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Chapter 1

General introduction



Chapter 1

Proteogenomics: what is it?

Proteogenomics is a recently-introduced methodology for obtaining new insights into
basic biological processes controlling gene expression regulation and the discovery of
novel disease mechanisms and biomarkers. Proteogenomics is a multi-omics technique
that leverages data from the genome, transcriptome and proteome of a sample to
inform one other. Proteogenomics methodology enables the comprehensive elucidation
of complex, inter-dependent biological systems. The bioinformatics methodologies to
extract insights from these data are error prone and an active area of research. This
thesis contains a critical examination of the latest proteogenomics methodologies,
original research to improve bioinformatics methods used in proteogenomics and
a demonstration of their potential. In this introduction, | will outline the types of
important biological questions that can be explored with the help of proteogenomics,
the key experimental methods that produce the data used in proteogenomics, and the

bioinformatics methods that make the resulting biological insights possible (Figure 1).

Biological phenomena genome to Experimental methods Bioinformatics methods — dealing
proteome necessary to detectthem with the searchspace

Peptide identification not

relating to database
Alternative . Alternative (computational proteomics)
splicing proteoforms -
Genomic Spectral Open mod
sequencing & library search
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RNA Protein databases
abundance abundance
Long-read Database
transcriptome curation
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. — | containing
variants .
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Confidence in identification

Figure 1: Structure of Chapter 1. LC-MS/MS = liquid chromatography tandem mass spectrometry.
ORF= open reading frame. Mod = modification.

Biological phenomena in the translation of genome to proteome

In any human cell, intricate regulatory pathways are at play. We have an estimated
20,000 genes that eventually become perfectly folded, biologically active proteins
carrying out specific functions exactly when they are needed'. Ultimately, knowledge
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General introduction

of the proteome translates closely to understanding of cellular mechanisms. There is,
however, a lot of activity before a protein is produced. The paradigm one gene, one
transcript, one protein does not hold in eukaryotes. There is an order of magnitude
more proteins than genes, and an even greater number of transcripts that either do not
produce functional protein or do so at wildly varying proportions. The path to protein
from DNA is controlled by numerous factors. To understand the regulatory factors at
play, we have to study the genome and all its products.

Alternative splicing

Diversity on the protein level can be largely attributed by alternative splicing (AS)**. AS is a
mechanism by which exons from a gene are joined together in different combinations to
make various transcripts and thus produce various different proteins. AS is an essential and
widespread process in multi-exon genes, and an important contributor to genomic diversity
as well as tissue specificity*. AS begins with transcription of DNA sequence into precursor
RNA containing both exons and introns of a gene. The spliceosome assembles on the pre-
RNA and catalyzes the removal of introns according to 5’ donor and 3’ acceptor splice sites
(GU and AG respectively). Different combinations of introns are included and excluded from
the mature mRNA, which is referred to as AS. There are several categories within AS that

refer to the alternative use, skipping and/or retention of either exons or introns.

Transcript diversity is largely attributed to AS and is a reason that humans have
approximately equal or sometimes fewer genes than some less complex eukaryotic
organisms such as a freshwater crustacean (Daphnia pulex). This diversity is useful;
AS allows us to react to a variety of certain cellular needs/environments. In immune
functions, for example, there is a heavy reliance on AS for T-cell response to antigens®.
In embryonic development, there is carefully coordinated AS that is location- and time-
specific®’. The diversity that AS creates subsequently affects downstream processes
such as cell signaling and protein-protein interaction networks®°. These functions are

so essential that AS malfunction is cause for a variety of cancers and other diseases® 2,

The assumption behind AS is that alternatively spliced transcripts result in changes in
proteins that are expressed. The reality is more nuanced, since there are translational
regulatory mechanisms that come in between a spliced, mature transcript and a
resulting protein®®. The signals for this type of regulation are often contained in the
mRNA sequence itself. Lengths and sequences of the untranslated regions can affect
interaction with translation machinery, slowing or stopping the production of protein

from a given transcript!®. Certain motifs in 3’ untranslated regions bind to microRNAs
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(miRNAs), which serve to degrade transcripts thereby inhibiting translation®®. Some
transcripts containing abnormal stop codons are simply destroyed before translation
through nonsense-mediated decay as a mechanism to prevent the production of
potentially aberrant proteins®. These are just a few examples of the many mechanisms
of post-transcriptional regulation in humans. Even if translation inhibition is absent,
the predicted open reading frame may not be the one that is being translated. Many
non-canonical open reading frames have been discovered in recent years'’. Considering
the many factors at play, assuming knowledge of which proteins are present from the
transcriptome alone is misguided.

