peptides have been proposed 

to increase the number of identifications, but they have not been independently 

benchmarked119,130. Some studies attempt to circumvent the problem altogether using 

so-called multi-pass strategies whereby multiple searches are performed on subsets of 

the total search database119,131,132. They yield more identifications, but error rates are 

impossible to quantify, calling their validity into question 133.
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Scope of this thesis
In this thesis, the power of long-read transcriptome sequencing is exploited to further 

understanding of transcriptomic and proteomic variation. This thesis explores the 

potential of novel proteogenomics methodology with long-read sequencing, suggests a 

way forward in the field, and provides an open-source tool of potential use in diagnostics. 

The thesis also aims to assess the gains of proteogenomics over standard proteomics 

to identify variant proteins. In Chapter 2, we examine in detail how and to what extent 

long-read transcriptome information can lead to discovery of protein variants using 

proteogenomics. An application of these methodologies to uncover novel biology was 

performed in Chapter 3, where long-read proteogenomics was applied to profile the 

host-pathogen interaction in response to multiple pathogenic stimuli. We study the use 

of alternative isoform usage in certain cellular conditions. A new method to leverage the 

increased transcriptional diversity (as a result of long-read sequencing) to re-annotate 

patient variants is described in Chapter 4. This new method, called SUsPECT, utilizes 

a more accurate set of transcripts and proteoforms to better estimate the impact of 

variants on protein function than using standard reference databases. The method may 

be useful in aiding diagnostics for patients with rare monogenic disease as long-read 

transcript data (and corresponding proteome data) becomes more widely available. I 

conclude with the applications, limitations and future outlook on the proteogenomics 

field in Chapter 5.
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Abstract
Discovery of variant peptides such as single amino acid variant (SAAV) in shotgun 

proteomics data is essential for personalized proteomics. Both the resolution of 

shotgun proteomics methods and the search engines have improved dramatically, 

allowing for confident identification of SAAV peptides. However, it is not yet known 

if these methods are truly successful in accurately identifying SAAV peptides without 

prior genomic information in the search database. We studied this in unprecedented 

detail by exploiting publicly available long-read RNA seq and shotgun proteomics data 

from the gold standard reference cell line NA12878. Searching spectra from this cell 

line with the state-of-the-art open modification search engine ionbotTM against carefully 

curated search databases resulted in 96.7% false positive SAAVs and an 85% lower 

true positive rate than searching with peptide search databases that incorporate prior 

genetic information. While adding genetic variants to the search database remains 

indispensable for correct peptide identification, inclusion of long-read RNA sequences 

in the search database contributes only 0.3% new peptide identifications. These findings 

reveal the differences in SAAV detection that result from various approaches, providing 

guidance to researchers studying SAAV peptides and developers of peptide spectrum 

identification tools.
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Introduction
Proteomes display significant inter-individual variability 134,135 and personal proteomes 

may delineate disease risk and pave the way for personalized disease prevention and 

treatment. Personalized cancer treatment, for instance, is already instigated based 

on the detection of peptides containing single amino acid variants (SAAVs) that often 

serve as excellent biomarkers 136–141. Detecting these SAAV peptides reliably, however, 

is a formidable challenge. Previously, scientists looked for protein evidence of a small 

number of variants in particular and resorted to targeted proteomics approaches such 

as selected reaction monitoring (SRM) 142–145. Alternatively, BLAST-like query tools such 

as peptimapper and PepQuery 146,147 or database tools like XMAn v2 148 and dbSAP 149 can 

be used to investigate single events 150,151. Proteogenomics, the integration of genome 

and transcriptome information, is a more holistic and higher-throughput form of mass 

spectrometry- (MS-) based detection of variant peptides. 

A main limiting factor of SAAV peptide (called ‘variant peptide’ for the remainder of the 

manuscript) detection with shotgun proteomics is the tandem mass spectrometry (MS/

MS) technology itself. Since MS/MS spectra are generally too noisy to call a peptide 

sequence de novo, current MS/MS analysis methods rely on a database of known 

peptides. This limits the ability to detect unknown peptides such as variant peptides. 

The most flexible way to detect variant peptides is an exhaustive search; allowing any 

possible amino acid substitution at any position in the peptide sequence 152,153. However, 

this strategy increases the search space immensely to a point where it is no longer 

useful in practice. The larger search space leads to ambiguity in peptide identification 

and thus a high number of false positive hits 154,155. Therefore, more careful curation of 

sequences in the search database pays off. 

Databases of peptides containing variants from dbSNP have been created to facilitate 

the search for SAAVs 149,156, and simply adding these variant peptides to the database 

showed promise early on 156,157. Not all dbSNP variants however, are expected to be found 

in every sample, and including them all may lead to false identifications 106. In addition, 

rare and unique variants may be overlooked. A proteogenomics approach where only 

those variant peptides predicted from genome or transcriptome information are added 

to the peptide search databases, can improve their detection. Proteogenomics pipelines 

have streamlined this process of incorporating personal genome information into a 

proteomic search database 158–162. In addition, there is evidence that including correct 

sequence variant information, including often-overlooked sample-specific indels and 

frameshifts, improves variant peptide identification workflows 163. Yet, false discovery 
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rate (FDR) correction is needed to compensate for the increase of database size and 

complexity 154,155. When searching for evidence of specific peptides such as variant 

peptides, an additional subset specific FDR correction should be made 164.

In addition to SAAVs, alternative splicing may also introduce sample specific peptides. 

Alternative splicing is commonplace as 90% of genes undergo alternative splicing 165. Since 

protein reference databases do not cover all protein isoforms produced by alternative 

splicing, sample-specific transcriptome information is advantageous. Typically, the 

information on alternatively spliced sequences comes from RNA sequencing. Short-read 

RNA seq is however not ideal for properly capturing the complete splicing patterns and 

the resulting open reading frames (ORFs). Traditionally, this is circumvented by including 

3- or 6-frame translations of the sample’s transcriptome. However, this approach was 

found to expand the database far too much for eukaryotic organisms, leaving few 

remaining hits after FDR correction 166. Studies utilizing long-read RNA seq frequently 

discover previously unannotated transcript structures. Thus, full-length transcripts may 

add essential information for correct ORF prediction and peptide identification. 

An emerging alternative to proteogenomics methods for the detection of variant peptides 

is the ‘open search’ method. This allows unexpected post-translational modifications 

and amino acid substitutions in the peptide spectrum match, while maintaining 

accurate FDR and a workable computation time. Using sequence tag-based approaches, 

the search space is narrowed with de novo sequence tags, which makes room for the 

addition of all possible SAAV peptides in the search space 167–171. These methods were 

historically not as effective as classical proteogenomics searches in finding variant 

peptides, since there is difficulty in discerning between post-translationally modified 

and SAAV peptides. However, this situation has recently improved with the inclusion 

of optimized probabilistic models 172. One implementation of the tag-based method 

improved with such models is ionbotTM (manuscript in preparation; compomics.com/

ionbot), which is a machine learning search engine that uses MS2PIP 173 and ReSCore 174 

to significantly improve the accuracy of peptide match scoring. 

The main objective of this study is to compare a previously established proteogenomics 

approach based on long-read sequencing with a recently-developed open search method 

for the detection of true variant peptides. In simpler terms, we compare a genome-

informed search space with typical spectrum identification settings to a genome-

uninformed search space with advanced identification settings. We aim to understand 

the power of, and potential biases associated with, using an open search method 

without prior information about the genome. For this, we make use of high-confidence 
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nucleotide sequencing and (ultra)-deep proteomics data from a gold standard cell line 

NA12878.  Using correct ORFs from the long-read transcriptome and high-confidence 

phased variants belonging to this cell line, we gain a unique perspective on exactly what 

advantages can be gained by each approach.

Experimental section
NA12878 Data sources

Variant information was obtained from Illumina platinum genomes (ftp://platgene_

ro@ussd-ftp.illumina.com/2017-1.0/hg38/small_variants/NA12878/). The reference 

genome used was GRCh38, which can be downloaded from the pre-computed 1000 

genomes GRCh38 BWA database at ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/

technical/reference/GRCh38_reference_genome/ (with decoys). Transcript structures 

for NA12878 were sourced from the ONT consortium  175. In the consortium, Workman 

et al sequenced 9.9 million reads corresponding to 33,894 transcripts and 20,289 genes. 

The reference transcriptome and proteome are from GENCODE v29. 

Shotgun proteomics data came from the 176 study, downloaded from Peptide Atlas 

(http://www.peptideatlas.org/PASS/PASS00230). This dataset consists of 417 TMT6plex 

runs from 54 samples, with the reference tag (126.77) on NA12878 in every case. 

Creation of the search databases

In total, four search databases were created (see Table 1 below). 1) Database based 

on ONT transcriptome sequences only (referred to as ‘ONT’), 2) database based on 

GENCODE coding transcriptome only (referred to as ‘Ref’), 3) a database that is the 

union of 1) and 2) and contains no NA12878 specific variants (referred to as variant-

free or VF), and 4) the same sequences as database 3), but contains NA12878 specific 

variants (referred to as variant-containing or VC). A simple depiction can be found in 

Figure 1A and Table S1, while the detailed full workflow can be found in Figure S1. Each 

database had MaxQuant 177 contaminant sequences appended before search. 

The Ref search database was made by filtering GENCODE v29 predicted ORFs for 

those that were complete (no 5’ or 3’ missingness). The ONT database was created 

using transcript structures provided by the NA12878 consortium (https://github.com/

nanopore-wgs-consortium/NA12878/blob/master/RNA.md). The coordinates in the 

junction file (PSL format) provided were converted to BED with BEDOPS 178 and used to 

fetch the corresponding stretch of sequence from the GRCh38 genome with bedtools 179 

getfasta. The exons were assembled using in-house scripts to form the full transcripts, 
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and those that were non-identical to transcript sequences in GENCODE (“novel”) were 

then submitted to 2 ORF prediction software; ANGEL v2.4 (“dumb” ORF prediction 

on default settings) and SQANTI2 v2.7(https://github.com/Magdoll/SQANTI2). The 

translation of transcripts predicted by both prediction programs were added to the 

search database. ORFs from GENCODE were used for transcript sequences in ONT 

identical to transcript sequences in GENCODE. 

The VF database was simply the union of the Ref and ONT databases. The VC database 

was created by first creating full-length coding sequences (CDS) with variants included by 

replacing reference nucleotides according to the VCF file per CDS fragment, for every CDS 

fragment. If only homozygous variant(s) were present in a CDS fragment, only one variant 

CDS fragment was generated. If a CDS contained at least one heterozygous variant, two 

variant CDS sequences were generated corresponding to the different alleles. Fragments 

were then assembled to full CDS. If a full CDS contained at least one CDS fragment with 

a heterozygous variant, two full CDS were generated corresponding to each allele. For 

those full CDS that contained at least one variant, the variant version(s) of the sequences 

replaced the non-variant versions in the VF database to create the VC database.

Spectral search and post processing

Each run from Wu et al 2003 was first converted to the Mascot Generic Format(MGF) 

format using msconvert 180 with MS2 peak picking enabled. Each dataset was then 

searched against the four search databases described in the previous section, using 

ionbotTM version 0.5. Fixed and variable modifications were set according to the 

protocol in Wu et al. Open modification settings were enabled for all four runs, while 

open variant settings (for SAAV detection) were enabled for all runs except for on the VC 

database. Searches allowed for up to two missed cleavages. When parsing the search 

results, only spectra with an observed TMT6plex reporter ion 126.77 (corresponds to 

cell line NA12878) were retained.

Since sub-setting PSMs into groups such as variant peptides requires separate FDR 

correction 164, both VC and VF underwent a separate FDR correction for the variant 

peptide subset. Successful FDR correction requires the modeling of potential false positive 

peptide identifications using appropriate decoy peptides. In the case of variant peptides, 

this means a sufficient number of decoy variant peptide identifications must be present 

to accurately model the population of false positive peptides. Reversed sequences thus 

underwent the same processing steps as the true sequences in order to create the 

appropriate decoys. The distributions were checked for successful modeling (Figure S2).
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A variant peptide list was created to compare with ionbotTM identifications from searches 

of the VC and VF. The list was created with an in-house Python script that performs 

an in-silico trypsin digest (allowing for up to 2 missed cleavages) with the pyteomics v 

4.2 181 package and checks per protein for peptides that differ by only one amino acid 

between the VF and VC database. I and L were treated as identical, and a potential 

variant peptide was disqualified if it appears in any other reference protein sequence.

ionbotTM identifications presumed to be variant peptides (and variant peptide decoys) 

underwent subset-specific FDR correction for both combination databases, but the 

exact subset of variant peptides differed between the two searches due to different 

assumptions. The assumption in the VF database is that variants in the genome are 

unknown, so all predicted variant peptides (and predicted variant decoy peptides) 

were pooled for FDR correction. In the VC database, only known variant peptides (and 

corresponding decoy peptides) are pooled for FDR correction. We expect the different 

approaches to subset FDR to be comparable, as ionbotTM does not include duplicate 

peptides in the search database. This means that the databases being compared are 

of similar size on the peptide level, which is the level at which the FDR correction is 

performed. Q value calculation and cutoff (q < 0.01) were performed with an in-house 

python script (distribution can be seen in Figure S2).  Retention time predictions were 

calculated with DeepLC 182. All scripts referred to in this manuscript can be found in the 

GitHub repository (https://github.com/cmbi/NA12878-saav-detection).

Results
Search database makeup

The main goal of this study is to evaluate the added value of transcriptomics data for SAAV 

identification in proteomics data. In this evaluation, SAAV identification with and without 

transcriptomics prior knowledge is compared for a state-of-the-art open search engine. To 

this end, we searched the NA12878 deep shotgun proteomics data set with four distinct 

search databases corresponding to two comparisons, as outlined in Figure 1A. The first 

comparison was between databases based on the Oxford Nanopore (ONT) long-read 

transcriptome, the GENCODE reference proteome (referred to as Ref) or the combination 

of the two (referred to as combi, Figure 1B). In this comparison, all searches were run with 

open modification settings that allow for one mutation in the peptide match. The second 

comparison was between a regular and an open variant search using databases that did and 

did not include NA12878 genome sequencing-derived variants, respectively. This comparison 

was performed for the combi databases only. The analysis with the variant-free combi 
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database will be referred to as the VF method and the analysis with the variant-containing 

combi database will be referred to as the VC method. In this comparison, open modification 

search was enabled for both methods, but open variant search was only enabled in the 

VF method to allow for the detection of SAAVs. Open variant search is disabled in the VC 

method, because the variants were already incorporated in the VC search database.

Figure 1:  Creation of the search databases. (A) Three databases were made to make comparison 
between use of different sources of sequences. One with only translations of transcriptome 
sequences (ONT), one with only the reference proteome (GENCODE), and one with the union 
of the two. This comparison is denoted with a blue square. Variants from NA12878 were 
incorporated into the combination database from A and compared to the combination database 
without variants. This comparison is denoted with a red square. (B) The number of (predicted) 
ORF in the different sources used to construct the VF search database and their overlap. The 
sources included the GENCODE v29 reference ORFs and the predicted ORFs from ONT RNAseq. 
Two ORF prediction softwares (ANGEL and SQANTI) were used to determine candidate ORFs and 
the intersection was included in the final search database.
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Adding the long-read transcriptome for the cell line does not contribute to additional 
peptide identifications in practice

Reliable peptide identification normally requires a comprehensive search database. We 

first investigated whether novel transcripts from long-read transcriptome sequencing 

would contribute to peptide identifications in the NA12878 shotgun proteomics data. 

The ONT database contained 35,248 full-length transcript sequences, 64% of which 

were novel. Although the combi database containing these novel predicted ORFs was 

42% larger than the Ref database (Figure 1B), the number of unique peptides from 

these sequences made up a mere 2.3% of the search database (Figure 2, top panel). 

The addition of ONT-derived ORFs to the Ref ORFs thus translated to an only modest 

increase in the number of unique peptides in the search database (Figure 2, lower 

panel). A likely explanation for this is the fact that many of the novel ONT transcripts 

demonstrate high similarity to existing reference sequences. The sequences usually 

only differed in the length of the 3’ or 5’ UTR or the in use of alternative exon junctions 

rather than completely novel exons. The exact frequencies of these events are difficult 

to estimate, but when looking at the set of novel ORFs from the ONT transcriptome, 

73% of them can be attributed to known GENCODE coding genes. Conversely, the 

GENCODE genes that had  novel isoforms in the ONT set corresponded to 27% of all 

GENCODE coding genes.  In terms of observed peptide identifications, 67% of the ORFs 

in ONT set had at least one peptide match  (when including PSMs that also matched to 

peptides present in GENCODE). However, the number of unique peptide matches to 

the novel ONT transcripts was much smaller: only 0.3% of unique peptides identified 

to the combi databases mapped exclusively to novel ONT transcripts. This indicates 

that the transcriptome database does not contribute significantly to the proteomic 

search results and suggests that alternative splicing and mRNA processing events do 

not contribute much to the diversity of the MS-detectable fraction of the proteome.

Aside from the contributions from the ONT-only sequences, it is also interesting to 

investigate protein identifications that were not found in the ONT transcriptome. 

While these should theoretically not be present, roughly 20% of identified peptides 

are exclusively matched with the ENCODE transcripts (Figure 2). As expected, this 

percentage is smaller than the 42% of peptides in the search database that are exclusive 

to GENCODE transcripts, but still a significant fraction. This suggests that it is best to still 

use a reference transcript database, even if there is full transcriptome sequencing data 

available.
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Figure 2: Detectible peptides per method. Theoretical (upper pie charts) and observed (lower pie 
charts) proportions of peptides when searching against VC (right) or VF (left) search databases. 
This shows percentages of matched peptides attributed only to GENCODE proteins, only ONT 
proteins, and those that match to proteins in both databases.

Variant-containing method allows detection of many more genome-
supported variant peptides 

We subsequently studied the effect of the inclusion of sample-specific variants in the 

search database. In the VF method, the data is analyzed with an open variant search, thus 

letting the search engine predict single amino acid substitutions. This is in contrast to 

the VC method, where no variants are predicted and only genetically supported variant 

are present in the search database. We detected 461 variant peptides by the VC method 

and 62 by the VF method, with 59 overlapping between the two methods (Figure 3A). 