RNA and protein abundance

Since mRNA presence is prerequisite for protein production, the abundance of RNA is
often used as the proxy for protein. However, variance in protein abundance explained
by mRNA abundance ranges from 30-80% depending on the biological system,
experimental setup and statistical models'®. Although the two abundances correlate
poorly to one another, the abundance of mRNA is a good proxy for presence (versus
absence) of detectable protein in cells?®. Regulation at the level of MRNA abundance is
thus setting the “on” or “off” state of the gene?. Other post-transcriptional regulation
mechanisms such as RNA interference are responsible for the fine-tuning of protein
levels?'. Even taking into account post-translational regulatory processes would lead to
an inaccurate estimation of protein levels, as there are additional regulatory feedback
loops between transcription and translation that are not completely understood®.

Genetic variation

Diversity in transcripts and proteins can also arise from genetic variation. Large-scale
sequencing efforts have led to the creation of a reference human genome and a better
understanding of the true extent of genetic variation?*?%. There are many types of
genetic variations, but the most common and interesting from a molecular function
perspective are small-scale. Single nucleotide polymorphisms (SNPs) involve a single
nucleotide change at a particular position on the DNA sequence that could be present in
either coding or non-coding regions. SNPs are the most common human variants. There
are 4-5 million in any individuals’ genome. SNPs are associated with a wide range of
phenotypic traits?”?%. While the effects of individual SNPs on disease are typically small,
their collective effects, summarized in genetic risk scores, can be large. Rare variations
in the genome tend to have even larger effects on disease risk and are responsible for
the majority of monogenetic disease?*,
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General introduction

The reason that single base pair perturbations can cause disease is because of their
ability to alter or disable a molecular function. A variant can cause multiple types of
functional disruption with varying severity depending on where it is located. If the
variants occurs in regions where proteins are coded, it can affect the functioning of a
protein and disease phenotype®32. Missense variants, a type of variant that causes a
single amino acid substitution in a protein, are an important class of variants that are
responsible for a reported 60% of Mendelian diseases®. A missense variant can alter/
destroy the functionality of the protein it occurs in, referred to as deleterious, or it
could remain completely unchanged. A variant could also fall in intronic or intergenic
regions. These variants are generally less impactful than those in coding regions, but
there is evidence of non-coding variants having pathogenic effects***>. In general, a
more disruptive variant is more likely to be the cause of disease, but exact mechanisms
must be experimentally verified to infer causation.

The number of catalogued rare variants is increasing, as is our need to understand
their possible link to disease®. Finding the cause of a disease requires a deeper
understanding of the specific way a variant disrupts the system in question. The latest
high-throughput experimental methods to measure variants’ effect on phenotype
such as deep mutational scanning do not predict clinical phenotypes and still struggle
to scale genome-wide, making computational prediction preferable®”32. It is possible
to computationally predict variant effects by simply comparing the coordinate of
the variant with the annotation at that location. However, some predictions require
additional information to determine the extent of protein disruption. For missense
variants, chemical properties of amino acids/protein structures as well as sequence
conservation at the position of the substitution in an alignment with homologous
sequences are two of the most important determining factors. Specific software such
as PolyPhen2%, SIFT*® and CADD* use one or both of these factors in a classifier to
determine the deleteriousness of a missense variant, and by extension, the likelihood

of the variant in question to be associated with disease.

Experimental methods enabling proteogenomics

The biological questions that proteogenomics addresses requires a plethora of data
which has only recently become practical to collect. Experimental methods to collect that
data have improved rapidly in recent years, becoming more accurate, higher throughput
and more easily accessible than ever before. The correct data is the indispensable basis

for understanding the complex, individualized journey from DNA to protein.
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Genomic sequencing and variant calling

Next generation sequencing (NGS) refers to post-Sanger high throughput sequencing of
DNA and RNA, and is hallmarked by resolving short sequences from millions of fragments
in parallel. State-of-the-art NGS platforms allow the elucidation of whole human genomes
as well as comprehensive transcriptomes and genetic variants. Most technologies in NGS
re-purpose DNA replication machinery to arrange fluorescent molecules for detection
by a machine. The most widespread NGS technology on the market today is Illumina
sequencing, a sequencing-by-synthesis (SBS) method utilizing reversible dye terminators®.
In lllumina sequencing, millions of template DNA strands are bound to a glass slide and
amplified in-situ. During sequencing, each template is extended one base at a time with
fluorescent bases in subsequent cycles of reagent administration and washing. During each
cycle, the intensity and positions of the fluorescent signals are captured by a microscope.
After each cycle, a restoration step occurs wherein all modified bases are converted back
to regular bases, priming the system for the next round of base extension. At completion
of the run, the colors are matched back to their subsequent base in a process referred to
as basecalling. The bases recorded from a single template position form a “read”, which is
typically up to 150 base pairs®.

With this technology we can observe human variation, but calling it is harder. Simply
put, positions that deviate from the reference sequence with enough read support are
called as variants. There are plenty of technical challenges involved with calling variants
from NGS-derived raw sequencing reads. Even when primers and low-quality bases
are removed from the reads, artifacts may still be present in the data that could be
confused for variation***. This post-processing can be more complicated, for instance
if targeted sequencing protocols were used. Subsequently, the reads must be mapped
to a reference genome, a non-trivial task for which over 60 mapping algorithms have
been designed*®. The performance of these mappers varies and is dependent on the
sequencing quality, read length and sequencing error rate. After mapping, a variant-
calling algorithm will call variants in the sample by iteratively assessing each position
of interest and combining information from all the reads mapped to that position.
The number of times a position is observed in the sequencing data (depth) is a major
consideration as it influences the computational load of the algorithms but also the

accuracy of the variant calling*”8,

Despite cost-effectiveness and high accuracy of short-read sequence technologies
such as lllumina SBS, these technologies are associated with intrinsic limitations. Large

genomic regions with high inter-individual (structural) variation are problematic to
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General introduction

assess. RNA sequencing can be performed when RNA is converted to cDNA, but isoform
variation in RNA transcriptomes is difficult to observe. Long-read sequencing has been
quite successful in addressing these*=>2, Two distinct technologies dominate the long-
read sequencing scene: Pacific Biosciences’ single molecule real-time sequencing
(SMRT) and Oxford Nanopore Technologies’ nanopore sequencing (ONT) (Figure 2).
SMRT sequencers detect fluorescence corresponding to nucleotides that are added by
an immobilized polymerase on the bottom of a well. ONT sequencing measures ionic
current fluctuations that result from single stranded nucleic acids passing through a
biological nanopore; resistances in the pore vary with the different nucleotides. While
sequencing accuracy of these technologies was initially much lower compared to short-
read sequencing, it has improved dramatically since their introduction, and has shown
to be further improved with consensus of multiple sequencing “passes” of the same
read®>>4. Having recently resolved the last unknown portions of the human genome?*s,
long-read sequencing has successfully established its indispensability in the genome
sequencing space. There is now a thriving ecosystem of an estimated number of 350

bioinformatics tools to process long-read data®®.

Next generation sequencing
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Figure 2: Under the hood of next generation sequencing approaches.

15



Chapter 1

Long-read sequencing shows promise over short-read sequencing, particularly in
transcript isoform detection®”8, It is difficult to use short reads to resolve full
transcript structures (mRNAs), which are on average 2 kilobase (kb) in length>*®, but
can be as long as 20 kb. Performing de novo assembly of the short reads to detect
new transcripts cannot overcome the limitation, because there are too many exon
combination possibilities based on available reads, even sophisticated algorithms
struggle®®2, Long read sequencing is addressing the limitations by outputting reads
that are 3kb on average, clearing the length of the bulk of human transcripts. Similar
to short read data, reads from long-read sequencing are typically first aligned to the
genome before assembly. Specific alighment software/settings must be used with long
reads since they more frequently have features such as sequencing errors and short
exons®®* %>, Although long-reads reduce the ambiguity of the assembled transcriptome,
there are still conflicting assembly methods/definitions of transcript novelty that
cause considerable variation in output between assemblers®®®. Some definitions
consider short exons, non-canonical splice junctions and/or alternative 3 and 5’ ends
on transcripts (with otherwise known splicing patterns) to be novel transcripts. Other
more conservative tools assume that one or more of these events are artifactual and
“correct” them away using reference junction coordinates. Some research suggests that
the best way to resolve this ambiguity is to combine long and short read sequencing in
a hybrid approach®°,

LC-MS/MS to observe genomic variation

Support for the extent of diversity in the transcriptome can be provided in the form
of protein evidence. The most common way to provide this on a whole-proteome
level is with mass spectrometry proteomics’. Liquid chromatography-tandem mass
spectrometry (LC-MS/MS) in proteomics is a commonly-used method that involves the
separation of proteins by chemical properties and subsequent analysis to determine

presence of proteins in a biological sample”.

In a typical shotgun proteomics protocol, proteins are first extracted from the sample
and fractionated to reduce sample complexity and increase sensitivity. Proteins are then
broken down into peptides using enzymatic cleavage, typically with Trypsin. Peptides
are then separated based on hydrophobicity in an LC step and then ionized, generating
charged ions. In data-dependent acquisition (DDA) mode, selected precursor ions are
fragmented with a fragmentation technique depending on the MS instrument. Resulting
product ions are analyzed to determine the amino acid sequence of the peptide, which

is then bioinformatically matched back to the protein of origin.
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DDA has intrinsic detection limitations, however’®. Since only the highest abundant
precursor ions are selected for fragmentation, the detection rate of low abundant
peptides is hampered’. Also, precursor selection has some randomness that limits

reproducibility”.

Since AS events and genetic variants can only be observed in a small number of
peptides, relatively higher coverage is necessary to detect these events. Some details of
the protocol can be optimized for the desired amount of coverage without the need for
additional replicates. For instance, separating the isolate in more fractions can increase
the amount of the sample going through the mass spectrometer and thus increase the
number of peptide spectra produced’. The use of additional digestion enzymes other
than trypsin can expand the variety of peptides, increasing the chance of covering the
event with a optimally detectable peptide”’. Precursor selection processes including
parallel reaction monitoring (commonly referred to as targeted proteomics) can be
utilized to increase sensitivity to certain variant peptides, but they require the use of

synthetic peptides chosen beforehand’®.