The greater majority of variant peptides that were detected by the VF method only 

(n=1,805), were not supported by the genome and are likely false positives (Figure 3B). 

In addition, one third of variant peptide matches that appeared to be supported by the 

genome, actually contained an incorrect amino acid substitution. Thus, the inclusion 

of variant peptides derived from personal genomes in search databases is far superior 
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to the use of a variant free database combined with an open variant search. Some 

examples of identified variant peptides can be found in Figure S3.

Figure 3: Detection of variant peptides using (combination) VF and VC databases.
(A) variant PSMs (left) and unique peptides (right) attributed to genome-supported variant 
peptides. (B) PSM and peptide counts found by each method.

Detectible variant peptides have attributes that differ from expected variant peptides

Out of the 34,968 peptides in the genome-supported variant peptide list, only 462 

were detected by either or both the VC and VF methods (Figure 4A). They are not a 

random sample of all possible variant peptides. Namely, some variant peptides are 

easier to detect than others depending on their abundance and/or properties, and 

that differs even between methods. For instance, the VF method tends to find longer 

variant peptides (in a range of 16-27 aa) and misses the shorter variant peptides (Figure 
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4B). This highlights the larger amount of ambiguity in variant peptide identification 

proportional to the lower number of peaks in the spectra. The VC method does not 

suffer from this ambiguity and allows for detection of a wider range of variant peptide 

lengths than variant-free, especially shorter variant peptides (p=0.0017 K2 samp). While 

there is a bias in variant peptide length, we did not find clear evidence that the position 

of the variant within the peptide affects detection of the variant peptide in either of the 

methods. In addition, the amino acid substitution itself affects detectability, since the 

corresponding mass shift in the MS/MS spectrum needs to be separated from noise or 

similar mass shifts corresponding to other modifications in order to be identified. There 

are some predefined limitations to SAAV detection with the VF method that lead to 

certain amino acid substitutions getting detected less than expected (Figure 4C). Amino 

acids on which there are fixed modifications can’t have variants in the open variant 

search, meaning substitutions at K and C are not detected. Substitutions affecting the 

trypsin digest, such as those involving R, can also not be detected. 

Erroneous variant peptide identifications are difficult to discern from true variant 
peptide identifications

The misidentifications from the open variant-free approach can be separated into false 

negatives and false positives. False negative identification is where the VC method 

identifies variant peptides, but those same spectra are identified by the VF method as 

non-variant peptides. False positive misidentification is where the VF method identified 

variant peptides that were not supported by the genome.

There were 402 unique false negative peptides observed (Figure 5A). These false 

negatives peptides were classified as variant peptides by VC method but not by VF, 

although they were contained in the VF search space. Identifying causes of false 

negatives requires investigation of how the VC peptides were identified with the VF 

method. There was no particular length peptide that was mis-identified more than 

others in general, despite the difference in detectible peptide length (Figure S4). The 

peptide identifications were similar between the VF and VC methods. In general, length 

correlated highly between the identifications of the two methods (R2=0.9071, p=0). 

When comparing individual peptide identifications per method for mismatches and 

length difference, the largest source of error was a 1 aa length difference. Nonvariant 

peptides with a 1 aa length difference from the variant peptide were being identified 

instead of the correct variant peptide in >30% of the false negatives (Figure S4). 
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Figure 4. Properties of detected variants compared to expected. (A) The groups of variant peptides 
being compared. Each circle, including all overlaps, are being compared to each other. (B) Length 
distribution differences between detected variant peptides by the different variant detection 
methods. (C) Normalized (divided by max) frequency of variation per original (reference) amino 
acid.



Chapter 2

38

Another possible source of false negative errors that was investigated is SAAVs being 

mistaken for unexpected post-translational modifications. In the false negative set, this 

did not appear to be an issue. The false negative VF identifications had approximately 

the same rate of unexpected PTMs (Figure S4).

Figure 5: False negative variant misidentifications. (A) Investigation of causes of mis-identification 
of peptides in the variant-free set. (B) Scores of those mis-identified peptides in VF vs VC set. 
Each point corresponds to one false negative variant peptide. Percolator PSM score is used. Color 
corresponds to delta retention time.

To further understand how false negatives could occur, we compared the peptide 

matching scores of the false negative spectra for the VF and VC search methods (Figure 

5B). Higher scores indicate higher confidence in assignment of spectra. VC scores for 

false negative peptides were generally higher than the VF scores (mean score ratio VC/

VF = 1.31). However, a large fraction of the false negatives received comparable scores 

in the VC and VF search methods. This could indicate a ranking problem: the variant 

peptide received a score equal to another peptide, to which the peptide spectrum was 

ultimately assigned. Delta retention time can often be a useful independent validator 
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when score disagrees between the different search methods. Despite high retention 

time discrepancies in this particular data set, observed retention time aligns relatively 

well with predicted retention time for those spectra that received higher scores in VC.

The genome-supported variants are a tiny fraction of the high confidence variant peptide 

predictions from the VF database, indicating a high false positive rate (Figure 6A). We 

investigated whether there are distinguishing features between genome-supported 

and genome-unsupported variants.  Reassuringly, scores of true positives were slightly 

higher than false positives (Figure 6B, p=1.34e-26, ANOVA). 

A closer inspection of genome-unsupported variants reveals potential sources of 

confusion for variant prediction algorithms, leading to false positive identifications. 

There was a high level of concordance of peptides matched to these spectra in general. 

Two thirds of spectra that corresponded to genome-unsupported variant peptide 

identifications by VF had the same base peptide identifications in both the VF and 

VC searches. Mass shifts predicted to be SAAV in VF were commonly predicted to be 

‘unexpected’ PTMs by the VC method (Figure 6C). A common PTM mistaken as a SAAV 

in VF was threonine oxidation, but many PTMs contributed to this mix-up. There was no 

clear trend to the identification errors, underlining the difficulty of correctly classifying 

minor mass shifts corresponding to PTMs and SAAVs.

Evaluation of the variant peptides’ SNPs of origin 

The detection of variant peptides is ultimately a means to understanding which single 

nucleotide variants (SNVs) are expressed on the protein level. By incorporating SNVs 

into predicted ORFs, we ended up with a theoretical set of 34,968 variant peptides 

originating from 9,298 SNVs from all chromosomes, of which 5,989 are heterozygous 

variants. 

In the case of a heterozygous variant, both variant peptides and their reference 

counterparts can be identified in some ratio. A ratio different from 0.5 may be indicative 

of preferred expression of one of the alleles on the protein level, otherwise known as 

ASPE (allele specific protein expression). Presence and magnitude of ASPE is potentially 

key information that can be used to understand biological mechanisms. However, 

technical biases of search methodology may invalidate potential findings by distorting 

these ratios. For the VF method, the reference peptide was identified more frequently 

than the variant peptide (p=0.013, one-way ANOVA). The opposite was true for the VC 

method. 
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Figure 6: False positive misidentifications. (A) False positive misidentifications are genome-
unsupported (US) variants predicted by the variant-free method (VF). The venn diagram highlights 
the subset of variants that are being investigated in this figure. These 2,998 variants were predicted 
by ionbotTM to be variant peptides, but were not found with the variant containing set. All but 
7 were variants unsupported by genome information. (B) Relative score distributions between 
genome supported vs unsupported variants in the variant-free set. (C) Unexpected modifications 
by the VC set corresponding to all ‘false positive’ predicted variant PSMs in the VF set.
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Homozygous variants can be used as a type of control to understand the bias in search 

methods, since we know that only one of the two alleles can be expressed. In case of 

homozygous variants, the variant peptide is expected to be present in all cases – with 

no reference counterpart. This was observed for the VC but not for the VF method 

(Figure 7A). Thus, without prior information about zygosity, the VF method tends to 

be conservative in identifying SAAV peptides, resulting in a higher likelihood of the 

reference peptide than its variant counterpart.

It is evident that some variant peptides were observed much more often than their 

reference counterparts or vice versa. The VC heterozygous variant peptide identifications 

should not suffer from the technical reference bias and allow for detection of allele 

specific expression on the protein level. The VC-detected heterozygous variants 

were divided in two groups; one group with more counts for the reference peptide 

(reference-biased, N=78) and one group with more counts for the alternative peptide 

(alternative-biased, N=123). The two groups demonstrated a clear and significant 

difference in population allele frequency (p=6.45e-08. Figure 7B). Those with lower 

allele frequencies displayed a stronger reference bias. This could be explained by the 

fact that rare variants in coding regions have a higher likelihood of causing undesirable 

effects on the resulting protein. Any deleterious effects resulting from the variant on 

protein stability would be visible as depletion of the alternative allele. 

One significant subgroup of heterozygous variants was particularly biased towards the 

alternative allele. Fourty-four out of 183 variant peptides supported by more than two 

PSMs did not have any detected reference counterparts. One third of these variants had 

a substitution involving arginine or lysine (tryptic cleavage sites). One gene, HLA-DBQ1, 

had two alternative alleles instead of one reference and one alternative. In general, the 

score distribution for these highly biased group was lower than the score distribution 

for all VC detected variant peptides. The allele frequencies of this group were not 

different to those of the overall alternative-biased group (p=0.5, ANOVA). There was 

also no correlation between the RNA expression of these genes to the variant peptide 

expression (R2=0.01). Also, a comparison the list of genes displaying ASE on the RNA 

level from 175 to the heterozygous genes with variant peptides detected on the protein 

level yielded negligible overlap (2 genes).
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Figure 7: Underlying SNPs detected on the protein level. (A) Variant peptide abundance vs 
reference counterpart split by zygosity and search database, square root transformed. (B) 
Separating heterozygous variants in the variant-containing database by whether more variant 
peptide was found (variant-biased) or more of the reference counterpart was found (reference-
biased) revealed differences in allele frequency distributions. (C) Ratio variability of genes with 
2 or more variant peptides. Ratio is defined by the variant counterpart abundance divided by 
variant peptide abundance. Y axis shows max – min per gene.
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A total of 33 genes were detected through two or more unique variant peptides. For 

variant peptides within a gene, the reference peptide to variant peptide ratio should be 

consistent, unless there are different protein isoforms as a consequence of alternative 

splicing. This was the case for the majority of genes with multiple variant peptides 

belonging to the same gene (Figure 7C). Five of these genes were represented by 

multiple variant peptides with inconsistent ratios. HLA-C, IFI16 and MKI67 had peptides 

matching to non-identical (sets of) isoforms within the gene. PCM1 had peptides 

matched to 24 isoforms. That is four times the average number of isoforms matched by 

a variant peptide in the VC search. Thus, inconsistent variant to reference peptide ratios 

within a gene can generally by attributed to differing abundances of protein isoforms.

Discussion
Here, we have carried out an investigation of the effects of proteogenomic additions to 

a proteomics search database. To this end, we compared a typical proteomics approach 

to a purely proteomics method utilizing state-of-the-art open search. We observed that 

the addition of transcriptomic sequences to the search database did not have significant 

effects on the overall peptide identification rate. There was a roughly equal number 

PSMs from the three databases, despite the long-read transcriptome search database 

being 40% smaller than that of the union of it and the reference. At the same time, the 

matches to reference-only sequences in the combination database imply that >20% of 

peptide identifications are missed. This suggests a large portion of false identifications 

when using a database comprised of only ONT sequences. 

The fact that around a quarter of peptide identifications cannot be attributed to the 

transcriptomics data is rather surprising. There are a couple possible explanations. Using 

transcriptomics data from different cells than the proteomics data (different labs and 

different year) will unavoidably cause some discrepancies 183. This could also be attributed 

to protein stability in the cell, as proteins are detectable for some time after RNA have 

already been degraded 184. Also notable is the fact that including the transcriptome 

sequences did not seem to add significantly to the peptide detections; the proportion of 

novel peptides found was lower than the proportion of novel transcripts found. As this 

cell line/organism is so well studied, it is likely that the vast majority of present proteins 

have already been characterized. For other cell types and organisms with more novel 

transcripts, adding (full length) transcriptomes may lead to more peptide identifications.

Two different search methods were used to identify non-reference peptides derived 

from SNVs: a proteogenomics approach, in which all variants known from the genome 

sequence were added to the search database, and an ‘open variant search’, where 
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only reference peptides were included in the search database and one amino acid 

differences were allowed by the search engine. The proteogenomics approach was 

clearly superior, as it detected 7-times more variant peptides , whereas the open variant 

search suffered from many false positive identifications that were not supported by the 

genome sequence, and from large numbers of false negatives. Nevertheless, also the 

proteogenomics search method detected only a minor fraction of the variant peptides 

predicted to be present in the genome. It has been estimated before that maximum 

~70% of variants in protein coding regions are theoretically detectible in an ideal shotgun 

proteomics experiment considering peptide lengths 7-40 aa 185. The number of variants 

found with a proteogenomics method in practice is much lower, depending on method 

details. Some studies either use a statistically dubious ‘multi-tier’ method 186,187 or skip 

FDR sub-setting altogether 188 and report the number of variants detected to be in the 

region of 10%. We detect only 1% of the theoretically present variant peptides, despite 

the ~4M spectra present in this dataset, making it one of the deepest proteomics datasets 

currently available. This is partly due to the careful control of FDRs in our study. Also 

other conservative efforts to detect variant peptides using FDR sub-setting or targeted 

proteomics validation detect <1% of all theoretically present variant peptides 157,187,189. 

While open search lags behind the proteogenomics approach for the moment, it has 

promise. Algorithms are being continuously improved to better differentiate signal 

from noise, which will reduce the false positives and false negatives in variant peptide 

detection 190. There are several upcoming methodologies to further refine the open 

search to increase accuracy, either adding to existing peptide identification tools or 

standalone with promising results such as Open-pfind 191, TagGraph 172, MSFragger 192, 

Crystal-C 193. There are considerable challenges still to face in their detection, particularly 

in noise/signal differentiation. This is especially complicated as variants often co-occur 

with other PTMs such as phosphorylation 163,187. Current detection methods including 

ionbotTM cannot handle the complexity of two modifications on one site. However, 

deep neural networks show great promise with difficult peptide identifications 194. 

Using methods of machine learning along with orthogonal information such as peptide 

retention time should result in significant improvements in open search 195. This in 

combination with rapidly improving data-independent acquisition removes detection 

limitations of low-abundance or otherwise difficult to detect peptides 196, which is 

currently a considerable hurdle in SAAV peptide detection 188. Including open search 

is clearly useful and bound to get more accurate. This study used ionbotTM as the sole 

predictor of unexpected modifications/SAAVs, and comparison between identification 

tools was difficult as no other identification software tested reported the precise 
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reporter ions per matched spectra (to be able to separate TMT tags corresponding 

to different cell lines). A study to compare methods given these updates is certainly 

warranted and ensemble methods may eventually be used to even more accurately 

predict these unexpected modifications/SAAVs.

One important implication of correctly detecting SAAVs is the ability to observe allele 

specific expression on the protein level. A targeted proteomics approach has recently 

been described to study ASPE (allele specific protein expression) with high confidence 
197. It found no correlation between RNA and protein level ASE for the few variants 

studied, highlighting the utility of having higher throughput methods to study this 

phenomenon. One simple way to measure ASPE when using a proteogenomics approach 

is by comparing the spectral counts for the SAAV and its reference counterpart, since 

a reference counterpart usually has equal detectability by MS/MS 185. Here we found 

low correlation between the abundance of the variant and reference counterparts 

regardless of VF or VC method. This is potentially indicative for a high level of ASPE. In 

contrast, 187 demonstrated a high correlation between variant and reference peptides. 

This may be attributed to the low stringency associated with using the multi-tier search 

strategy for SAAV detection. We found no correlation between ASE and ASPE was found 

in this study which is consistent with the findings of Shi et al.

Conclusions
Our study provides guidance for the detection of variant peptides that shape the personal 

proteome. While personal genomes currently seem indispensable for the characterization 

of personal proteomes, new computational and analytical tools and new file formats to 

accommodate personal proteome information will allow us to get the fullest picture 

possible of the individual proteome, even without personal genome information. 
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Figure S3: Annotated variant peptide spectra in mirror plots, with theoretical spectra (as 
predicted by MS2PIP) in the bottom half for reference. Plots made with spectrum_utils python 
package. Top: variant peptide LQQQHSEQPPLQPSPVTTR, substitution M  T, on chromosome 
1 pos 179882939, scan id Linfeng_012511_HapMap39_6.8739.8739.3. Middle: variant 
peptide DVGEWQHEEFYR, substitution R  G, on chromosome 16 pos 3674464, scan id 
Linfeng_030911_HapMap46_2.12742.12742.3. This is one of the peptides where no reference 
counterparts were detected (while 90 variant peptides were identified). Bottom: variant peptide 
DLEGLSQWHEEK, substitution W  R, on chromosome 22 pos 36292132, scan id Linfeng_080711_
HapMap59_5.15580.15580.3. This is one of the rare variant peptide identifications (AF = 0.001).
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Figure S4: Investigation of false negative (‘mislabeled’) identifications by ionbotTM. Top figure 
shows the density of mislabeled peptides per length, as compared to lengths of all variant 
peptides identified by the VC method. Middle figure shows the 5 most common causes of 
misidentification of variant peptides by ionbotTM. Bottom figure shows unexpected modifications 
of the false negatives versus the unexpected modifications by all VF identifications. Unlabeled y 
axises refer to density.
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Table S1: Side-by-side comparison of the contents of the search database

Search database 
contents

Sequences in 
GENCODE

Sequences in the  
ONT transcriptome

NA12878-specific 
variants

ONT No Yes No
Ref Yes No No
VF Yes Yes No
VC Yes Yes Yes

Table S2:  Absolute numbers of PSMs and peptides detected per method.

https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00264
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Abstract
We performed long-read transcriptome and proteome profiling of pathogen-stimulated 

peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new 

transcript and protein isoforms expressed during immune responses to diverse 

pathogens. Long-read transcriptome profiling reveals novel sequences and isoform 

switching induced upon pathogen stimulation, including transcripts that are difficult 

to detect using traditional short-read sequencing. Widespread loss of intron retention 

occurs as a common result of all pathogen stimulations. We highlight novel transcripts of 

NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression 

differences did not result in differences in the amounts of secreted proteins. Clustering 

analysis of secreted proteins revealed a correlation between chemokine (receptor) 

expression on the RNA and protein levels in C. albicans- and Poly(I:C)-stimulated PBMCs. 

Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights 

the potential of these methods to identify novel transcripts, revealing a more complex 

transcriptome landscape than previously appreciated.
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Introduction
Immune system responses within the context of an infection are shaped by the 

nature of the infection and by inter-individual variability, contributing to differential 

susceptibility to infections and to various diseases with an inflammatory component. 

Dynamic expression of transcripts and proteins in a range of cells responsible for the 

innate immune response is important to shape the first line of defense against a wide 

variety of pathogens198. Pattern recognition receptors (PRR) initiate acute inflammatory 

responses, activating signaling cascades that converge on various transcription factors. 

Multiple levels of regulation orchestrate the dynamic expression of transcripts and 

proteins, including transcriptional and post-transcriptional checkpoints such as mRNA 

splicing and protein translation. Examples of this include the regulatory role of alternative 

splicing of Toll-like receptors (TLR) and their downstream signaling factors199,200. 

Methods for investigating innate immune responses include in vitro stimulation of primary 

immune cells with pathogens or microbial components. These methods allow for specific 

investigation of host-pathogen interactions that shape the immune response elicited by 

specific cell types and have been under extensive investigation in research on the innate 

immune system201,202. Stimuli that are commonly used include molecules that stimulate a 

specific TLR, such as E. coli lipopolysaccharide (LPS) for TLR4203, dsRNA mimicking Poly(I:C) 

for TLR3204 and imidazoquinolines for TLR7/8205. Stimulation is also often elicited by live or 

heat-killed pathogens206,207, which stimulate at the same time a broader range of PRRs208,209.

Transcriptome characterization is traditionally performed using short read RNA 

sequencing. These sequencing approaches are limited by their short-read length 

(approximately 150-300 bp), necessitating the computational reconstruction of whole 

transcripts and making detection of different transcripts of the same gene inaccurate. 

This limitation is especially pronounced in immune biology, where tight regulation of 

isoform expression has previously been described to play a major role in processes, 

such as the expression of multiple IL-32 transcripts with different inflammatory 

potency210 and alternative splicing of CD45 in T cell activation211. Recent long-read 

sequencing approaches provide a more complete and accurate reflection of the 

transcriptome. Sequencing technologies provided by PacBio and Oxford Nanopore 

allow for the sequencing of mRNA (or cDNA) molecules from the ultimate 3’-end to 

the ultimate 5’-end, which have given a more comprehensive view into the complexity 

of the transcriptome. A number of studies have indicated that the isoform landscape 

is much more complex than previously appreciated212–214. Long-read mRNA sequencing 

has provided insight into regulatory mechanisms of immune responses, for instance 

in alternative splicing in macrophages215 , and allows for accurate sequencing of 
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complex transcripts in immune cells216. Further work on cell-type specific long-read 

transcriptomes have shown preferential expression of transcripts in specific cell types217.

The impact of the newly discovered transcripts as well as post-transcriptional 

processes can only be fully understood by observing the proteome. Many studies 

have characterized the transcriptomic landscape of the human immune response, 

but a multi-omics view of immunity is necessary as mRNA profiles are not enough to 

understand immune activation218,219. Transcript information can be leveraged to study 

the proteome, including identification of novel proteoforms resulting from alternative 

splicing. Proteoforms discovered by proteogenomics methodologies have already been 

found to have a role in immunological processes, for instance in immune-regulating 

micropeptides220 and tumor neoantigen production221. 

Here, we stimulated peripheral blood mononuclear cells (PBMCs) with multiple 

microbial stimuli in vitro/ex vivo and performed long- and short-read RNA sequencing 

and secretome proteomics to gain insight into potential differences in immune response. 

We aim to provide insight into the immune transcriptome and proteome of immune 

cells during innate immune responses against a variety of pathogens. 

Material & methods
Ex vivo PBMC experiments

Venous blood was drawn from five healthy donors202 and collected in 10mL EDTA 

tubes. Isolation of peripheral blood mononuclear cells (PBMCs) was conducted as 

described elsewhere222. In brief, PBMCs were obtained from blood by differential density 

centrifugation over Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1 

dilution in PBS. Cells were washed twice in saline and re-suspended in serum-free cell 

culture medium (Roswell Park Memorial Institute (RPMI) 1640, Gibco) supplemented 

with 50 mg/mL gentamicin, 2 mM L-glutamine and 1 mM pyruvate. Cells were counted 

using a particle counter (Beckmann Coulter, Woerden, The Netherlands) after which the 

concentration was adjusted to 5 × 106/mL. Ex vivo PBMC stimulations were performed with 

5×105 cells/well in round-bottom 96-well plates (Greiner Bio-One, Kremsmünster, Austria) 

for 24 hours at 37°C and 5% carbon dioxide. Cells were treated with lipopolysaccharide 

(E. coli LPS, 10 ng/mL), Staphylococcus aureus (ATCC25923 heat-killed, 1×106/mL), TLR3 

ligand Poly I:C (10 µg/mL), Candida albicans yeast (UC820 heat-killed, 1×106/mL), or 

left untreated in regular RPMI medium as normal control. After the incubation period 

of 24h and centrifugation, supernatants were collected and stored at -80°C until further 

processing. For the RNA isolation, cells were stored in 350 µL RNeasy Lysis Buffer (Qiagen, 

Rneasy Mini Kit, Cat nr. 74104) at −80°C until further processing.
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RNA and protein isolation

RNA was isolated from the samples using the RNeasy RNA isolation kit (Qiagen) according 

to the protocol supplied by the manufacturer. The RNA integrity of the isolated RNA was 

examined using the TapeStation HS D1000 (Agilent), and was found to be ≥7.5 for all 

samples. Accurate determination of the RNA concentration was performed using the 

Qubit (ThermoFisher).

We extracted the secretome of the 24-hour stimulated PBMCs. To 250 µL of 

supernatant, 250 µL buffer containing 10% sodium dodecyl sulfate (SDS) and 100 mM 

triethylammonium bicarbonate (TEAB), pH 8.5 was added. Proteins were reduced 

by addition of 5 mM dithiothreitol and incubation for 30 minutes at 55˚C and then 

alkylated by addition of 10 mM iodoacetamide and incubation for 15 minutes at RT in 

the dark. Phosphoric acid was added to a final concentration of 1.2% and subsequently 

samples were diluted 7-fold with binding buffer containing 90% methanol in 100 mM 

TEAB, pH 7.55. The samples were loaded on a 96-well S-TrapTM plate (Protifi) in parts 

of 400 µL, placed on top of a deepwell plate, and centrifuged for 2 min at 1,500 x g at 

RT. After protein binding, the S-trapTM plate was washed three times by adding 200 µl 

binding buffer and centrifugation for 2 min at 1,500 x g at RT. A new deepwell receiver 

plate was placed below the 96-well S-TrapTM plate and 125 µL 50 mM TEAB containing 1 

µg of trypsin was added for digestion overnight at 37°C. Using centrifugation for 2 min 

at 1,500 x g, peptides were eluted in three times, first with 80 µL 50 mM TEAB, then with 

80 µL 0.2% formic acid (FA) in water and finally with 80 µL 0.2% FA in water/acetonitrile 

(can) (50/50, v/v). Eluted peptides were dried completely by vacuum centrifugation. 

Long-read library preparation and sequencing

Libraries were generated from one donor using the Iso-Seq-Express-Template-

Preparation protocol according to the manufacturer’s recommendations (PacBio, 

Menlo Parc, CA, USA). We followed the recommendation for 2-2.5kb libraries, using the 

2.0 binding kit, on-plate loading concentrations of final IsoSeq libraries was 90pM (C. 

albicans, S. aureus, Poly(I:C), RPMI) and 100pM (LPS) respectively. We used a 30h movie 

time for sequencing. 

The five samples were analyzed using the isoseq3 v3.4.0 pipeline. Each sample 

underwent the same analysis procedure. First CCS1 v6.3.0 was run with min accuracy set 

to 0.9. IsoSeq lima v2.5.0 was run in IsoSeq mode as recommended. IsoSeq refine was 

run with ‘--require-polya’. The output of IsoSeq refine was used as input for IsoQuant 

v3.1.2223 with GRCh38.p13 v43 primary assembly from GENCODE. The settings were set 

for full length PacBio data, and quantification included ambiguous reads. In IsoQuant, 
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transcripts were considered novel if their intron chains did not match intron chains 

found in GENCODE annotation version 39. Transcripts with fewer than 5 reads across all 

samples were excluded from further analyses (Supplemental table 1).

We sought to validate the novel transcripts identified using long-read sequencing using 

FANTOM5 CAGE data of CD14 monocytes (https://fantom.gsc.riken.jp/5/datafiles/

latest/basic/human.primary_cell.CAGEScan/CD14%2b%20monocyte%20derived%20

endothelial%20progenitor%20cells%2c%20donor1.NCig10041.11229-116C5.hg19.

GCTATA.clusters.bed.gz) that allows for the identification of transcripts with a matching 

TSS from this 5’ sequencing data. Transcripts with novel 5’ were considered to be 

supported with a CAGE peak if within 150 basepairs from the TSS. 

Short-read library preparation and sequencing

RNA input was normalized to 200 ng for all samples/donors and libraries were generated 

using the QuantSeq 3’ mRNA-Seq Library Prep Kit-FWD from Lexogen (Lexogen) in 

accordance with the manufacturers’ protocol. In order to ensure high quality libraries, 

two separate preparations were performed, limiting the number of samples to 30 

per preparation. End-point PCR was performed with 19 – 22 cycles, as indicated by 

a quantitative PCR on a 1:10 aliquot of a subset of double stranded cDNA libraries. 

Accurate quantification and quality assessment of the generated libraries was performed 

using Qubit dsDNA High Sensitivity assay (Thermo Fisher Scientific) and Agilent 2200 

TapeStation (High Sensitivity D1000 ScreenTape, Agilent). Molarity of individual libraries 

was calculated using the cDNA concentration (Qubit) and average fragment size 

(TapeStation). Safeguarding sufficient read-depth for each sample, libraries were split in 

two separate runs. In each run, the baseline RPMI condition across all donors and time-

points was included, in turn allowing sequencing bias assessment. The cDNA libraries of 

35 samples were pooled equimolarly to 100 fmol. After a final dilution of both pools to 

a concentration of 4 nM, they were sequenced on a NextSeq 500 instrument (Illumina) 

with a final loading concentration of 1.4 pM. 

FastQC v0.11.5 (Babraham Bioinformatics) was used to assess the quality of the obtained 

sequencing data, followed by removal of adapter sequences and poly(A) tails by Trim 

Galore! V.0.4.4_dev (Babraham Bioinformatics) and Cutadapt v1.18224. Since QuantSeq 

reads only provide coverage of the 3’ end of transcripts, we generated a set of transcripts 

representative of the full transcriptome by grouping transcripts based on unique 3’ 

sequences. Therefore, we separately mapped the filtered and trimmed reads to the long 

read transcriptome with Salmon v1.9.0 in mapping-based mode with decoys225.
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Differential expression analyses

To measure differential gene expression from long-read RNA sequencing, low abundance 

genes were filtered using a 10 CPM threshold with the conform package in python. 

Differentially expressed genes (DEGs) and transcripts were calculated for each condition 

versus control using the NOISeq R package226 from the abundances generated with 

isoquant. TMM normalization was chosen and q-value threshold for DE was set at 0.95. 

DEGs were generated from the salmon-mapped short-read RNA sequencing data using 

the samples from the same donor using NOISeq226. The two control samples (RPMI) 

per donor were treated as technical replicates. TMM normalization was chosen and 

q-value threshold for DE was set at 0.95. We validated the DEGs detected from long-

read sequencing with those generated with the short-read data by comparing the linear 

correlation of the log2fold change values for each condition combination between both 

datasets using the lm() R function.

The up- and downregulated DEGs per condition-control pair were analyzed for pathway 

enrichment separately using gProfiler29. We used Gene Ontology biological process and 

molecular function and TRANSFAC transcription factor motifs gene sets227,228. A term size 

filter of between 100-500 was used to generate the final enrichment profiles. 

Isoform switching

A first-pass isoform switching analysis was performed using swanvis v2.0229. For a 

second-pass isoform switching analysis, the resulting gene-level isoform switch p-values 

were imported into IsoformSwitchAnalyzeR v1.16.0 package in R230. Thresholds for 

isoform switching were set at 10 DPI (differential percent isoform use) and nominal 

p-value <0.05. Sequences corresponding to the significant isoform switches were 

analyzed with CPAT v1.2.4114, hmmscan v3.3.2 with Pfam231, and SignalP5232 as a part of 

the IsoformSwitchAnalyzeR package. 

Pathway analysis and gene network analysis of genes that were found to undergo isoform 

switching was performed in Cytoscape233. Default pathway analysis was performed, 

filtering for Gene Ontology Biological Process gene sets. An Enrichment Map was built 

from the enriched gene sets with a Jaccard similarity cutoff of 0.4234. 

Genes found to undergo intron retention gains/losses and genes with domain gains/

losses were separately analyzed using gProfiler. We used Gene Ontology Biological 

Process gene sets with a with a term size filter between 100-500 genes. We separately 

analyzed genes with domain gains or losses were using dcGOR235. We used the gene 

ontology molecular function gene sets with a term size filter between 100-500 genes.
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LC-MS/MS analysis

Peptides were re-dissolved in 20 µL loading solvent A (0.1% trifluoroacetic acid in water/

acetonitrile) (98:2, v/v)) of which 4 µL was injected for LC-MS/MS analysis on an Ultimate 

3000 RSLCnano system in-line connected to a Q Exactive HF mass spectrometer (Thermo). 

Trapping was performed at 10 μL/min for 4 min in loading solvent A on a 20 mm trapping 

column (made in-house, 100 μm internal diameter (I.D.), 5 μm beads, C18 Reprosil-HD, 

Dr. Maisch, Germany).   The peptides were separated on a 250 mm Waters nanoEase 

M/Z HSS T3 Column, 100Å, 1.8 µm, 75 µm inner diameter (Waters Corporation) kept at a 

constant temperature of 45°C. Peptides were eluted by a non-linear gradient starting at 

1% MS solvent B reaching 33% MS solvent B (0.1% formic acid (FA) in water/acetonitrile 

(2:8, v/v)) in 100 min, 55% MS solvent B (0.1% FA in water/acetonitrile (2:8, v/v)) in 135 

min, 97% MS solvent B in 145 minutes followed by a 5-minute wash at 97% MS solvent B 

and re-equilibration with MS solvent A (0.1% FA in water). 

The mass spectrometer was operated in data-dependent acquisition mode, automatically 

switching between MS and MS/MS acquisition for the 16 most abundant ion peaks per 

MS spectrum. Full-scan MS spectra (375-1500 m/z) were acquired at a resolution of 

60,000 in the Orbitrap analyzer after accumulation to a target value of 3,000,000. The 

16 most intense ions above a threshold value of 15,000 were isolated with a width of 

1.5 m/z for fragmentation at a normalized collision energy of 28% after filling the trap 

at a target value of 100,000 for maximum 80 ms. MS/MS spectra (200-2000 m/z) were 

acquired at a resolution of 15,000 in the Orbitrap analyzer.

Protein identification and quantification

Two search databases were constructed; one database for proteoform detection and one 

database for quantification. The database used for sensitive detection of proteoforms 

was generated using a slightly adapted version of the Long Read Proteogenomics 

pipeline by Miller et al236. Since the pipeline uses a different long-read transcriptomics 

tool, small syntax adjustments were made to accommodate the use of Isoquant output. 

Additionally, a custom script was written to have Isoquant output mimic the required 

input format. The pipeline generated a GENCODE-PacBio hybrid database. The proteome 

from C. albicans (taxon ID 5476) and S. aureus (taxon ID 1280) were downloaded from 

UniProt and added to the search database. The search database used for quantification 

was created by downloading the proteome from H. sapiens (taxon ID 9609), C. albicans 

(taxon ID 5476) and S. aureus (taxon ID 1280) from UniProt. Metamorpheus default 

contaminants were added to both search databases. 
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Mass spectra were identified using Metamorpheus v1.0.0237. The Human Proteome 

Project Mass Spectrometry Data Interpretation Guidelines version 3.0 were applied238. 

Quantification was performed using FlashLFQ v 1.2.4.294239 with all five individuals 

set as biological replicates and the two control (RPMI) samples per individual set as 

technical replicates. The following options enabled: normalization, shared peptide 

quantification, Bayesian fold change analysis, and match between runs (Supplemental 

table 2). An adapted version of SQANTI protein was used to search for novel peptides 

in the Metamorpheus identifications. Enrichment of secreted proteins was determined 

using the predicted secreted proteins from Human protein atlas240 as reference.

Protein clustering

FlashLFQ raw protein expression values originating from the quantification database 

search were first square root transformed. To normalize for donor effects, the mean 

protein expression value per gene/individual was subtracted from all the expression 

values from the same gene/individual. Then z-score normalization was performed 

across all individuals per gene. K-means clustering was then performed using the 

kmeans() function in R with seed #82 and default parameters. We found four clusters 

to optimally represent the data according to the elbow plots (Supplemental figure 1).  

A heatmap was constructed with those clusters using the ComplexHeatmap package241. 

The proteins identifiers assigned to cluster #4 were converted to gene names and 

analyzed using gProfiler for enrichment analysis using both Gene Ontology Biological 

Process and Molecular Function gene sets. We further analyzed the protein found to 

form cluster 4 through a protein network analysis in Cytoscape233.

Results
We stimulated PBMCs from five donors with four different microbial stimuli, mimicking 

bacterial (E. coli LPS, S. aureus), viral (Poly(I:C)) and fungal (C. albicans) infections. PBMCs 

were stimulated for 24 hours. RPMI incubation was used as a negative control (Figure 1A). 