Bioinformatics methods encompassing proteogenomics

Terabytes worth of biological data can be generated, but discovery only happens after
making sense of the data using bioinformatics. The methodological improvements seen
in the last years have begun to provide the necessary measurements, but bioinformatic
post-processing is the last piece of the puzzle to provide answers to our aforementioned
biological questions. Accurate peptide identification is the backbone of discovery in the
field of proteogenomics, as the answers to all the biological questions can ultimately be

found in the proteome.

Unfortunately, the accurate identification of peptide spectra is the biggest challenge
at present. Even if we manage to experimentally acquire the spectra of non-standard
peptides, there are difficulties in identifying them as such. A major issue lies in the
creation of the database used to identify the peptides. Peptides acquired in a DDA
experiment are usually identified using a database search method wherein peptides
are compared against all proteins that can be expected to be in the sample®. In human-
derived samples, this would be all human proteins from Uniprot plus a “junk” database
containing proteins from common lab reagents. A standard database search would
thus at best yield only identifications from proteins that are already known, and vyield
incorrect identifications at worst®.. De novo sequencing in proteomics eliminates the
need for a peptide search database, but suffers from prediction accuracies around 35%,
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making database-search the more reliable identification method in general®. In a typical
proteomics workflow, less than half of the acquired spectra go unidentified and are
thus discarded®:. In general, proteo(geno)mics aims to increase that yield by screening
for peptides outside of the refence proteome. Computational proteomics focuses on a
data-driven approach while proteogenomics uses a data-informed approach to address

obstacles in the identification of unidentified spectra (Figure 3).

Figure 3: Approaches to enable variant peptide identification
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Computational proteomics methods to increase identifications

Although technically not proteogenomics, computational proteomics also seeks to
increase the accurate identification of peptides not found in the database. Computational
proteomics encompasses computational methods such as de novo sequencing to
increase sensitivity. Improvement in this area focuses on resolving ambiguities in
acquired spectra that underpin the challenges in peptide identification.

Some of these spectral ambiguities are technical in nature, originating from MS/MS
protocol/machinery. When using search databases to identify peptides, generated
spectra are matched to theoretical spectra and the quality of the match is scored. It is
straightforward to predict peptide sequences from full protein sequences using an in
silico digest, as enzymes such as Trypsin digest amino acid sequences in a predictable
manner®, Predicting the expected spectral peak heights and m/z values from any known
peptide sequence is more complex. B- and y-ions are the most abundant products from
fragmentation since the peptide bond is most easily broken, so most theoretical spectra
are based on these. There are, however, many other fragmentation products that can
be produced and contribute to the end peptide spectrum, which results in imperfect
matches in the real world®. Spectral library searching is a method used to address this
issue. It utilizes a collection of previously identified full spectra, resulting in a gain of
sensitivity and selectivity. However, it is limited to previously-observed spectra and,
similar to database searching, does not aid the discovery of novel peptides/proteins®.

There are also biological explanations for spectral ambiguities; m/z values may
deviate due to post-translational modifications (PTMs), for instance. PTMs such as
phosphorylation are common in proteins and essential for protein regulation and cellular
signaling®’. Spectra from PTM-containing peptides may have slightly shifted peak(s) as
compared to their non-PTM containing counterparts, and they are thought to make up
a third of unassigned spectra®. There are over 1,500 different PTMs which can produce
mass shifts on any given spectra®. Despite their prevalence and importance, many
popular peptide search engines fail to accurately identify most of these PTMs®. This
issue extends to amino acid substitutions; peptides with single amino acid substitutions
originating from (potentially disease-informative) genomic variation such as SNPs can
manifest into a mass shift indistinguishable from that from a PTM.

In computational proteomics, machine learning techniques have been instrumental
efforts to resolve the ambiguity around PTM and variant mass shifts. Improvements of
identification methods using such can help reduce the size of search space, such as in
the so-called “open modification search” °1. Sequence tag-based peptide identification
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is one such method that utilizes short stretches of de novo sequencing (tags) combined
with sequence database search to allow for flexibility in identification by removing
all candidates without the de novo sequenced tag from the database®*®:. The mass
differences between pairs of peptides with the same sequence tag can improve
differentiation between PTMs. The use of additional information from the LC-MS/MS
protocol itself can also be used to aid identification efforts. For example, retention time,
or the time it takes for a peptide to be eluted from a chromatography column, is a
measure that has been successfully used to identify false positive identifications®*>,
Better modeling of the real-world effects of MS protocol leads to improved theoretical
spectra with which to match. Peak intensity prediction for matching was improved by
training an ML model on large spectral library sets, allowing for the benefits of spectral

library matching on unseen peptides®*’,

Peptide identification using informed sequence databases

The basis of all proteogenomics approaches involves the inclusion of DNA and/or RNA
sequences and their predicted protein products, but the balance between the power
of additional genomic information and the costs in proteomic detectability is a delicate
one. In order to correctly identify a peptide, it must be present in the search database
(completeness), but have an identification strategy that is both sensitive and specific.
Unfortunately, the more sequences included in a search database, the higher the
likelihood that the best scoring match is incorrect®®. Using a more complete database
can ironically result in fewer identifications than using a more limited consensus
database® 1%, Prudent usage of transcriptome and SNP information from the sample
in question is advisable to harness the increasing availability of nucleotide sequencing

data to inform peptide matches.

Short versus long read sequencing data in the search database

Asthe peptide search databaseis populated with RNA sequencinginformation, the quality
of the methods used to assemble the transcriptome directly impacts the quality of the
proteomic findings. Short-read sequencing is unable to confidently resolve full isoforms,
particularly with more lowly expressed transcripts!®t. Therefore, complex computational
methods are necessary to identify novel transcripts and their corresponding protein
products using short-read datal>%, For example, splice-graph based databases are
used to include all possible protein products of short-read-detected spice junctions in
the search database. Such methods, however, are not ideal since the corresponding

amino acid sequence from these splice junctions cannot be confirmed among the
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multiple possibilities. In practice, this means choosing between the enforcement of one
reading frame that may not be correct!® or the addition of many redundant entries in
the database (6 frame translation) 1. Long read RNA sequencing is better suited to aid
discovery in the proteome by reducing the amount of noise in the search database as
compared to short read sequencing. However, it is important to define what constitutes
novelty in the transcriptome (see genomics sequencing section above). The use of a
looser definition including e.g. non-canonical junctions and alternative 3/5” ends results
in more ‘novel’ transcripts but likely more false positive transcripts and a larger search
space if used in the peptide search database.

Open reading frame prediction

Novel transcripts discovered by long-read RNA sequencing must be converted into
(predicted) protein sequences before being incorporated into the search database.
There are several options for ORF prediction. The most comprehensive solution is a
full six-frame translation (6FT), which creates six predicted protein sequences per
transcript taking into account all possible frames of translation that could occur?®’1%,
The correct ORF will be present in the six, but one or multiple incorrect amino acid
fragments are also included, reducing specificity®. One simple way to reduce six frames
to three is to include strand information. A few other common strategies to eliminate
unlikely ORFs in 6FT include imposition of a minimum length threshold for the predicted
protein product, selection based on homology to known coding sequences and the use
of ORF prediction software!'®13, |dentification of certain nucleotide features that point
to codingness has led to statistical models that output accurate ORF predictions™***,
CPAT is one such example that uses a logistic regression model to predict transcript
codingness and likely ORF sequence using sequence features such as hexamer (6NT

window) and codon usage biases.

Options for adding variants to search database

Ultimately, taking all the above considerations in account makes it more likely that
the non-reference sequences that are added to the proteogenomic search database
are accurate. Depending on the goals of the study, the search database can be further
refined by including genetic variants (based on WGS/WES) or alternative isoforms
from an individual. In cases where the variants of the individual are not known, it is
still possible to identify them by incorporating known variants from popular databases
such as dbSNP and COSMIC 7%, |n the same vain, alternative isoforms can be inferred

from publicly available Expressed Sequence Tags 12°'22, An attractive option to reduce
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the database size is to only include protein sequences that correspond to transcripts
that were found to be expressed in the sample. It is however still common practice
to also include all canonical proteins when adding variants to the search database,
regardless of whether their transcripts were expressed because RNA sequencing in a
typical experiment does not have full coverage.

Confidence in peptide identification

In peptide identification, pairings are made with the closest match between theoretical
spectra derived from peptide sequences and observed spectra (peptide-spectrum
matches, PSMs). The resemblance between the theoretical and observed spectrum
is reflected in a score. As many PSMs are incorrect, a scoring system combined with a
confidence threshold will help remove the majority of the false positive matched. False
discovery rate (FDR) estimation is a commonly used procedure to help determine a
statistically sound decision when removing false positives'?®. The most common method
is the target-decoy model; reversed or shuffled peptide sequences called decoys are
added alongside the true (target) peptides in the search database**!%. The underlying
assumption is that the score distribution of decoy matches and incorrect target matches
will be similar. The list of reported discoveries is sorted by score and filtered such that the
proportion of decoy matches in the final list is less than a desired threshold, thus removing
the lower-scoring incorrect target matches. FDR itself is estimated by dividing the number

of decoy identifications by the number of target identifications above a certain threshold.