To characterize full-length transcript structures, we performed long-read sequencing on 

PBMCs from one donor (Figure 1B). Additionally, shotgun proteomics data was generated 

from supernatants of the samples from all five donors. The proteomics data serves to 

corroborate differential gene/transcript expression and provide evidence of the protein-

coding potential of novel transcripts identified through long-read RNA sequencing (Figure 

1C). Short-read 3’ sequencing data of all five donors was generated to validate differential 

gene expression data generated from long-read RNA sequencing (Figure 1D). 
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Long read transcriptomes of both control and pathogen-stimulated conditions show 
novelty

Sequences detected using long-read sequencing were categorized in terms of novelty 

according to their intron chains. Transcripts are divided into three categories that 

encompass reference transcripts (GENCODE), novel in catalog (transcripts that contain 

annotated introns) and transcripts that are novel not in catalog (containing unannotated 

introns) (Figure 2A). We identified a total of 37,312 unique transcript sequences from 

11,872 genes across all samples. The majority of transcripts were in protein coding genes 

(Supplemental figure 2A) including ~10% immune-related genes (Supplemental figure 2B). 

We found 47.4% of detected transcripts to be novel, while these accounted for only 20.3% 

of the total reads (Figure 2B). The distribution of reads per novel transcript was similar 

to that of known transcripts with a slight skew towards lower abundance (Supplemental 

figure 3A). Exon elongations were the most observed feature distinguishing novel from 

known transcripts, occurring in nearly a third of the novel transcripts found in RPMI. 

This was similar for the stimulated conditions (Figure 2C, Supplemental figure 3B). The 

percentage of novel transcripts and transcript deviations were similar for all conditions 

(Figure 2D). To corroborate the existence of novel transcripts, we analyzed FANTOM5 CAGE 

peaks in the vicinity of the transcription start sites for novel transcripts with novel 5’ ends. 

We found 8,233 (51.3%) novel 5’ end transcripts across all conditions to be supported by 

a CAGE peaks from unstimulated human monocytes (within 150 nucleotides)242.

Principal component analysis of the expression levels for each transcript indicated that 

stimulated conditions were more similar to each other than to RPMI. S. aureus and C. 

albicans were most similar to each other (Figure 2F). Genes and transcripts expressed 

were similar in the stimulated conditions with average Jaccard similarity indices of 

0.9 and 0.82 for genes and transcripts, respectively (Figure 2G). Novel transcripts had 

similar Jaccard indices to each other than for known transcripts (not shown). Differential 

expression analysis yielded an average of 949 DEGs and 2,076 differentially expressed 

transcripts per condition (Supplemental figure 4, Supplemental table 3-4). 

We validated the DEGs through 3’ transcript counting (QuantSeq)243. We gathered a set 

of representative transcripts based on sequence differences at the 3’ end of transcripts 

(29,760 transcripts, 79.8% of total) and investigated the correlation of differential 

expression in the long-read sequencing data with the separately generated short read 

dataset of the same donor. The DEGs that overlapped between both datasets correlate 

well (R2 0.62-0.81). Best matching pairs of stimulated conditions between the short- and 

long-read confirmed the concordance of both sequencing approaches (Supplemental 

figure 5, Supplemental table 5). 
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Pathogen stimuli display upregulation of different pathways

Differential gene expression analysis using the long-read sequencing data resulted 

in a total of 1,733 genes that were differentially expressed in stimulated conditions 

compared to control. We performed pathway analysis for each condition using 

gProfiler244 (Supplemental table 6). By overlapping the gene sets enriched in each of 

the four conditions, we discerned biological processes/functions specific to certain 

pathogen-stimulated conditions. There are a lot of constants in host response regardless 

of the pathogen, and indeed the largest set of pathways was in the overlap between all 

stimulated conditions (211 pathways, Figure 3A). This set has an enrichment of genes 

involved in type II interferon (IFN-γ) responses. Genes involved in tertiary and specific 

granules, which play a role in the defense against pathogens were found to be enriched 

among upregulated genes in all conditions. Surprisingly, we also find these and related 

gene sets to be enriched among downregulated genes as a result of S. aureus and 

Poly(I:C) stimulation, potentially a result of the regulation of the inflammatory response. 

Further gene sets included the response to molecules of bacterial origin (including 

LPS), innate immune response signaling such as PRR signaling, antigen processing and 

presentation and IL-1 production (Figure 3B). 

Some pathogen-stimulated conditions had more enriched pathways in common than 

others. There was a notable overlap of 131 gene sets enriched in C. albicans-, S. aureus- 

and Poly(I:C)-stimulated conditions. Some of these were common to the set overlapping 

between all conditions, such as interferon responses. The LPS-excluding set showed 

particular enrichment related to viral processes such as the defense against viruses, 

regulation of the viral lifecycle, likely due to interferon-stimulated gene expression, 

such as STAT1, OAS1/3, OASL and IFIH1. Also, transcription factor binding matches 

(TRANSFAC) such as IRF-2, 5, 8 and 9 were enriched, reflecting downstream signaling 

through various signaling pathways leading to the regulation of the production of 

interferons and immune cell development (Figure 3C)245.

LPS and Poly(I:C) were the 2 stimuli with the most enriched pathways unique to 

a single stimulus. For 55 gene sets unique to LPS, there was a downregulation of T 

cell receptor signaling, in part due to the downregulation of CD4 expression, which 

has previously been described as a result of endogenous production of TNF-α and 

IL-1β as a result of LPS stimulation246. We further found an upregulation of gene 

sets involved in metabolic processes such as oxidoreductase complexes and cellular 

responses to oxygen, possibly reflecting metabolic changes previously described to 

occur in immune cells such as monocytes upon LPS stimulation247. Furthermore, there 

was an upregulation of genes involved in humoral immune responses (Figure 3D).
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Figure 3: Differential pathway analysis originating from differentially expressed genes on the RNA 
level. A) Overlap between enriched pathways generated from the differentially expressed genes from 
the four conditions. B) Selected pathways found to be enriched for all conditions, C) three of the four 
conditions (Poly(I:C), C. albicans and S. aureus), D) specifically for LPS and E) specifically for Poly(I:C). 

For 53 gene sets enriched uniquely in Poly(I:C), we found functions including viral gene 

expression, apoptosis related signaling (regulation of cysteine-type endopeptidase 

activity) and B-cell related gene sets such as increased antibody levels and BCR signaling. 

Finally, there was an enrichment of MHC class II antigen presentation (Figure 3E).

Isoform switches highlight transcriptome differences between conditions and control 

Isoform switching (IS) genes are defined by a change (increase/decrease) of expression 

of a particular transcript isoform as measured by percent of total reads for a gene. In 
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different samples/conditions, a particular transcript isoform may comprise a different 

isoform fraction (dIF) value for a given gene. Here, a change of at least 10% (0.10 dIF) 

in control and the opposite change (decrease/increase) of expression of a different 

transcript isoform in the same gene of at least 10% in the pathogen-stimulated condition 

is considered an IS. 

A total of 999 IS were detected in 398 genes. Nearly half (N=192, 48.2%) of these IS 

genes were unique to their respective stimulus conditions, while 10.3% were found 

in all conditions (N=41) (Figure 4A, Supplemental table 7-8). The majority of genes 

demonstrating IS were not differentially expressed in their respective conditions (327 

genes; 77%). Most genes that were found to undergo IS displayed only one IS instance 

(Supplemental figure 6A). Pathway analysis of genes undergoing IS were enriched 

for gene sets involved in metabolic processes, mRNA splicing, protein transport and 

catabolism. Furthermore, immune and stress-related pathways such as MHC type I 

antigen processing and transport through vesicles, inflammasomes, oxidative stress and 

apoptosis were found to be represented in genes undergoing IS (Figure 4B, Supplemental 

tables 9-13). 

We sought to understand the molecular consequences of IS upon pathogen stimulation 

by categorizing the differing features of the isoform pairs involved in the switch. Each of 

the IS was annotated with one or more of the following predicted protein characteristics: 

change in ORF length, ORF gain/loss, domain gain/loss, NMD sensitivity, intron retention 

(IR) gain/loss, coding probability (ORF presence), and signal peptide gain/loss. These 

consequences are not independent and often multiple consequences could be attributed 

to one IS (Supplemental Figure 6B). We observed general IS trends on a genome-wide 

scale (Supplemental figure 6C, Supplemental table 14). Strikingly, we found IR loss to 

be the most common consequence of IS in this dataset. Isoforms with retained introns 

comprised a higher isoform fraction for genes in the control condition, while their 

respective intron-excluding counterparts had a higher isoform fraction for genes in the 

pathogen-stimulated conditions. Genes displaying loss of IR were enriched for pathways 

involved in mRNA processing, including spliceosome-related gene sets, antigen processing 

and IL-1 production (Supplemental figure 7). IR has previously been described as a 

regulatory mechanism of RNA processing, splicing, vesicle transport and type I interferon 

production in the development of various immune cell types, including macrophages248,249, 

granulocytes250 and B cells251,252. Our findings support previously described associations of 

IR losses in immune-related processes, and adds new genes regulated by IR loss during 

immune responses (Supplemental figure 7, Supplemental table 15). 
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Figure 4: Isoform switching induced by pathogen stimulation. A) Overlap of isoform switching 
genes between the four stimulus conditions. B) Pathway network analysis derived from genes 
found to undergo isoform switching (IS) upon pathogen stimulation. Each pathway is colored 
by p value, where a darker red indicates a lower p value. C) Proportions of total IS events in 
each stimulated condition per IS consequence. D) Number of IS by category of switch pairs. 
Categories are defined by involvement of novel transcripts in a given IS. “Novel down” indicates 
that the isoform switched from a higher proportion of the novel transcript in control to a higher 
proportion of a known transcript in the stimulus condition. “Both known” indicates that the IS 
occurs between 2 reference transcripts. E) Fraction of each transcript novelty combination per IS 
consequence. Normalized by total number of IS events per novelty category. 

In addition, we found a higher proportion of transcripts to have domain gains than 

domain losses. This could indicate that stimulation by a pathogen causes a gene to 

switch expression to a transcript isoform that codes for a protein with an extra function. 

Other observed trends included longer ORFs and NMD insensitivity in transcript 

isoforms induced by pathogen stimulation (Figure 4C). 

Since the addition or loss of domains could directly reveal protein function changes, we 

explored the IS that had this consequence type. We found that genes with domain gain/

loss (N=158, Supplemental table 16) were enriched for involvement in various catabolic 

processes. We also found enrichment of T cell activation genes, an effect previously 

described as a functional consequence of CD8+ T cell co-stimulation253. Other enriched 
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gene sets include leukocyte cell-cell adhesion and activation and general innate 

immune response genes (Supplemental table 17). When looking more specifically at 

the molecular functions of the gained domains themselves, we found an enrichment 

of domains with potassium channel regulator activity, kinase- and transferase activity 

concerning phosphorus-containing groups and nucleic acid binding. These results 

potentially indicate functional and cell-type specific effects of domain gains as a result 

of IS in immune responses (Supplemental figure 8, Supplemental table 18). 

Novel transcripts play an important role in IS. Of the 999 IS, more than half (N=592) 

had at least one novel transcript involved in the IS. In most cases (N=438), the switch 

was from a novel transcript to a known transcript (Figure 4D, Supplemental table 19). 

Compared to IS cases where only known transcripts were involved, the IS consequences 

were more often NMD insensitivity and IR loss (Figure 4E). Conversely, shorter ORFs, 

domain losses and NMD sensitivity were more common effects when the IS was from 

a known to a novel transcript isoform. In conclusion, the unstimulated condition is 

characterized by the presence of many novel transcripts with retained introns, which 

are difficult to detect with short read sequencing. IR is likely a mechanism to prepare 

a cell for fast action after an immune stimulus, when splicing of the retained intron 

could quickly generate a functional transcript with coding potential, which has been for 

instance been described in CD4+ T cells254. 

A novel read-through transcript including CARD16 and CASP1

As an example of a remarkable finding with possible biological impact once validated, 

we identified a read-through transcript that includes both CARD16 and CASP1 (Figure 

5A). Read-through transcripts involve transcription that extends beyond the normal 

polyadenylation site (PAS), terminating at the PAS of an adjacent gene or other nearby 

locus255. These transcripts have been found to be expressed in specific circumstances, 

including malignancy and infection255,256. This particular novel transcript encompasses 

the coding region of CASP1 and has an extended 5’ UTR which spans CARD16, and 

thus contains two ORFs. This IS was annotated as an intron retention loss, as the novel 

transcript loses an intronic region in its 3’ UTR (Figure 5B). Both the known and novel 

transcripts in this IS are predicted to be coding (both 100%). CASP1 was found to be 

differentially expressed upon Poly(I:C) stimulation (log2FC 1.73, p=0.049; Figure 5C). 

The isoform expression of the known transcript was found to decrease upon Poly(I:C) 

stimulation, while the novel transcript was found to increase (Figure 5D). This is further 

reflected in the isoform fraction, increasing from 8.3% to 24.8%, while the known 

transcript decreased from 85.5% to 74.2% (Figure 5E).
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CARD16 and CASP1 both have a function in proinflammatory IL-1β signaling, where 

CARD16 has been shown to play a role in CASP1 assembly, although there remains 

discussion on the exact regulatory effect of CARD16 on this process 257,258. We have 

identified an IS specifically for Poly(I:C) stimulation, where a novel transcript of CASP1 

was found to harbor CARD16 in its 5’ UTR was upregulated upon stimulation. This finding 

could suggest a novel molecular mechanism in IL-1β signaling, potentially through the 

regulation of CASP1 by its regulator CARD16. 

A novel coding transcript of NFKB1

We identified a novel NFKB1 transcript that demonstrated IS in all four conditions. This novel 

transcript was shorter than the canonical transcripts (Figure 6A). Further analysis revealed 

that the novel transcript start site was supported by multiple nearby CAGE peaks (Figure 6B). 

Strikingly, this novel transcript lacks a part of its Rel homology domain, a conserved domain 

responsible for functions such as dimerization and DNA binding (Figure 6C)259. NFKB1 was 

not found to be significantly differentially expressed, although gene expression was found 

to be higher in pathogen-stimulated condition compared to unstimulated condition (only C. 

albicans shown, Figure 6D). The expression of the novel transcript was found to increase upon 

pathogen stimulation (Figure 6E). This is reflected in the isoform fraction, which increases 

from 23.5% to 50.7%, while the known transcript decreases from 39.0% to 21.2% (Figure 5F).

NFKB1 plays a central role in immune responses, regulating the response to infections 

through transcriptional activation57. Furthermore, the Rel homology domain 

region is known to harbor disease-causing variants responsible for common viable 

immunodeficiency (CVID)260, highlighting the importance of this domain in normal B cell 

function. This finding could suggest a novel regulatory mechanism of NFKB1.

Isoform switching in CLEC7A and OAS1 in a stimulus-specific manner

We sought to identify genes with stimulus-specific IS patterns. We identified an IS in 

CLEC7A, which codes for Dectin-1, a receptor that recognizes fungal glucans, triggering 

the immune response261. While this gene was not differentially expressed upon pathogen 

stimulation, we did identify an IS specific to C. albicans stimulation in this gene, involving 

a decrease in expression of an NMD sensitive transcript, with the increase in expression 

of the canonical coding transcript and a non-coding transcript (Supplemental figure 9A). In 

contrast, IR loss in CLEC7A was previously identified as a result of stimulation with multiple 

pathogen stimuli in monocytes. Additionally, no difference in gene expression levels was 

found between IAV-stimulated and resting cells, where the change in splicing was most 

pronounced262. While we find IR loss in CLEC7A specifically upon C. albicans stimulation, 

this could therefore also indicate a shared transcriptional response to pathogen stimuli.



Chapter 3

70

Fi
gu

re
 6

: 
A

 n
ov

el
 t

ra
ns

cr
ip

t 
of

 N
FK

B1
. 

A
) 

U
CS

C 
ge

no
m

e 
br

ow
se

r 
tr

ac
k 

of
 t

he
 t

ra
ns

cr
ip

ts
 d

et
ec

te
d 

in
 t

he
 c

on
tr

ol
 c

on
di

tio
n 

(R
PM

I) 
an

d 
sti

m
ul

at
ed

 
co

nd
iti

on
s.

 T
he

 n
ov

el
 tr

an
sc

ri
pt

 is
 p

re
se

nt
ed

 in
 li

gh
t b

lu
e.

 K
no

w
n 

tr
an

sc
ri

pt
s 

in
 G

EN
CO

D
E 

ar
e 

pr
es

en
te

d 
be

lo
w

. B
) Z

oo
m

ed
 v

ie
w

 o
f t

he
 tr

an
sc

ri
pti

on
 s

ta
rt

 
si

te
 o

f t
he

 n
ov

el
 tr

an
sc

ri
pt

 w
ith

 C
AG

E 
pe

ak
s 

(m
on

oc
yt

e)
 in

 th
is

 re
gi

on
. C

) R
ep

re
se

nt
ati

on
 o

f t
he

 d
om

ai
ns

 in
 th

e 
kn

ow
n 

an
d 

no
ve

l N
FK

B1
 tr

an
sc

ri
pt

s 
th

at
 

w
er

e 
de

te
ct

ed
. D

) G
en

e 
an

d 
tr

an
sc

ri
pt

 e
xp

re
ss

io
n 

an
d 

is
of

or
m

 fr
ac

tio
n 

of
 th

e 
N

FK
B1

 tr
an

sc
ri

pt
s 

th
at

 w
er

e 
de

te
ct

ed
. 



3

Multi-omic profiling of pathogen-stimulated primary immune cells

71   

Additionally, we identified an IS involving OAS1, which is involved in antiviral immunity. 

This gene is differentially expressed in response to C. albicans, S. aureus and Poly(I:C) 

(Supplemental figure 9B). We identified an IS in this gene resulting in an intron loss 

and a domain gain. This IS was only observed for Poly(I:C) stimulation, potentially 

indicating this transcript is necessary for antiviral immune responses (Supplemental 

figure 9C). Previous work has identified common OAS1 haplotypes responsible for a 

decrease in protein abundance through the expression of NMD sensitive transcript p42, 

which contributes to COVID-19 severity263. We find this transcript to be downregulated 

upon Poly(I:C) stimulation. However, the transcript we find to be upregulated lacks the 

prenylation site needed for antiviral function, as shown for p46264.

Detecting secreted peptides

We sought to obtain evidence of the protein-coding potential of novel transcripts found 

through long-read RNA sequencing. Mass spectrometry was performed for 30 secretome 

samples from five donors’ stimulated PBMCs, which includes the samples from the individual 

for which long read RNA sequencing was performed (see methods). These include 2 control 

samples and 1 of each 24-hour pathogen stimulation condition for each individual. 