This method of FDR estimation has been widely accepted but is imperfect. Larger
databases, which are common in proteogenomics, yield fewer peptide identifications at
the same FDR threshold?*'?, |t can also unfavor certain subcategories of peptides, such
as variant peptides??. Global FDR estimation fails in those settings due to the relatively
smaller size and heterogeneous nature of identifications in this subcategory®*?. Other
refined methods of calculating FDR for variant/subgroup peptides have been proposed
to increase the number of identifications, but they have not been independently
benchmarked!®'*, Some studies attempt to circumvent the problem altogether using
so-called multi-pass strategies whereby multiple searches are performed on subsets of
the total search database!'*!31132 They yield more identifications, but error rates are

impossible to quantify, calling their validity into question 33,
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Scope of this thesis

In this thesis, the power of long-read transcriptome sequencing is exploited to further
understanding of transcriptomic and proteomic variation. This thesis explores the
potential of novel proteogenomics methodology with long-read sequencing, suggests a
way forward in the field, and provides an open-source tool of potential use in diagnostics.
The thesis also aims to assess the gains of proteogenomics over standard proteomics
to identify variant proteins. In Chapter 2, we examine in detail how and to what extent
long-read transcriptome information can lead to discovery of protein variants using
proteogenomics. An application of these methodologies to uncover novel biology was
performed in Chapter 3, where long-read proteogenomics was applied to profile the
host-pathogen interaction in response to multiple pathogenic stimuli. We study the use
of alternative isoform usage in certain cellular conditions. A new method to leverage the
increased transcriptional diversity (as a result of long-read sequencing) to re-annotate
patient variants is described in Chapter 4. This new method, called SUsSPECT, utilizes
a more accurate set of transcripts and proteoforms to better estimate the impact of
variants on protein function than using standard reference databases. The method may
be useful in aiding diagnostics for patients with rare monogenic disease as long-read
transcript data (and corresponding proteome data) becomes more widely available. |
conclude with the applications, limitations and future outlook on the proteogenomics
field in Chapter 5.
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Chapter 2

Abstract

Discovery of variant peptides such as single amino acid variant (SAAV) in shotgun
proteomics data is essential for personalized proteomics. Both the resolution of
shotgun proteomics methods and the search engines have improved dramatically,
allowing for confident identification of SAAV peptides. However, it is not yet known
if these methods are truly successful in accurately identifying SAAV peptides without
prior genomic information in the search database. We studied this in unprecedented
detail by exploiting publicly available long-read RNA seq and shotgun proteomics data
from the gold standard reference cell line NA12878. Searching spectra from this cell
line with the state-of-the-art open modification search engine ionbot™ against carefully
curated search databases resulted in 96.7% false positive SAAVs and an 85% lower
true positive rate than searching with peptide search databases that incorporate prior
genetic information. While adding genetic variants to the search database remains
indispensable for correct peptide identification, inclusion of long-read RNA sequences
in the search database contributes only 0.3% new peptide identifications. These findings
reveal the differences in SAAV detection that result from various approaches, providing
guidance to researchers studying SAAV peptides and developers of peptide spectrum
identification tools.
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Introduction

Proteomes display significant inter-individual variability *4'** and personal proteomes
may delineate disease risk and pave the way for personalized disease prevention and
treatment. Personalized cancer treatment, for instance, is already instigated based
on the detection of peptides containing single amino acid variants (SAAVs) that often
serve as excellent biomarkers 36141, Detecting these SAAV peptides reliably, however,
is a formidable challenge. Previously, scientists looked for protein evidence of a small
number of variants in particular and resorted to targeted proteomics approaches such
as selected reaction monitoring (SRM) 1427145 Alternatively, BLAST-like query tools such
as peptimapper and PepQuery 4% or database tools like XMAn v2 %8 and dbSAP # can
be used to investigate single events °>%*!, Proteogenomics, the integration of genome
and transcriptome information, is a more holistic and higher-throughput form of mass
spectrometry- (MS-) based detection of variant peptides.

A main limiting factor of SAAV peptide (called ‘variant peptide’ for the remainder of the
manuscript) detection with shotgun proteomics is the tandem mass spectrometry (MS/
MS) technology itself. Since MS/MS spectra are generally too noisy to call a peptide
sequence de novo, current MS/MS analysis methods rely on a database of known
peptides. This limits the ability to detect unknown peptides such as variant peptides.
The most flexible way to detect variant peptides is an exhaustive search; allowing any
possible amino acid substitution at any position in the peptide sequence 2153, However,
this strategy increases the search space immensely to a point where it is no longer
useful in practice. The larger search space leads to ambiguity in peptide identification
and thus a high number of false positive hits *#'*°, Therefore, more careful curation of

sequences in the search database pays off.

Databases of peptides containing variants from dbSNP have been created to facilitate
the search for SAAVs #9156 and simply adding these variant peptides to the database
showed promise early on 557 Not all dbSNP variants however, are expected to be found
in every sample, and including them all may lead to false identifications °. In addition,
rare and unique variants may be overlooked. A proteogenomics approach where only
those variant peptides predicted from genome or transcriptome information are added
to the peptide search databases, can improve their detection. Proteogenomics pipelines
have streamlined this process of incorporating personal genome information into a
proteomic search database 1°1%2, |n addition, there is evidence that including correct
sequence variant information, including often-overlooked sample-specific indels and

frameshifts, improves variant peptide identification workflows %, Yet, false discovery
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rate (FDR) correction is needed to compensate for the increase of database size and
complexity **1%5. When searching for evidence of specific peptides such as variant
peptides, an additional subset specific FDR correction should be made 4,

In addition to SAAVSs, alternative splicing may also introduce sample specific peptides.
Alternative splicing iscommonplace as 90% of genes undergo alternative splicing !%. Since
protein reference databases do not cover all protein isoforms produced by alternative
splicing, sample-specific transcriptome information is advantageous. Typically, the
information on alternatively spliced sequences comes from RNA sequencing. Short-read
RNA seq is however not ideal for properly capturing the complete splicing patterns and
the resulting open reading frames (ORFs). Traditionally, this is circumvented by including
3- or 6-frame translations of the sample’s transcriptome. However, this approach was
found to expand the database far too much for eukaryotic organisms, leaving few
remaining hits after FDR correction ¢, Studies utilizing long-read RNA seq frequently
discover previously unannotated transcript structures. Thus, full-length transcripts may

add essential information for correct ORF prediction and peptide identification.

Anemergingalternative to proteogenomics methods for the detection of variant peptides
is the ‘open search’ method. This allows unexpected post-translational modifications
and amino acid substitutions in the peptide spectrum match, while maintaining
accurate FDR and a workable computation time. Using sequence tag-based approaches,
the search space is narrowed with de novo sequence tags, which makes room for the
addition of all possible SAAV peptides in the search space 717!, These methods were
historically not as effective as classical proteogenomics searches in finding variant
peptides, since there is difficulty in discerning between post-translationally modified
and SAAV peptides. However, this situation has recently improved with the inclusion
of optimized probabilistic models 2. One implementation of the tag-based method
improved with such models is ionbotTM (manuscript in preparation; compomics.com/
ionbot), which is a machine learning search engine that uses MS2PIP *”® and ReSCore 174

to significantly improve the accuracy of peptide match scoring.

The main objective of this study is to compare a previously established proteogenomics
approach based onlong-read sequencing with a recently-developed open search method
for the detection of true variant peptides. In simpler terms, we compare a genome-
informed search space with typical spectrum identification settings to a genome-
uninformed search space with advanced identification settings. We aim to understand
the power of, and potential biases associated with, using an open search method
without prior information about the genome. For this, we make use of high-confidence
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nucleotide sequencing and (ultra)-deep proteomics data from a gold standard cell line
NA12878. Using correct ORFs from the long-read transcriptome and high-confidence
phased variants belonging to this cell line, we gain a unique perspective on exactly what

advantages can be gained by each approach.

Experimental section
NA12878 Data sources

Variant information was obtained from Illumina platinum genomes (ftp://platgene_
ro@ussd-ftp.illumina.com/2017-1.0/hg38/small_variants/NA12878/). The reference
genome used was GRCh38, which can be downloaded from the pre-computed 1000
genomes GRCh38 BWA database at ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
technical/reference/GRCh38_reference_genome/ (with decoys). Transcript structures
for NA12878 were sourced from the ONT consortium . In the consortium, Workman
et al sequenced 9.9 million reads corresponding to 33,894 transcripts and 20,289 genes.

The reference transcriptome and proteome are from GENCODE v29.

Shotgun proteomics data came from the '7® study, downloaded from Peptide Atlas
(http://www.peptideatlas.org/PASS/PASS00230). This dataset consists of 417 TMT6plex

runs from 54 samples, with the reference tag (126.77) on NA12878 in every case.

Creation of the search databases

In total, four search databases were created (see Table 1 below). 1) Database based
on ONT transcriptome sequences only (referred to as ‘ONT’), 2) database based on
GENCODE coding transcriptome only (referred to as ‘Ref’), 3) a database that is the
union of 1) and 2) and contains no NA12878 specific variants (referred to as variant-
free or VF), and 4) the same sequences as database 3), but contains NA12878 specific
variants (referred to as variant-containing or VC). A simple depiction can be found in
Figure 1A and Table S1, while the detailed full workflow can be found in Figure S1. Each
database had MaxQuant 7 contaminant sequences appended before search.