We designed a search database comprising all proteins that we suspected could be 

in the sample. This includes the GENCODE human proteome, the proteomes of the 

pathogens used, as well as ORFs derived from novel transcripts found using long-read 

RNA sequencing. Novel transcripts do not always correspond to novel ORFs; 32% of 

the novel transcripts had an ORF that was present in the GENCODE reference database 

(Supplemental Figure 10). In the collection of 30 samples, a total of 38,703 peptides from 

15,964 proteins were identified. We found 404 (7.37%) of identified proteins were known 

to be secreted according to the human protein atlas, which constitutes a significant 

enrichment (OR=2.12, p=3.88x10-21, Fisher’s exact test). We did not detect microbial 

proteins in the samples. Many of the novel ORFs predicted from the transcriptome have 

high similarity to GENCODE ORFs, resulting in a small number of novel peptides that could 

uniquely identify these. After rigorous filtering, we were unable to confidently identify 

peptides that mapped uniquely to the predicted novel ORFs. 

Wider deviations in expression in the secretome

To assess whether differences in transcript expression resulted in differences in the 

amounts of secreted proteins, we performed a label-free quantification of the proteins 

in the cells’ supernatants. Using PCA, we found that a large portion of variation in the 

proteome was explained by inter-individual differences and that these differences were 

larger than the differences induced by the immune stimuli (Supplemental figure 11). 
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We found a total of 418 differentially expressed proteins (DEPs) between the stimuli 

and control when controlling for individual variation. Differential protein expression 

was not equally distributed between stimuli with over a third (N=131) of the DEGs 

unique to Poly(I:C) stimulation (Supplemental figure 12A). With the exception of the S. 

aureus condition, more proteins were significantly downregulated than significantly 

upregulated in the secretome (Supplemental figure 12, Supplemental table 20). We found 

few overlapping proteins per condition, which could indicate either a high specificity in 

response to different pathogens or a lack of protein secretion in a subset of samples.

To determine which explanation is more likely, we visualized the specific (groups of) 

proteins associated with response stemming from the stimuli. We clustered protein 

expression values normalized by individual and stimulus (Figure 7A, Supplemental table 

21). The clustering revealed a separation between poly(I:C) samples and the rest of the 

stimuli. C. albicans showed a large overlap with poly(I:C) in the protein expression profiles. 

Some C. albicans samples were grouped with poly(I:C) samples, which confirms the results 

from the differential protein expression analysis (34 common DEPs, Supplemental figure 

12A). Other stimulus conditions could not reliably be separated from RPMI.

We identified a cluster of proteins that are highly expressed in Poly(I:C) and C. albicans 

(cluster 4, Figure 7A). This group of proteins is enriched for genes with functions in 

leukocyte migration and chemotaxis, exemplified by neutrophil migration. We identified 

further enrichments of gene sets involved in the response to IL-1, humoral antimicrobial 

response, and cellular responses to LPS and type II interferons. Analysis of the molecular 

functions of these genes indicated an enrichment of cytokine activity and receptor 

binding, GPCR receptor binding and various catalytic functions, likely due to immune 

cell differentiation and immune responses involving the degradation of extracellular 

matrix proteins during immune cell migration265 (Figure 7B, Supplemental table 22). We 

further assessed the proteins in cluster 4 through a gene network analysis (Figure 7C, 

Supplemental table 23-24). Of the 84 proteins in this network, 61 were differentially 

expressed on the protein level (72.6%, any condition). Of these DEPs, 18 are involved in 

cytokine signaling (29.5%), of which 13 genes are chemokines (71.2%). A high proportion 

of proteins are found in the extracellular region (n=47, 77.0%), for instance through 

secretion in granules. The biological functions of the DEPs in cluster 4 reflect those 

found for the complete set of proteins in cluster 4, mainly corresponding to pathways 

associated with functions in neutrophil migration and chemotaxis (Supplemental table 

25). As these pathways are not necessarily specific to these two stimuli, this may indicate 

Poly(I:C) and C. albicans may be more effective at eliciting differential protein secretion 

or have less delay in secretion compared to the other stimuli. 
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Comparison with RNA expression

As established earlier, a multi-omics approach is currently the best way to understand the 

human immune response. Correlation between the RNA and protein levels, or lack thereof, 

can provide important clues about the host response to pathogens. To assess the correlation 

of differential gene and protein expression levels, we assessed the concordance of differential 

expression on the RNA and protein level. This metric corresponds to the percentage of genes 

for which differential expression on both levels matched in directionality (out of all genes 

where DE was observed on both levels) (Figure 7D, Supplemental table 26). 

We observed an overall poor concordance of directionality and fold change of 

expression levels at the RNA and protein levels in the different stimulus conditions, 

with the exception of C. albicans with 73% overall concordance. We overlaid the 

genes in group 4 from our clustering analysis with the genes found to be DE on both 

RNA and protein levels. There was an overrepresentation of the genes in this cluster 

in the total group of dual-level DE genes (OR=6.99, p=4.813e-16). Further analysis of 

concordant differential expression matches arising from proteins in cluster 4 (triangles 

in Figure 7D), we observed high concordance in the genes induced by C. albicans and/or 

Poly(I:C). Directionality concordance for Poly(I:C) and C. albicans for genes in in cluster 

4 was significantly higher than overall directionality concordance (p=0.0313 Poly(I:C), 

p=0.0003 C. albicans, Fisher’s test one-tailed). The cluster 4 proteins in the LPS and S. 

aureus conditions are in the lower right quadrant, indicating that the increase of RNA 

translated into a decrease of secreted proteins for these genes (Figure 7D).

We hypothesized in the IS analysis that a major regulatory mechanism in the host 

response to pathogens was the loss of intron retention for rapid protein generation. 

We cross-referenced the secreted proteins to support this conjecture. By overlapping 

upregulated isoforms from intron retention loss events, we found 20 cases from 7 

genes (Supplemental table 27). Of these genes, 2 were upregulated on the protein 

level, supporting our hypothesis. The genes were GZMB and B2M, which are important 

immune-regulatory genes that are both secreted266,267. Considering the remaining 5 genes 

that were downregulated on the protein level, however, this is not convincing evidence 

that intron retention loss in general provides a rapid increase of protein production.

Discussion
The identification of novel transcripts and subsequent production of additional 

protein isoforms could help identify molecular mechanisms that play a role in various 

biological processes, including immune responses. Various immune system processes 
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have previously been found to be regulated by alternative splicing 268,269 270 271. Immune 

responses display significant inter-individual differences. Donor-specific effects such as 

sex and ancestry have been shown to significantly influence the transcriptome. Previous 

studies have further shown the impact of QTLs in the heritability of cytokine production 

capacity202,272–274. However, the effect of these processes on host defense mechanisms 

against pathogens, together with the large inter-individual differences in transcription 

and protein expression, remain to be elucidated. 

We have generated a long-read transcriptome of pathogen-challenged primary 

immune cells (PBMCs) together with the secreted proteome to investigate mechanisms 

underlying immune responses during infection. We described the accurate identification 

of known and novel transcripts in both control and pathogen-challenged conditions. Of 

these transcripts, we identified a subset that is differentially expressed as a result of 

pathogen stimulation, which we validated by short read RNA sequencing data (including 

4 additional individuals) and publicly available CAGE data from neutrophils. 

We examined isoform switching that occurred as a result of pathogen stimulation, 

insight into transcripts that may play a role in pathogen responses. On a genome-

wide level, widespread intron retention losses were observed. Retained introns that 

rendered the transcript unusable in the control condition were spliced out as a result 

of microbial stimulation; a trend we observed in all conditions regardless of microbe. 

We postulate that these are examples of unproductive splicing in unstimulated cells 

switching to productive splicing after stimulation enabling fast production of proteins 

relevant for the immune response. Genes that undergo intron retention loss mainly 

have functions in mRNA splicing and processing and in immunity. Tissue- or cell-type 

specific unproductive splicing has been widely observed as an autoregulatory process 

for mRNA splicing factors275, which is supported by our data in immune cells. We were 

however not able to confirm changes in protein expression of genes that underwent 

IR losses using our secretome proteomics data, likely because these proteins are not 

generally secreted. A couple of pertinent examples have been illustrated in greater 

detail. We identified an IS specific to the viral stimulus that involves a novel read-

through transcript of CASP1 and CARD16. We found an instance of IS to a novel NFKB1 

transcript with a shortened DNA binding domain that was found in all four conditions. 

Additionally, we describe IS in CLEC7A and OAS1 for C. albicans and Poly(I:C), which 

highlight stimulus-specific alternative splicing. Taken together, these results highlight 

the potential for long-read sequencing to accurately resolve novel transcripts with 

potential relevance in immune responses, including intron retention loss events that 

are generally difficult to detect using short-read sequencing.
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The extent to which conclusions can be drawn about immune response mechanisms is 

limited by the low sample size for long-read sequencing. In this explorative study meant 

to provide insights into the novel technical possibilities utilizing latest sequencing 

approaches, we generated long-read sequencing data for only a single individual 

because of the expensive nature of this technology in combination with the required 

sequencing depth and the number of conditions studied. This design did not allow us 

to investigate the inter-individual differences in the transcriptome. Novel transcripts 

that were detected could thus be specific to this individual. Future follow-up including 

the sequencing of more individuals using accurate long-read sequencing methods and 

functional studies could provide additional insight into the more general relevance 

of these transcripts in immune responses. This study focused on the appraisal of the 

transcriptome and proteome in PBMCs, which consist of multiple cell types. Use of 

freshly isolated PBMCs accurately represents the complete immune cell population in 

the peripheral blood and allows for communication between cell types during pathogen 

stimulation, thereby potentially giving an accurate representation of this cell population 

in vivo. However, no information on cell type specificity of transcripts is available. This 

could be resolved by recent developments in single cell long-read sequencing276. 

The proteome, in contrast, was generated for all samples from all 5 individuals and 

highlighted significant differences between the secretome of individual donors, before and 

after response to immune stimuli. Concordance between the transcriptome and proteome 

levels was high in Poly(I:C) and C. albicans, and lower in LPS and S. aureus. We found 

that genes with high correlation on the RNA- and protein levels form a cluster of protein 

expression, separating the former two stimuli from the latter. These proteins are enriched 

for secreted immune-related proteins, indicating that pathogen stimulation successfully led 

to secretion of relevant proteins. This would indicate that cells have responded faster to 

the Poly(I:C) and C. albicans stimuli than to the LPS and S. aureus stimuli, because RNA and 

protein were isolated simultaneously from our samples. Delay in protein production after 

expression of an mRNA may partially explain the lack of correlation of differential expression 

on RNA and protein level. This delay is presumably even longer in the secretome as proteins 

need to be first produced and subsequently secreted277.

We focused our study on the secretome to reduce the complexity of the protein mixture 

analyzed, and to obtain better peptide coverage of the secreted proteins that play an 

important role in immune signaling. However, this limited our view on the complete 

proteome affected by immune stimuli. Also, there is the added complication that only a 

small number of peptides exist that could discriminate between proteoforms. To detect 

the proteoforms derived from our long-read sequencing data, much deeper shotgun 
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proteomics must be performed278. These limitations are reasons why no evidence of 

novel transcripts could be validated with the proteome.

Multi-omics approaches are a promising method to further our understanding of 

immune responses. Our study scratches the surface of biological insight to be reaped 

from a combination of multi-omics and long-read sequencing data and was hindered 

only by the aforementioned limitations in the samples themselves. Removing these 

limitations will undoubtedly result in deeper mechanistic understanding and will 

translate into better outcomes for patients. Insights gained from this methodology can 

be used immediately in rare disease diagnostics applications, such as the reannotation 

of variants using more accurate reference transcriptomes for specific tissues279, 

contributing to the development of more personalized medicine.
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Abstract
Our incomplete knowledge of the human transcriptome impairs the detection of 

disease-causing variants, in particular if they affect transcripts only expressed under 

certain conditions. These transcripts are often lacking from reference transcript sets, 

such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic 

diagnoses. We present SUsPECT (Solving Unsolved Patient Exomes/gEnomes using 

Custom Transcriptomes), a pipeline based on the Ensembl Variant Effect Predictor (VEP) 

to predict variant impact on custom transcript sets, such as those generated by long-read 

RNA-sequencing, for downstream prioritization. Our pipeline predicts the functional 

consequence and likely deleteriousness scores for missense variants in the context 

of novel open reading frames predicted from any transcriptome. We demonstrate 

the utility of SUsPECT by uncovering potential mutational mechanisms of pathogenic 

variants in ClinVar that are not predicted to be pathogenic using the reference transcript 

annotation. In further support of SUsPECT’s utility, we identified an enrichment of 

immune-related variants predicted to have a more severe molecular consequence when 

annotating with a newly generated transcriptome from stimulated immune cells instead 

of the reference transcriptome. Our pipeline outputs crucial information for further 

prioritization of potentially disease-causing variants for any disease and will become 

increasingly useful as more long-read RNA sequencing datasets become available.
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Background
The advent of next-generation sequencing (NGS) and the exponential increase in 

human genomes sequenced has caused a similarly strong increase in the number of 

genetic variants detected. The identification of novel genetic variants has outpaced the 

understanding of their functional impact. Since only a small fraction of all observed 

variants can be characterized clinically or by functional tests, there is a heavy reliance 

on computational methodology for prioritization. Several computational methods 

predict the effect of genetic variant effects on function such as PolyPhen-2 39, SIFT 280, 

and MutPred2 281. Variant annotators such as the Ensembl Variant Effect Predictor (VEP) 
282 and ANNOVAR 283 predict molecular consequences and integrate reference data and 

pathogenicity scores from different resources including dbNSFP 284.

Short-read RNA sequencing has provided us with the majority of knowledge we 

currently have about the transcriptome, but has some intrinsic limitations when 

it comes to discovery of alternative transcripts 56,285. Short read RNA sequencing is 

done on transcript fragments and the assembly into full-length transcripts is far from 

perfect, which has resulted in an incomplete reference transcriptome 286. Long-read 

sequencing allows for the accurate elucidation of alternative transcripts 287 and long-

read RNA sequencing datasets are proving that the human transcriptome has much 

more diversity than previously thought 51,288,289. In addition, both short and long-read 

sequencing have shown that gene expression is highly variable in a context dependent 

manner, with divergent expression of transcripts expressed under different conditions 

(infection, stress, disease) or in different tissues or cell-types 213,290–292.  

Some newly discovered transcripts result in open reading frames (ORFs) coding for 

novel proteoforms 236,293,294. Knowledge on novel ORFs is key to predicting functional 

consequences of variants within them. There are several computational methods 

available to predict ORFs of these novel transcripts either based on sequence features 
114,295,296 or homology to existing protein coding transcripts 111,297,298. The prediction of 

ORFs on novel sequences is an essential first step for the detection of new proteoforms, 

as mainstream proteogenomics technologies for the discovery of proteoforms rely on 

databases with peptide sequences present in the predicted ORFs. Transcripts derived 

from long-read sequencing can provide better predictions of (novel) proteoforms 

(Figure 1). 
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A

B

Figure 1: Premise for the creation of SUsPECT. A) Some pathogenic variants may be missed 
without actual information about all alternative transcripts expressed in a relevant sample. A 
variant in a particular genomic position may be incorrectly predicted to be non-deleterious. B) A 
variant at the same genomic position may cause a different missense variant in different transcript 
structures due to varying open reading frames per transcript.

Current variant annotation tools do not take full advantage of the knowledge of novel 

transcripts because they work with precalculated pathogenicity scores calculated with 

respect to a fixed set of reference transcripts. This necessitates manual evaluation of 

the functional effects of variants on alternative proteoforms, since disruption of their 

function may have implications for clinical diagnosis and treatment. The pipeline 

presented here, SUsPECT (Solving Unsolved Patient Exomes/gEnomes using Custom 

Transcriptomes), is designed to leverage cell/tissue-specific alternative splicing patterns 

to reannotate variants and provide missense variant functional effect scores necessary 

for downstream variant prioritization. This pipeline was designed to be generalizable to 

any type of rare disease variant set paired with a relevant (long-read) transcriptome. 
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For example, a researcher interested in annotating variants in a patient with a rare 

intellectual disability could consider using this tool along with a brain transcriptome 

dataset. We demonstrate the usefulness of this tool by reannotating ClinVar variants 

with a newly generated immune-related long-read RNA sequencing dataset. 

Results
Analysis pipeline overview

We developed SUsPECT to reannotate variants using custom transcriptomes (Figure 2). 

This pipeline takes a custom transcriptome (GTF file) and a VCF file as input and returns a 

VCF file with alternative variant annotations for downstream evaluation and prioritization. 

SUsPECT predicts the ORFs in the alternative transcripts, calculates the molecular effects 

of the input variants with respect to these transcripts and predicts the pathogenicity of 

missense variants in the alternative proteoforms. SUsPECT displays subsets of variants 

predicted to have more severe effects when based on the custom transcriptome instead 

of the reference transcriptome. The predicted molecular consequences can be one of five 

severity levels, ranging from “modifier” to “high” (Figure 2A). A schematic overview of the 

pipeline is presented in Figure 2B. The main steps in the pipeline are:

• Validate pipeline input, including 1) an assembled (long-read) transcriptome in GTF 

format with novel transcripts. A long-read transcriptome assembly tool such as 

TALON will output a suitable file. 2) A VCF containing patient(s) variants.

• ORF prediction is performed on the transcripts that are not present in the human 

reference transcriptome.

• Ensembl VEP predicts molecular consequence annotations based on the user-

provided set of transcripts/ORFs. Variants considered as missense in the user-

provided transcriptome are reformatted and submitted to Polyphen-2 and SIFT.

• Polyphen-2 and SIFT calculate functional effect scores. These are reformatted and 

incorporated into the final VCF annotation file. 

• A sub-list of variants that have a more severe molecular consequence in the custom 

transcriptome are provided in tabular format.
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A B

Figure 2: Reannotation with SUsPECT. A) Defining “more severe”. The five categories of severity 
are modifier, low, moderate, damaging missense and high. We consider levels 3 and 4 to be 
deleterious, and thus potentially pathogenic. B) The schematic of the pipeline.

A long-read sequencing transcriptome of stimulated peripheral blood mononuclear 
cells

We have generated long-read sequencing data on atypical, i.e. in vitro stimulated 

samples - provoking a strong expression response, to illustrate the use of the pipeline. 

We chose this dataset to exemplify less-studied tissues/conditions because novel 

transcripts are more numerous in these samples and SUsPECT is most likely to yield 

interesting results when the input transcriptome has many novel transcripts. Our custom 

transcriptome is based on long-read transcript sequences related to host-pathogen 

interactions and is derived from human peripheral blood mononuclear cells (PBMCs) 

exposed to four different classes of pathogens. We combined the transcript structures 

of all four immune stimuli and control samples for the reannotation. We identified a 

total of 80,297 unique transcripts, 37,434 of which were not present in the Ensembl/

GENCODE or RefSeq reference transcriptomes. Relative abundances of novel transcripts 

were lower than of reference transcripts (Suppl. Figure 1). The custom transcriptomes 

resulted in prediction of 34,565 unique novel ORFs passing CPAT’s coding capacity 

threshold. The majority of transcripts had at least one ORF predicted (Suppl. Figure 2).

Reannotation of ClinVar variants

Variants may be predicted to have a more severe molecular consequence in novel (non-

reference) transcripts, but the functional and ultimately clinical implications remain 

unclear. To demonstrate that SUsPECT can suggest new candidate pathogenic variants 

associated with clinical outcomes, we reannotated ClinVar variants. ClinVar contains 

variants with clinical significance asserted by different sources. We hypothesized that 
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ClinVar variants that were annotated as pathogenic and not predicted to be deleterious 

with the reference transcript annotation, but predicted deleterious with a (relevant) 

sample transcriptome, would support the utility of this pipeline. 

We tested SUsPECT on a recent ClinVar 299 release (April 2022), excluding all variants 

that were annotated in ClinVar to be (probably) benign. We compared the predicted 

severity of the 776,866 variants using our custom transcript annotation versus the 

reference. After applying filters as described in the Methods section, 1,867 candidate 

variants remained. Of these variants, 145 were associated with monogenic immune-

related disorders (Suppl. Table 1), which is significantly more than expected by chance 

(odds ratio=5.46, p=1.51x10-55, Fisher’s exact test). This could indicate that annotation 

with an immune-relevant transcriptome is better suited for the identification of variants 

with an impact on immune function than annotating with a reference transcriptome. 

The strongest argument for the utility of this pipeline can be made with variants that 

are curated in ClinVar to be pathogenic rather than those of uncertain significance. 

After excluding variants of unknown significance (VUS) from the full candidates list, 

there are 90 variants remaining, of which 5 immune-related. These 90 variants had an 

enrichment of severity level 4 events (Suppl. Figure 3). An overview of the number of 

variants remaining after the different filter steps is given in Suppl. Figure 4. 

Five immune-related variants curated in ClinVar to be pathogenic were reannotated 

from a low severity molecular consequence in the Ensembl/GENCODE and Refseq 

transcript set to a moderate or high severity in our transcriptome (Table 1). Two were 

missense variants in the custom annotation and three were start-loss/stop-gain. We 

visualized the variants in the context of the transcript structures/ORFs on the UCSC 

genome browser. Two examples can be seen in Figure 3. The variant in IFNGR1 (dbSNP 

identifier rs1236009877) is associated with IFNGR1 deficiency. It is curated by a single 

submitter in ClinVar as ‘likely pathogenic’ using clinical testing. Annotation of the 

variant with reference transcripts results in a low severity (intronic variant) result, but 

results in a stop-gain variant (high severity) when annotating with our transcriptome. 

Our custom transcriptome contained multiple novel transcripts with a retained intron at 

the site of the variant, but only 1 of these transcripts had a predicted ORF in this intron. 

The particular transcript affected by this stop gained variant was found in all samples 

sequenced with minimum 3 and up to 10 supporting reads, indicating that it is unlikely 

an artifact. The predicted ORF extended 30 base pairs into the retained intron in the 

region of this variant. It was the most probable ORF for that transcript with a coding 

probability by CPAT of 0.934. 
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Figure 3: Two examples of ClinVar pathogenic variants being reannotated. Both variants were 
considered low severity variants when using hg38 reference transcriptome to annotate. A) 
IFNGR1 whole view and close-up of region around the variant. Variant causes a stop-gain effect 
(K>*) in the custom transcript novelT001005410. B) STAT1 whole view and close-up of region 
around variant. Variant causes a start loss (M>T) in the custom transcript novelT001115628.

In addition, the variant in STAT1 (dbSNP identifier rs387906763) was pathogenic 

according to the LitVar 300 literature mining tool and a clinical testing submission. It is a 
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missense variant (Tgc/Cgc) in the reference annotation that is predicted by PolyPhen-2 

to be benign. However, in one novel transcript it causes an M/T substitution, leading to 

loss of translation start site. Further inspection revealed that the transcript affected by 

the start-loss was expressed in C. albicans, S. aureus and PolyIC stimulated conditions by 

up to 6 supporting reads, but not in the control condition. STAT1 is previously described 

to be involved in the immune disease (chronic mucocutaneous candidiasis) linked to 

this variant by weakened response to C. albicans 301, which is a condition where this 

novel transcript was expressed. The ORF affected was the most probable ORF for that 

transcript and had a coding probability of almost 1 by CPAT.

Discussion
SUsPECT predicts the functional consequences of genetic variants in the context of 

novel open reading frames predicted from a user-defined transcriptome. It is important 

to underline that the pipeline does not return a statement on the pathogenicity of 

variants. The pipeline simply brings new candidates forward for further interpretation; 

the user may choose to cross-reference the clinical phenotypes of the patients with the 

functions of the genes that the patients’ variants are found to disrupt. In our use case, 

ClinVar variants were used as they already have widely accepted annotations. However, 

40% of ClinVar variants are of unknown significance, some of which are suspected to 

have some impact on clinical phenotype. Nearly 2% of these variants changed rating 

to be predicted as deleterious in our reannotation. As more people generate sample-

specific transcriptomes to annotate variant sets, an increasing number of VUS may be 

classified as benign or deleterious. 

Alternative splicing is known to increase the proteomic diversity, but it is less well 

understood how the novel transcripts contribute to the diversity of proteoforms and 

their function, and how these are impacted by genetic variants 302–305.  One of the most 

commonly used variant annotators, Ensembl VEP, predicts molecular consequences 

for variants in custom transcripts in standard formats, but lacks functional effect 

predictions for missense variants in those transcripts. Considering the well-established 

importance of missense variants on a variety of diseases 306–308, this presents a hurdle in 

the reannotation of variants with a custom transcriptome data. 

We observed that many missense variants were predicted to have more severe effects 

when annotated based on custom transcriptomes. This may be due to the numerous 

new ORFs. Multiple ORFs passing CPAT’s ‘human threshold’ were often predicted per 

novel sequence; for our 37,434 novel transcript sequences we predicted 34,565 novel 
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ORFs. Some proteogenomics tools choose the ‘best’ ORF per sequence, but we have 

decided to keep all that passed the probability threshold. We do not filter out non-

coding genes when predicting ORFs, because some of them may still have protein coding 

capacity. Missense results implicitly depend on the confidence of the ORF predictions 

that are produced by CPAT. New deleterious missense variants will not be relevant if the 

predicted protein is not produced in the cell. Coding ability of novel transcripts is an area 

of active research 309–311 and new techniques to identify credible ORFs may be added to 

the pipeline as they become available. In the meantime, it may be prudent to validate 

interesting candidates using targeted proteomics techniques before establishing a 

genetic diagnosis.

SUsPECT is flexible; it takes transcriptomes from either short-read or long-read 

sequencing, PacBio or Oxford Nanopore, cDNA or direct RNA, as long as novel 

transcripts exist in the dataset. SUsPECT may produce the most comprehensive results 

if the transcriptome dataset comes from patient cells or tissues that are affected by the 

condition under study. However, it is also possible to use existing or newly generated 

long-read transcriptomes from relevant cells or tissues of healthy individuals, like 

we have demonstrated in the current work. The modularity of the tool means its 

components are also adaptable. The module that reads input can be updated as new 

(long-read) transcript analysis tools become available, which is useful considering new 

tools are actively being developed 223. Its modularity facilitates incorporation of other 

functional effect prediction tools 312–315 than the currently implemented PolyPhen-2 

and SIFT software. The current implementation and future extensions of SUsPECT may 

thus contribute to increase the diagnostic yield for disorders that are associated with 

transcripts expressed in specific tissues or under specific conditions.  

Conclusions
The full complexity of the human transcriptome is not represented in the current 

reference annotation. Analysing variants using alternative transcripts may aid in 

explaining missed genetic diagnoses, especially when disease or tissue-specific 

transcripts are used. SUsPECT puts genetic variants in the context of alternative transcript 

expression and can contribute to an increase in diagnostic yield. We used missense 

variants with ClinVar assertions of pathogenicity to demonstrate the potential of this 

methodology and have demonstrated a higher yield of missense variants are predicted 

to be deleterious. The enrichment of immune-related variants after reannotation 

suggests there is biological significance to these findings. Thus, long-read transcriptome 

data relevant to the disease of interest may not only improve our understanding of the 
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ever-growing number of genetic variants that are identified in human disease context, 

but also aid in diagnoses for rare and/or unsolved disease 316,317.

Methods
Severity classification

SUsPECT classifies variants according to their expected impact and their molecular 

consequence. Impact scores used by SUsPECT are based on the predicted molecular 

consequence groupings in Ensembl VEP (Figure 2A) with higher numbers corresponding 

to more severe consequences: zero being equivalent to “modifier”, one to “low” severity, 

two to “moderate” severity, and four to “high” severity.  SUsPECT uses Polyphen-2 

predictions to distinguish between (likely) benign (score: 2) and (likely) deleterious 

(score: 3) missense variants.

Additional filters for output variant list

SUSPeCT initial output is a list of variants with higher severity scores based on the 

custom transcriptome annotation compared to the reference annotation (homo_

sapiens_merged cache version 104 which includes both Refseq and Ensembl/GENCODE 

transcripts). The variants that remain in the final list of “increasing severity” are 

filtered to retain only variants that are potentially interesting for establishing a disease 

diagnosis. Thus, the pipeline removes variants that are already considered deleterious 

based on the reference annotation, i.e. variants that already have scores of 3 or 4. An 

additional criterion was applied for missense variants. Missense variants for which 

the same amino acid substitution found in the custom and reference annotation are 

also removed. To reduce computational time further, missense variant alleles in novel 

sequences that are common (AF > 0.01) are removed. These filters are integrated in 

SUsPECT. For the use case described in this manuscript, missense variants present in 

the custom annotation that are predicted by PolyPhen-2 to be “benign” in both custom 

and reference annotation are removed. In our ClinVar example, we define “immune-

related” variants as those variants that contain the string “immun” somewhere in the 

clinical description.

Software details

A pipeline was built to streamline the process of variant prioritization using custom 

transcript annotation. The pipeline is written in Nextflow 318, using Ensembl VEP as the 

variant annotator. Each step of the pipeline runs Singularity/Docker containers pulled 

automatically from Docker Hub. The input of the pipeline is the sample-specific/non-
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reference long-read transcriptome in GTF format, variants in a VCF file, and a FASTA file 

of the genome sequence. It is designed for use with output from TALON 319. 

First, the GTF file is converted to BED format with AGAT v0.9.0 320. ORFs for any novel 

sequences are predicted based on the BED annotation and FASTA genome reference 

using CPAT v3.0.4. CPAT output is converted to BED format with the biopj python package 

and filtered for a coding probability of at least 0.364, which is the cutoff for human ORFs 

recommended by the authors of CPAT 114. Conversion from CPAT CDS to protein FASTA 

is performed with EMBOSS transeq v6.5.7. This ORF BED file is combined with the BED 

file of transcripts to make a complete BED12 file with ORF/transcript information. Then, 

we convert this BED12 file to GTF with UCSC’s bedToGenePred and genePredToGtf. 

The resulting GTF file is used for a preliminary annotation of the variants with Ensembl 

VEP to fetch variants predicted as missense in the custom transcript sequences. Next, 

variant filtering was performed as outlined in the previous section with the filter_vep 

utility distributed with Ensembl VEP as well as bedtools v2.30.0. The functional effect 

predictions from Polyphen-2 and SIFT are reformatted and one final run of Ensembl VEP 

(with the custom plugin enabled) integrates these predictions to the VCF. The output is 

the annotated VCF, as well as a VCF with the subset of variants predicted to have higher 

severity.

Ex vivo PBMC experiments

Venous blood was drawn from a healthy control 321 and collected in 10mL EDTA tubes. 

Isolation of peripheral blood mononuclear cells (PBMCs) was conducted as described 

elsewhere 222. In brief, PBMCs were obtained from blood by differential density 

centrifugation over Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1 

dilution in PBS. Cells were washed twice in saline and re-suspended in cell culture medium 

(Roswell Park Memorial Institute (RPMI) 1640, Gibco) supplemented with gentamicin, 

50 mg/mL; L-glutamine, 2 mM; and pyruvate, 1 mM. Cells were counted using a particle 

counter (Beckmann Coulter, Woerden, The Netherlands) after which, the concentration 

was adjusted to 5 × 106/mL. Ex vivo PBMC stimulations were performed with 5×105 

cells/well in round-bottom 96-well plates (Greiner Bio-One, Kremsmünster, Austria) for 

24 hours at 37°C and 5% carbon dioxide. Cells were treated with lipopolysaccharide (E. 

Coli LPS, 10 ng/mL), Staphylococcus aureus (ATCC25923 heat-killed, 1×106/mL), TLR3 

ligand Poly I:C (10 µg/mL), Candida albicans yeast (UC820 heat-killed, 1×106/mL), or left 

untreated in regular RPMI medium as normal control. After the incubation period of 

24h and centrifugation, supernatants were collected and stored in 350uL RNeasy Lysis 

Buffer (Qiagen, RNeasy Mini Kit, Cat nr. 74104) at −80°C until further processing.
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RNA isolation and library preparation

RNA was isolated from the samples using the RNeasy RNA isolation kit (Qiagen) according 

to the protocol supplied by the manufacturer. The RNA integrity of the isolated RNA was 

examined using the TapeStation HS D1000 (Agilent), and was found to be ≥7.5 for all 

samples.  Accurate determination of the RNA concentration was performed using the 

Qubit (ThermoFisher). Libraries were generated using the Iso-Seq-Express-Template-

Preparation protocol according to the manufacturer’s recommendations (PacBio, 

Menlo Parc, CA, USA). We followed the recommendation for 2-2.5kb libraries, using the 

2.0 binding kit, on-plate loading concentrations of final IsoSeq libraries was 90pM (C. 

albicans, S. aureus, PolyIC, RPMI) and 100pM (LPS) respectively. We used a 30h movie 

time for sequencing. The five samples were analyzed using the isoseq3 v3.4.0 pipeline. 

Each sample underwent the same analysis procedure. First CCS1 v6.3.0 was run with 

min accuracy set to 0.9. Isoseq lima v2.5.0 was run in isoseq mode as recommended. 

Isoseq refine was run with ‘--require-polya’. The output of isoseq refine was used 

as input for TranscriptClean v2.0.3. TranscriptClean was run with ‘--primaryOnly’ 

and ‘--canonOnly’ to only map unique reads and remove artifactual non-canonical 

junctions of each of the samples. The full TALON pipeline was then run with all five 

samples together using GRCh38 (https://www.encodeproject.org/files/GRCh38_no_

alt_analysis_set_GCA_000001405.15/@@download/GRCh38_no_alt_analysis_set_

GCA_000001405.15.fasta.gz). Assignment of reads to transcripts was only allowed 

with at least 95% coverage and accuracy. A minimum of 5 reads was required to keep 

alternative transcripts in the final transcript set (default of talon_filter_transcripts). 

GENCODE annotation (v39) was used by TALON to determine novelty of transcripts in 

the sample.
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Supporting information

 

Supplementary figure 1: Relative abundance of novel transcripts relative to known transcripts. 
Transcript counts were summed for all 5 conditions per transcript.

  

Supplementary figure 2: Number of predicted ORFs passing CPAT’s human coding threshold. 
ORFs were predicted per novel transcript and sorted by most to least likely to be coding (1 being 
most likely). All predicted ORFs in blue, those that passed the human coding threshold in orange.
  



4

SUsPECT

95   

A B C

Supplementary figure 3: Comparing subsets of variants that changed annotation from benign 
to deleterious. “All ClinVar” corresponds to all reannotated clinvar variants including VUS and all 
clinical phenotypes that were reannotated from benign to deleterious with our transcriptome 
(N=1867). “Pathogenic” is a subset of all reannotated variants that excludes VUS variants (N=90). 
“Immune-related” is a subset of all reannotated variants that includes only immune-related 
clinical phenotypes (N=145). A) Impact level of variants after reannotation. The impact level 
shown is associated with annotation in the custom transcriptome. B) PolyPhen-2 predictions of 
variants after reannotation. C) Specific molecular effects of variants after reannotation.
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Supplementary figure 4: Overview of variant prioritzation on our SUsPECT test case. 

https://link.springer.com/article/10.1186/s12864-023-09391-5#Sec5 
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Applications
Proteogenomics can shed light on important biological processes, including mechanisms 

underlying post-transcriptional regulation. Since many diseases disrupt or intercept 

these processes, the methods presented in this thesis potentially uncover those disease 

mechanisms too. Understanding post-transcriptional regulation has real-world, clinical 

relevance. In this section, some common applications of proteogenomics methodology 

in disease diagnostics and biomarker discovery will be outlined.

Diagnostics of rare disease

Rare diseases tend to have wide phenotypic and genetic variability, which makes them 

particularly challenging to diagnose. The majority (80%) have a genetic cause; NGS has 

helped greatly in these cases by identifying variants in an unbiased and high-throughput 

manner322. Decisions about what variants proceed through diagnostic evaluation are 

largely done on a case-by-case basis according to what information was available at 

the time. Generally, patient variants are narrowed down to a small handful that are not 

common in the general population and/or in genes that are involved in processes relevant 

to the disease, but the information about population frequencies and gene panels are 

being constantly updated. As a result, many rare disease patients remain undiagnosed. 

Definitively unraveling mechanisms of variant pathogenicity can be accomplished with 

functional studies323. In these studies, the effects of variant on proteins and biological 

systems can be tested in model organisms324,325 or in patients’ own cells326,327. The process 

of functional validation is time consuming, however. Recently, the introduction of protein 

information has shown promise in the diagnosis of these cases by revealing biochemical 

consequences of variants, providing a valuable bridge between early- and late-stage 

diagnostic processes328–330. SUsPECT, developed in Chapter 4, aims to replicate that bridge 

in silico to reduce the number of variants that need to undergo functional validation.

Biomarker discovery in cancer

Proteogenomics has emerged as a powerful approach in biomarker discovery, providing 

a holistic understanding of the molecular landscape of diseases. A biomarker is a 

measurable and quantifiable indicator of a biological process, condition or response to 

a therapeutic intervention331. Insights into the relationship between genetic alterations 

and protein expression enables the identification of novel biomarkers associated 

with various diseases. Variant peptides, the focus of this thesis, have great biomarker 

potential, as they can be used to distinguish diseased versus healthy phenotypes 

(diagnostics) and provide potential therapeutic targets (treatment). 
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The most striking example of success in proteogenomic biomarker discovery is in cancer. 

Full proteogenomic characterization (like in Chapter 4) has been performed on countless 

cancer types332. Considering the low correlation (0.3-0.45 range) of RNA-protein 

correlation reported in cancer and elsewhere333–335, the addition of proteomics data has 

been a real benefit for patient stratification. Recent studies in, among others, prostate 

cancer336, pediatric brain cancer337, medulloblastoma338, clear cell renal cell carcinoma339 

identified outcome-correlated subtypes of their respective cancers. In these studies, 

addition of proteomics data in addition to existing RNAseq data either contributed 

to or was solely responsible for the subtype definition. Post-translationally modified 

proteins were also included in most of the aforementioned cases; in colorectal cancer, 

phosphorylation separated primary tumors with metastasis from those without340. The 

defined subtypes characterized by proteogenomics will inform treatment and predict 

treatment response in the clinic.

Proteogenomics does not only aid in the definition of the cancer (sub)types, it also 

facilitates in development of the treatments. Neoantigens may arise from variant 

peptides arising from single nucleotide variants, intron retention and cryptic splicing. 

They are critical targets for immunotherapy since they are derived from tumor-specific 

mutations and thus presented only on cancerous tissue. Proteogenomic analyses are 

key for the identification and validation of neoantigens, enhancing our understanding 

of the tumor immunopeptidome and guiding the development of personalized cancer 

vaccines341–344. T-cell responses against tumor-specific antigens were successfully 

mounted using immunotherapy345,346, and the therapy has been shown to improve long-

term survival347. The use of proteogenomics for neoantigen detection is so pervasive 

that multiple software pipelines have been built for this purpose348–352. Cancer is one 

illustrative example of where proteogenomics has proved valuable for both disease 

subtyping and therapeutics. Proteogenomics requires large volumes of omics data. The 

breadth of proteogenomics research can thus be attributed to the resources allocated 

to cancer research; many of the studies cited here originate from cancer-related 

consortiums with many members involved. The consortiums are well organized and 

make large multi-omics datasets available to the scientific community, encouraging re-

use353.

The applications of proteogenomics in biomarker discovery extend beyond cancer; 

many complex and heterogenous diseases benefit from the multi-faceted picture 

that proteogenomics provides. In neurodegeneration, disease stratification using 

proteogenomics was successful with Parkinson’s disease354 and alternatively spliced 

proteoforms were found differentially expressed in Alzheimer’s brains355. Non-canonical 
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proteoforms are also prevalent in the human heart356, with age-related differential 

expression that could be used as biomarkers in age-related heart disease357. Host-

defense peptides, which selectively alter innate immune pathways in immune cells in 

response to pathogen infection, have been indicated as suitable biomarkers for both 

infectious and non-infectious diseases regardless of whether constituently expressed or 

only as response to pathogenic infection358,359. Proteogenomics may aid in uncovering 

the latter, as indicated in Chapter 3. Proteogenomics has demonstrated great diagnostic 

and therapeutic potential, even with methodology challenges in sequencing (short-

reads) and in proteomics. Methods like those developed in this thesis (Chapter 4) are 

well-positioned to discover candidate biomarkers in a high-throughput manner. We are 

only beginning to scratch the surface of clinically-useful proteogenomics findings; fully 

addressing limitations in the manner described in the remainder of this chapter will 

increase both sensitivity and specificity of biomarkers candidates in any disease model. 

Challenges
Proteogenomics, like any less well-established method, faces a variety of challenges. 

There is much novel biology to be found, but the success of proteogenomics is very 

dependent on the content of the search database. Utilizing long-read sequencing 

technology results in a database with fewer likely artifacts, but being a newer 

technology itself, faces its own set of limitations. The improvement in search database 

enables more novel proteoform discovery in general. However, accurate reporting of 

these novel protein products is important. Published results can be incorrect without 

established standards and may compromise our understanding of biological processes 

under study.

Defining transcript novelty

There are clear discrepancies in transcriptomes produced by different tools for 

transcriptome assembly/annotation of long-read sequencing data. Estimates for the 

number of unique transcripts in a dataset can vary substantially depending on the 

tool used, as seen in the transcriptome comparison in Chapter 2. This variation begins 

at sequence correction, an essential step in processing long-read sequencing data. 

Mismatches, indels and splice junctions are corrected by using external information such 

as reference annotations or high-accuracy short reads, or self-correction in a de novo 

fashion. There are numerous algorithms to perform the correction that result in different 

sets of corrected reads; fortunately, these algorithms have recently been evaluated and 

benchmarked 360. Algorithms for assembly of transcripts based on the corrected reads 
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have lagged behind. Several algorithms became available for transcriptome assembly of 

long reads during the course of this thesis, each incrementally better than the last, but 

with varying definitions of transcript novelty64,65,223,319. A proper benchmark using synthetic 

spike-in RNAs was published near the completion of this thesis361. For this benchmark, an 

in silico mixture strategy was used to generate a ground truth dataset that allowed the 

performance evaluation of several transcript analysis tools. Some tools performed better 

than others in isoform detection, but all suffered from frequent identification of artifactual 

isoforms. These methods will need to improve to enable more accurate observations of 

differential isoform expression and usage in various biological settings, such as those of 

the pathogen stimulated versus unstimulated case in Chapter 3362. 

“Good” ORF prediction is not good enough

Improved isoform characterization will also impact potential open reading frames 

(ORFs). ORF length is known to be the most important feature of coding potential 

prediction, and basic ORF predictors using the longest ORF per transcript perform 

reasonably well. Developments like CPAT, a popular ORF prediction tool, show that 

the addition of just a few sequence-based features lead to even better predictions114. 

Some ORF predictors were developed to specifically predict ORFs for long read 

transcripts (SQANTI and ANGEL used in Chapter 2), but these did not out-perform CPAT 

and were ultimately depreciated. In practice however, CPAT tends to predict several 

high confidence ORFs per transcript. While not implausible that multiple proteins 

are produced from the same transcript in some cases (discussed in detail below), the 

overabundance of ORFs predicted by CPAT has a material effect on the work in Chapters 

3 and 4; it increases peptide search database size leading to less sensitive detection, 

and causes potentially inaccurate variant reannotations with SUsPECT. A recent long-

read proteogenomics pipeline includes in-house scripts to further filter CPAT output 

predictions363. Considering the potential biological impact of novel ORFs, “good” 

predictions are not good enough364,365. Luckily, promising improvements are being made 

in eukaryotic ORF detection, for instance by using more contextual information366. The 

use of context relevant to protein production regulation mechanisms will continue to 

yield improvements in ORF prediction accuracy.

Detecting other protein products

The reduction in database size from eventual improved ORF prediction opens the 

possibility to shed light on the “dark proteome” (largely unexplored alternative protein 

products) by including it in the search database. Proteins/peptides can be produced 
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from alternative ORFs255. One example are peptides originating from short ORFs, or 

sORF-encoded proteins (SEPs). The longest ORF is considered to be the most likely to 

produce protein, so SEPs are not generally included in search databases even though 

they have been found to be a common class of protein products that are likely to be 

functional367–369. Likewise, peptides from upstream ORFs in the 5’ untranslated regions 

have long been known to be important translational regulators370–372. Proteins can also 

be produced from unexpected start codons, as in the case of alternative translation 

initiation. Ribosomes may skip AUG start codons (leaky scanning) or start translation at 

non-AUG start codons, depending on transcript sequence or cellular conditions373,374. 

Proteins can even be produced from transcripts that were not expected to be protein 

coding at all, such as lncRNA and pseudogenes375,376. All these alternative protein 

products would need to be specifically added to the database to find them, and 

searched for in a single step to avoid statistical irregularities. This is, however, not an 

attractive option due to the database size considerations. Ribosome profiling has been 

key technology in discovery of alternative protein products377, and remains the best 

method to corroborate findings amidst low identification power from large search 

database size. However, it is currently too expensive and labor-intensive to be practical 

for use in already resource intensive genome-wide proteogenomics studies.

Quality assessment of proteogenomics findings

Assessing the quality of findings in proteogenomics is much more challenging than 

in classic proteomics. Novel peptide identifications from proteogenomics strategies 

suffer from high false negative rates when using target-decoy FDR control, but 

abundant false positives when reducing the cutoff378. Methods to circumvent the 

issue (detailed in Chapter 1) do not have a solid statistical basis. Without standards or 

validation requirements prior to publication, false positive and false negative variant 

peptide identifications are abundant in current literature379,380. Standards have been 

painstakingly created by the Human Proteome Organization (HUPO) for reporting 

peptide findings to the proteomics community381. However, these are not widely 

adopted for proteogenomics as they are considered too conservative for variant 

peptide detection145. Instead, reports of variant peptides are frequently validated in the 

form of manual inspection of PSMs, as done in Chapter 2. Several software tools to aid 

manual visual assessment have been developed382–384; these largely exclude AI and deep 

learning efforts as these deep learning algorithms are primarily used for initial spectrum 

matching or result re-scoring rather than perpendicular validation of individual PSMs. 

Manual PSM inspection has become common practice because FDR is a global quality 
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metric that is unable to distinguish true vs false positives, and often results in incorrect 

peptide identifications with big proteogenomics databases385. Proteogenomics will 

eventually require its own set of standards for objective assessment of the quality of 

findings. A consensus on acceptable database creation/analysis approaches will be 

a prerequisite of creating such standards, which is itself challenging due to ongoing 

improvements in the field. This consensus will need to include an alternative method 

for FDR estimation in proteogenomics.

Biology versus detectability

With all the aforementioned challenges, underlying biological truth in regards to 

proteomic variation remains elusive. Most studies, including Chapter 2, detect much 

fewer variant peptides than could be expected with known genetic information. We 

observe that methodology falls short; proteogenomics remains too biased to the 

composition of the search database and novel computational proteomics (as defined 

in the introduction) suffers from too many false positives to reliably detect the variant 

peptides in a sample. An alternative explanation for poor detection could be their 

absence386. However, the reality may be more nuanced. A recent, comprehensive 

study hinted at the existence of widespread proteomic variation278. This study makes 

clear that proteomic data depth plays a crucial role in detectability, implying a lower 

relative abundance of protein-level variants and begging the question of their biological 

importance. Lower abundance does not equate to biological irrelevance387. The impact of 

low abundance proteins and proteoforms is an important topic to address (perhaps on a 

case-by-case basis) considering the re-annotated disease variants found in the SUsPECT 

test case were more often found in non-dominant transcript isoforms. Relativity aids 

interpretation; low abundance proteoforms may be higher abundant in certain cellular 

contexts or time points. While variant peptide detection challenges persist, the best 

policy would be to always validate any significant findings using synthetic peptides 

before application to a diagnostic setting or going into functional validation studies.

Improvements to come 
The plethora of challenges in proteogenomics are bound to be addressed with clever 

solutions in the coming years. The interdisciplinary nature of proteogenomics has the 

advantage that improvement is possible in multiple areas. These improvements can be 

made in the experimental or bioinformatics methodologies. Since sequencing methods 

have already become quite well-established in comparison to proteomics, proteomics 

has some of the most exciting experimental method developments to come. The new 
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developments will in turn lead to more data and method generation, which will need 

the appropriate infrastructure to be shared and accessible for the benefit of the whole 

scientific community. 

Experimental method development in proteomics

Data independent acquisition

In terms of new technologies, proteomics will see the most innovation. There is 

already significant improvement in the domain of peptide spectrum acquisition. Data 

independent acquisition (DIA) is a method to analyze complex samples that has several 

significant improvements over the standard DDA388. DIA comprehensively targets all 

precursor ions in a defined mass range per run instead of DDA’s stochastic selection, 

increasing reproducibility and reducing bias. DIA is able to capture both highly and lowly 

abundant peptides with its increased dynamic range as compared to DDA. However, 

this increase of precursor ions results in composite fragment-ion spectra which are so 

complex that their analysis is non-trivial. Deconvoluting the multiplexed output spectra 

produced by DIA is in fact the biggest challenge of the method. The use of spectral 

libraries became somewhat of a necessity to extract data used to identify peptides in 

DIA389–393. Typically, DDA scans from the same or similar samples are used to create 

these spectral libraries(Guan et al., 2020; Lam et al., 2007; F. Zhang et al., 2020), but 

large publicly available libraries exist for some species. Of course, this comes with the 

caveat that peptides that are not in the spectral library cannot be analyzed. While 

most publications with DIA use spectrum-library based approaches, newer library-free 

methods are most interesting for the identification of non-canonical peptides sought in 

proteogenomics397,398.

DIA applied in a DM1 biomarker study 

We attempted to use DIA data in a proteogenomics search for biomarker peptides 

associated with myotonic dystrophy type 1 (DM1). DM1 is an inherited neuromuscular 

disorder caused by a CTG repeat expansion, thereby causing abnormal RNA splicing399–401. 

Aberrant splicing as a result of the disorder could potentially yield distinct proteoforms 

that can be used as a biomarker for the disease. We had whole blood samples 

originating from 248 DM1 patients including DDA, DIA, and both short- and long-read 

RNA seq. Since both DDA and DIA data were available, DIA data was analyzed using 

two methods for comparison; once with a DDA data-based search database and one 

spectral-library prediction-based database. We expected novel transcript isoforms to be 

present in patient samples due to the nature of the disease, and there were: 7,683 novel 
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isoforms were detected in a set of 14,053 total by long-read RNA sequencing. Despite 

the abundance of novel transcripts detected, no viable peptide biomarker candidates 

were detected. Analysis of DDA data yielded two potential novel exon/splice peptide 

candidates. However, one of them was in an exon that was not supported by short-read 

data, and the other was more common in controls than disease samples. Neither of the 

candidates could be found in the DIA data, regardless of the post-processing method. 

The discrepancy between DIA and DDA findings from the same samples demonstrates 

how improvements still need to be made in DIA analysis. The failure of the biomarker 

search project can be partly attributed to the samples themselves; whole blood is 

challenging to analyze relative to other tissues due to a higher dynamic range in protein 

abundance, and DM1 patients from which the samples were derived were only mildly 

affected by the disease. A recent study performing a similar DM1 biomarker search 

in mouse muscle tissue was successful402, forecasting potential success for a future 

attempt with a different study design including targeted proteomics.

Top-down proteomics

Much information is lost when digesting a protein to peptides in LC-MS/MS protocol. 

Sequence similarities between proteins are common, which leads to many cases of a 

peptide that could originate from multiple different proteins (as seen in Chapter 2). The 

process of protein inference is riddled with uncertainty and error403. Ideally, digestion of 

a protein into peptides would not be necessary to identify them. Somewhat analogous to 

long-read nucleotide sequencing versus short reads, top-down proteomics is a detection 

method to characterize whole proteins. Intact protein undergoes fragmentation instead 

of its peptides, eliminating the necessity for protein inference. Top-down proteomics 

unfortunately is much more challenging to execute in practice due to data complexity 

and technical limitations404,405. Updates to instrumentation and protocol (mainly in 

protein separation) are ongoing406–409. We may yet see top-down proteomics become a 

more viable option to observe proteomic diversity.

Nanopore-based peptide sequencing

Reading out amino acid sequences in the same way NGS reads out nucleotide 

sequences is currently not possible. However, attempts to repurpose ONT sequencers 

into peptide sequencers have shown some recent success. Discerning the electrical 

signals of the 20 distinct amino acids is a considerable challenge; amino acid sequences 

are heterogeneously charged unlike nucleic acid sequences, and thus do not translocate 

neatly through the pore. Tackling this challenge required creative engineering. Several 
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strategies were proposed to unfold whole proteins prior to translocation through 

a nanopore410–413. Pores were fitted with blockades to keep amino acids in the pore 

long enough to detect the differences between them414. The newer methods employ 

DNA-peptide conjugation to encourage movement through the pore415–417. The newest 

development made near the completion of this thesis is a nickel ion-modified nanopore 

(specifically Mycobacterium smegmatis porin A) able to distinguish all 20 amino acids. 

Peptide sequence reading using nanopores still has a long road ahead, but will slowly 

become a reality. If it does live up to its promise, it will be a feat of engineering that will 

render peptide database searching largely unnecessary.

Bioinformatic improvements in proteogenomics

Towards a complete database

The working assumption in proteogenomics is that the reference database is incomplete. 

Research questions relating to samples that come from e.g. a less well-studied tissue, 

species or a disease-affected individual may require sequencing/proteomics data 

generated from that specific sample. Using comparable samples originating from 

other labs or tissues can be informative in some cases, and save resources. Similar 

samples will become increasingly abundant over time. Increasing accessibility and 

accuracy of long-read sequencing will lead to generation of more (publicly available) 

datasets, more proteogenomics studies and eventually a more complete reference 

transcriptome and proteome. There are considerable efforts in the scientific community 

to collect experimentally verified genetic variant and alternative proteoform data in 

comprehensive databases such as Ensembl418, RefSeq419 and UniProt420. NextProt421 and 

UniProt only include information if these are verified also in the proteome. Classically, 

these databases and the Human Proteome Project have focused on the set of all 

canonical proteins in the human proteome422. Recently a consortium was created to 

document all proteoforms, acknowledging the biological information to be gained 

outside of canonical proteins423. There are also databases that specifically document 

variant peptides identified in proteogenomics studies147–149. These knowledgebases 

are added to and revised continuously. As the knowledge of the human transcriptome 

deepens and a complete, refined search database becomes possible, additional variant 

peptide discoveries can be made using existing proteomics data in re-analysis424,425. 

The continuation of these efforts and improved data centralization will lead to a more 

complete database, facilitating proteogenomics efforts.
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Proteogenomics accessibility

Proteogenomics pipelines are highly heterogeneous as the components are all 

customizable to researchers’ questions and available datasets426. In addition, 

proteogenomics can be resource intensive as data must be generated for multiple omics 

levels. Research design must be carefully thought out to properly allocate available 

resources, and design decisions determine the appropriate analysis protocol. New 

technologies demand parallel updates to methodology and accompanying software; 

analysis of long-read RNA sequencing uses different tools than short-read, DDA different 

from DIA, etc. Many tools are developed to do only one piece of proteogenomics 

protocol to accommodate variation in research design. They must be performed in 

the correct order with attention to formats, pre- and post-processing requirements 

and computational needs, and useful visualizations should then be produced. 

Carrying out these tasks requires a skilled bioinformatician. To make proteogenomics 

methods accessible to biologists who could benefit from it, centralization and pipeline 

development that accommodate diverse research questions are critical. Galaxy for 

Proteomics (Galaxy-P) is one such option that is web-based, flexible and accessible. 

Galaxy-P provides training materials to teach users implement their proteogenomics 

pipelines, and has been successful in aiding proteogenomics research in a variety of 

studies. Other more comprehensive one-stop-shop options have been developed 

and include additional features363,427–430. Maintenance is crucial however; increased 

customizability via containerization as was implemented in SUsPECT, along with user-

friendliness and continuous updates are needed to keep proteogenomics accessible. 

Improved prediction of effects of variants on protein function

While proteogenomics enables the detection of protein variants, the true utility lies in 

their interpretation. We would like to know how the functioning of the protein in question 

changes as a result of the observed variation, which eventually can lead to correlation 

to a phenotype. As proteins are three-dimensional molecules whose functions are 

tightly linked to their structures, understanding of protein structure and perturbations 

thereof are essential to predicting functional change431. Proteogenomics involves the 

prediction of potential new protein sequences, whose structures were until recently 

quite challenging to predict based on sequence alone432. During this PhD, a new method 

called Alphafold was created to predict structures from sequences with unprecedented 

accuracy433. Prediction of probable protein structures can help assess protein-coding 

potential of novel ORFs detected in proteogenomics, thus providing a valuable tool to 

filter search databases. During the construction of SUsPECT, many variants changed 
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predicted effect from benign to missense when annotated with sample-specific novel 

transcripts. Missense variations are a very heterogeneous class of variant effect with 

widely varying outcomes on proteins’ structure and function434. Shortly after the release 

of Alphafold, AlphaMissense was released to tackle the challenge of structural change 

in response to missense variation435. These tools are invaluable to interpretation of 

protein variation uncovered by proteogenomics.  

Concluding remarks
Proteogenomics provides the lens that brings the whole picture of post-transcriptional 

regulation into focus, and the picture is becoming sharper with new innovations. While 

its multi-omics nature means that proteogenomics takes on the challenges in each of 

the omics fields individually atop the existing challenges of data integration, it also 

means that the innovations per field directly influence the quality of proteogenomics 

findings for the better. This is certainly the case for long-read transcriptome sequencing, 

which is the innovation that this thesis focuses on specifically. The reduced noise in the 

peptide search database leads to more discovery of variation in the proteome. Despite 

the advantages this sequencing technology brings, it cannot completely compensate 

for the considerable limitations in proteomics. The challenges in proteogenomics 

seem vast, but addressing them will be worth the hassle. A complete understanding of 

proteome variation gets us a big step closer to a world where every person receives the 

correct diagnosis and treatments for them, every time.
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Data management plan
Data sharing

All studies in this thesis were/will be published open access. The RNA/proteomics 

data that were generated for this thesis were deposited in their suitable respective 

databases. Raw RNA sequencing data was deposited to EGA under the accessions 

EGAS00001006779 and EGAS50000000007 (Chapter 3) and EGA50000000188 (DM1 

project). Proteomics data generated for Chapter 3 was deposited to PRIDE with 

accession PXD045237. All other data was publicly available as outlined in the respective 

chapters. The code used in the analysis of the data or the development of tools are 

stored in the following public Github repositories:

Chapter 2 – https://github.com/cmbi/NA12878-saav-detection 

Chapter 3 – https://github.com/cmbi/hpi_isoseq_paper (MIT license)

Chapter 4 – https://github.com/cmbi/SUsPECT (Apache 2.0 license)

Ethics and privacy

PBMCs from Chapter 3 and 4 were retrieved form healthy, anonymized donors, as part 

of the human functional genomics project (HFGP). The HFGP study was approved by the 

Ethical Committee of Radboud University Nijmegen, the Netherlands (no. 42561.091.12). 

Experiments were conducted according to the principles expressed in the Declaration 

of Helsinki. Samples of venous blood were drawn after informed consent was obtained.
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Summary
Large-scale DNA sequencing efforts in the past decade have led to a staggering volume 

of discoveries in human genetic variation. However, our understanding of genetic 

variant effects is lagging behind. The effect of variants can only be accurately predicted 

when the expression of DNA throughout the entire biological system is fully understood, 

including transcripts and proteins. At present, both the reference human transcriptome 

and proteome are incomplete. They are missing many of the different proteins, or 

slightly altered versions of the same proteins (called proteoforms), that are only present 

in a specific tissue, time, person, or cellular condition. These protein variations can 

reveal much about regulation that occurs in the cell and its malfunctioning in disease. 

The missing knowledge is largely attributed to technological limitations. Short-read 

RNA sequencing, the current standard, does not have the resolution needed to observe 

the rich diversity of human transcript isoforms. Full transcript sequences must be 

inferred based on small sequence fragments, and they are often wrong. Long-read RNA 

sequencing is a relatively recent solution that captures the entire transcript sequence. 

This new technology is rapidly expanding our understanding of human genetic 

expression; novel transcripts are being discovered in droves. Understanding how these 

findings affect the proteome is important, as proteins play crucial roles in the structure 

and function of cells in living organisms. 

Unfortunately, the technological limitations are even worse on the protein level than 

the RNA level. In a typical proteomics experiment, proteins from a sample are broken 

down into peptides, which are then measured with a mass spectrometer. A spectrum 

is produced for each peptide. The spectra cannot be accurately read out as a sequence 

directly; to identify them, they must be compared to every peptide in a database 

containing all peptides that are expected to be in the sample. The problem is that if a 

database contains only previously-known peptides, the discovery of variant peptides is 

impossible.

One solution is the use of proteogenomics. Proteogenomics is a relatively recent method 

that leverages nucleotide data to enable identification of variant peptides. The growing 

abundance of genetic data has made proteogenomics an increasingly powerful tool 

in this regard. Predicted proteins inferred from sequencing data, including all genetic 

and transcriptomic variation, are added to the database used to search spectra. The 

composition of the search database is a central aspect in proteogenomics, and also its 

greatest challenge: ironically, the larger the database, the less likely spectra are to be 

identified. 
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Short-read transcriptomes resulted in larger databases. Several potential coding regions 

known as open reading frames (ORFs) needed to be added per transcript to observe 

variant peptides, since ORF could not be resolved from sequence fragments. Using 

long-read transcriptomes reduces the number of additions to the search database 

by providing one confident ORF per transcript. In Chapter 2, we assess the state-of-

the-art in variant peptide identification. We compare the ability of new long-read 

proteogenomics methods to that of the latest computational proteomics methods to 

detect genetic variants in peptides. Based on a well-characterized cell line NA12878, 

we successfully showed that using long-read proteogenomics indeed results in more 

accurate variant peptide identification. 

This thesis also aims to fill the aforementioned knowledge gap in the reference 

annotation by studying cells under specific conditions. To this end, we performed a 

multi-omics characterization of pathogen-stimulated human immune cells in Chapter 
3. Four different pathogens were used, including bacteria, fungal and viral types. Long-

read RNA sequencing revealed the presence of many novel transcript isoforms (around 

40% of unique transcripts) in both control and all pathogen-stimulated cells. Thanks to 

the accurate elucidation of transcript isoforms, we were able to study isoform switching 

(IS) in addition to general gene/transcript differential expression. IS is a lesser-studied 

phenomenon where the relative isoform expression changes within a gene in response 

to a condition, regardless of overall gene expression. We found 398 genes taking part 

in IS, the majority of which were not differentially expressed on the gene level. The 

IS events occurred in a wide variety of genes involved in metabolic processes, mRNA 

splicing, protein transport and catabolism. About half of all IS cases involved a novel 

transcript. Protein evidence of the alternative splicing events could not be confirmed in 

the secreted proteome; we suggest using whole cells for proteomics analysis in future 

studies to fully uncover the rich transcriptomic and proteomic diversity resulting from 

pathogen stimulation.

The novel transcripts found in long-read transcriptome studies like Chapter 3 can be 

directly leveraged to benefit patients of rare, undiagnosed diseases. We developed a 

software pipeline called SUsPECT in in Chapter 4 that uses sample-specific transcripts 

to re-analyze genetic variants of patients with rare disease. The pipeline uses a variety 

of tools to predict ORFs of novel transcripts, predict variant effects on new transcripts, 

compare these to the old effects, and provide missense effect predictions where 

applicable. The end result is a list of variants with a more severe predicted effect in 

the provided sample than the reference. In practice, this could mean that certain heart 

disease-causing variants in some patients could have been marked as benign when in 
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reality, they have a severe molecular consequence in heart-specific transcripts/proteins. 

We used the transcripts from Chapter 3 to show that SUsPECT uncovers candidate 

variants for disease causality. The pipeline is publicly available on GitHub. 

There is a wide knowledge gap in the effects of genetic variation, transcript expression 

and protein expression on one another. Filling this gap will require the generation of 

much more data, further innovation in experimental methodology, and continuous 

development of bioinformatic tools. This thesis explores the current state-of-the-art 

in both experimental and bioinformatics methodologies for use in capturing proteomic 

variation. It demonstrates ways in which long-read proteogenomics methods can be 

used for detecting new biology and provides a tool to directly leverage these discoveries 

for disease diagnosis.
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Samenvatting
Grootschalige inspanningen op het gebied van DNA-sequencing hebben in het afgelopen 

decennium de variatie in het menselijk genoom in kaart gebracht. Desondanks loopt ons 

begrip van de effecten van deze genetische varianten achter. Het effect van varianten kan 

alleen nauwkeurig worden voorspeld wanneer de genexpressie in het hele biologische 

systeem volledig wordt begrepen, inclusief transcripten en eiwitten. Op dit moment zijn 

zowel het referentie menselijke transcriptoom als proteoom onvolledig. Er ontbreken 

nog veel eiwitten, of licht gewijzigde versies van eiwitten (genaamd proteovormen), die 

alleen aanwezig zijn in een specifiek weefsel, op een bepaald moment, bij één individu 

of onder een bepaalde cellulaire conditie. Deze eiwitvariaties kunnen veel onthullen 

over de regulatie die in de cel plaatsvindt en het dysfunctioneren ervan bij ziekte.

De ontbrekende kennis wordt grotendeels toegeschreven aan technologische 

beperkingen.  Short-read RNA-sequencing, de huidige standaard om transcriptomen te 

karakteriseren, heeft niet de resolutie die nodig is om de rijke diversiteit van menselijke 

transcriptisovormen waar te nemen. Volledige transcriptsequenties moeten worden 

afgeleid op basis van kleine sequentiefragmenten, en zijn bijgevolg vaak onjuist. 

Sequencing van lange RNA-sequenties is een relatief recente oplossing die de volledige 

transcriptsequentie vastlegt. Deze nieuwe technologie breidt snel ons begrip van 

menselijke genexpressie uit; er worden in groten getale nieuwe transcripten ontdekt. 

Het is belangrijk te begrijpen hoe deze het proteoom beïnvloeden, aangezien eiwitten 

cruciale rollen spelen in de structuur en functie van cellen in levende organismen.

Helaas zijn de technologische beperkingen op eiwitniveau misschien nog wel groter dan 

op RNA niveau. In een typisch proteomics experiment worden eiwitten uit een monster 

afgebroken tot peptiden, die vervolgens worden gemeten met een massaspectrometer. 

Dit toestel bepaalt een massaspectrum voor elk peptide. Deze spectra kunnen niet direct 

worden gelezen als een sequentie; om ze te identificeren, moeten ze worden vergeleken 

met elk peptide in een databank die alle peptiden bevat die worden verwacht in het 

monster. Als een databank alleen eerder bekende peptiden bevat is de ontdekking van 

variantpeptiden en nieuwe eiwit(vorm)en bijgevolg onmogelijk.

Een oplossing is het gebruik van proteogenomics. Proteogenomics is een relatief recente 

methode die nucleotidegegevens benut om identificatie van variantpeptiden mogelijk 

te maken. De groeiende overvloed aan genetische gegevens heeft proteogenomics 

tot een steeds krachtiger instrument in dit opzicht gemaakt. Voorspelde eiwitten 

afgeleid uit sequentiegegevens, inclusief alle genetische en transcriptomische variatie, 
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worden toegevoegd aan de databank die wordt gebruikt om spectra te doorzoeken. De 

samenstelling van de zoekdatabank is een centraal aspect in proteogenomics, en ook de 

grootste uitdaging: ironisch genoeg, hoe groter de databank, hoe minder waarschijnlijk 

dat spectra worden geïdentificeerd.

Short-read transcriptomen resulteerden in grotere databanken. Verschillende potentiële 

coderingsgebieden die bekend staan als open leesframes (ORF’s) moesten per transcript 

worden toegevoegd om variant-peptiden te observeren, aangezien ORF’s niet kon worden 

opgelost uit korte sequencing-fragmenten. Het sequencen van lange RNA sequenties 

vermindert het aantal toevoegingen aan de zoekdatabank omdat het leesraam per 

transcript met grotere zekerheid kan worden vastgesteld. In Hoofdstuk 2 beoordelen we 

de technologische stand van zaken voor identificatie van variant-peptiden. We vergelijken 

het vermogen van nieuwe proteogenomische methoden met lange leeslengte met dat van 

de nieuwste computationele proteomica-methoden om genetische varianten in peptiden 

op te sporen. Gebaseerd op een goed gekarakteriseerde cellijn NA12878, hebben we 

succesvol aangetoond dat het gebruik van lange RNA sequenties inderdaad resulteert in 

meer accurate identificatie van variantpeptiden.

Dit proefschrift heeft ook tot doel eerdergenoemde gaten in de referentieannotatie op te 

vullen door cellen te bestuderen onder specifieke omstandigheden. Hiertoe voerden we 

in Hoofdstuk 3 een multi-omics karakterisering uit van door pathogenen gestimuleerde 

menselijke immuuncellen. Vier verschillende pathogenen werden gebruikt, waaronder 

pathogenen van bacteriële, schimmel en virale oorsprong. Lange RNA-sequenties 

onthulden de aanwezigheid van veel nieuwe transcriptisovormen (ongeveer 40% van 

de aanwezige transcripten) in zowel controle- als alle door pathogenen gestimuleerde 

cellen. Dankzij de nauwkeurige opheldering van transcriptisovormen konden we isovorm-

switching (IS) bestuderen naast algemene gen-/transcript-differentiële expressie. IS 

is een weinig bestudeerd fenomeen waarbij de relatieve isovormexpressie verandert 

binnen een gen als reactie op een conditie, ongeacht het totale expressieniveau. We 

vonden 398 genen die IS ondergingen, waarvan de meerderheid niet differentieel 

tot expressie kwam op het gen-niveau. De IS-evenementen vonden plaats in diverse 

genen die betrokken zijn bij metabole processen, mRNA-splicing, eiwittransport 

en katabolisme. Ongeveer de helft van alle IS-gevallen betrof een nieuw transcript. 

Bewijs van deze alternatieve splicing-evenementen kon niet worden gevonden in het 

uitgescheiden proteoom; we stellen daarom voor om hele cellen te gebruiken voor 

proteomics-analyse in toekomstige studies om de rijke transcriptoom en proteoom 

diversiteit als gevolg van pathogenenstimulatie volledig bloot te leggen.
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De nieuwe transcripten die zijn gevonden in lange RNA sequenties zoals gegenereerd 

in Hoofdstuk 3 kunnen direct worden benut om patiënten met zeldzame, 

ongediagnostiseerde ziekten te helpen. We hebben in Hoofdstuk 4 een software-pijplijn 

ontwikkeld genaamd SUsPECT, die gebruikmaakt van monster-specifieke transcripten 

om genetische varianten van patiënten met zeldzame ziekten opnieuw te analyseren. 

De pijplijn maakt gebruik van verschillende tools om ORF’s van nieuwe transcripten te 

voorspellen, varianteffecten op nieuwe transcripten te voorspellen, deze te vergelijken 

met eerder voorspelde effecten, en missense-effectvoorspellingen te geven waar van 

toepassing. Het eindresultaat is een lijst met varianten met een ernstiger voorspeld 

effect in het verstrekte monster dan in de referentie. In de praktijk zou dit kunnen 

betekenen dat bepaalde varianten die een hartziekte veroorzaken als goedaardig zijn 

aangemerkt hoewel ze in werkelijkheid een ernstig moleculair gevolg hebben in hart-

specifieke transcripten/eiwitten. We hebben de transcripten uit Hoofdstuk 3 gebruikt 

om aan te tonen dat SUsPECT kandidaatvarianten voor ziekte-oorzaak blootlegt. De 

pijplijn is openbaar beschikbaar op GitHub.

Er is een groot gat in kennis in de effecten van genetische variatie, transcriptexpressie 

en eiwitexpressie op elkaar. Het vullen van dit gat zal vereisen dat er veel meer data 

wordt gegenereerd, verdere innovaties in experimentele methodologie plaatsvinden, 

en voortdurende nieuwe bio-informatica-tools worden ontwikkeld. Dit proefschrift 

onderzoekt de huidige stand van zaken in zowel experimentele als bio-informatica-

methodologieën voor het vastleggen van proteoom variatie. Het demonstreert 

manieren waarop proteogenomics-methoden op basis van lange RNA sequenties 

kunnen worden gebruikt om nieuwe biologie op te sporen en voorziet algoritmen om 

deze ontdekkingen direct te benutten voor ziekte-diagnose.
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