The Ref search database was made by filtering GENCODE v29 predicted ORFs for
those that were complete (no 5’ or 3’ missingness). The ONT database was created
using transcript structures provided by the NA12878 consortium (https://github.com/
nanopore-wgs-consortium/NA12878/blob/master/RNA.md). The coordinates in the
junction file (PSL format) provided were converted to BED with BEDOPS 78 and used to
fetch the corresponding stretch of sequence from the GRCh38 genome with bedtools *°

getfasta. The exons were assembled using in-house scripts to form the full transcripts,
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and those that were non-identical to transcript sequences in GENCODE (“novel”) were
then submitted to 2 ORF prediction software; ANGEL v2.4 (“dumb” ORF prediction
on default settings) and SQANTI2 v2.7(https://github.com/Magdoll/SQANTI2). The
translation of transcripts predicted by both prediction programs were added to the
search database. ORFs from GENCODE were used for transcript sequences in ONT

identical to transcript sequences in GENCODE.

The VF database was simply the union of the Ref and ONT databases. The VC database
was created by first creating full-length coding sequences (CDS) with variants included by
replacing reference nucleotides according to the VCF file per CDS fragment, for every CDS
fragment. If only homozygous variant(s) were present in a CDS fragment, only one variant
CDS fragment was generated. If a CDS contained at least one heterozygous variant, two
variant CDS sequences were generated corresponding to the different alleles. Fragments
were then assembled to full CDS. If a full CDS contained at least one CDS fragment with
a heterozygous variant, two full CDS were generated corresponding to each allele. For
those full CDS that contained at least one variant, the variant version(s) of the sequences

replaced the non-variant versions in the VF database to create the VC database.

Spectral search and post processing

Each run from Wu et al 2003 was first converted to the Mascot Generic Format(MGF)
format using msconvert % with MS2 peak picking enabled. Each dataset was then
searched against the four search databases described in the previous section, using
ionbot™ version 0.5. Fixed and variable modifications were set according to the
protocol in Wu et al. Open modification settings were enabled for all four runs, while
open variant settings (for SAAV detection) were enabled for all runs except for on the VC
database. Searches allowed for up to two missed cleavages. When parsing the search
results, only spectra with an observed TMT6plex reporter ion 126.77 (corresponds to
cell line NA12878) were retained.

Since sub-setting PSMs into groups such as variant peptides requires separate FDR
correction '**, both VC and VF underwent a separate FDR correction for the variant
peptide subset. Successful FDR correction requires the modeling of potential false positive
peptide identifications using appropriate decoy peptides. In the case of variant peptides,
this means a sufficient number of decoy variant peptide identifications must be present
to accurately model the population of false positive peptides. Reversed sequences thus
underwent the same processing steps as the true sequences in order to create the

appropriate decoys. The distributions were checked for successful modeling (Figure S2).
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Avariant peptide list was created to compare with ionbot™ identifications from searches
of the VC and VF. The list was created with an in-house Python script that performs
an in-silico trypsin digest (allowing for up to 2 missed cleavages) with the pyteomics v
4.2 8 package and checks per protein for peptides that differ by only one amino acid
between the VF and VC database. | and L were treated as identical, and a potential

variant peptide was disqualified if it appears in any other reference protein sequence.

ionbot™ identifications presumed to be variant peptides (and variant peptide decoys)
underwent subset-specific FDR correction for both combination databases, but the
exact subset of variant peptides differed between the two searches due to different
assumptions. The assumption in the VF database is that variants in the genome are
unknown, so all predicted variant peptides (and predicted variant decoy peptides)
were pooled for FDR correction. In the VC database, only known variant peptides (and
corresponding decoy peptides) are pooled for FDR correction. We expect the different
approaches to subset FDR to be comparable, as ionbot™ does not include duplicate
peptides in the search database. This means that the databases being compared are
of similar size on the peptide level, which is the level at which the FDR correction is
performed. Q value calculation and cutoff (q < 0.01) were performed with an in-house
python script (distribution can be seen in Figure S2). Retention time predictions were
calculated with DeepLC *#2, All scripts referred to in this manuscript can be found in the
GitHub repository (https://github.com/cmbi/NA12878-saav-detection).

Results
Search database makeup

The main goal of this study is to evaluate the added value of transcriptomics data for SAAV
identification in proteomics data. In this evaluation, SAAV identification with and without
transcriptomics prior knowledge is compared for a state-of-the-art open search engine. To
this end, we searched the NA12878 deep shotgun proteomics data set with four distinct
search databases corresponding to two comparisons, as outlined in Figure 1A. The first
comparison was between databases based on the Oxford Nanopore (ONT) long-read
transcriptome, the GENCODE reference proteome (referred to as Ref) or the combination
of the two (referred to as combi, Figure 1B). In this comparison, all searches were run with
open modification settings that allow for one mutation in the peptide match. The second
comparison was between a regular and an open variant search using databases that did and
did notinclude NA12878 genome sequencing-derived variants, respectively. This comparison

was performed for the combi databases only. The analysis with the variant-free combi
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database will be referred to as the VF method and the analysis with the variant-containing
combi database will be referred to as the VC method. In this comparison, open modification
search was enabled for both methods, but open variant search was only enabled in the
VF method to allow for the detection of SAAVs. Open variant search is disabled in the VC
method, because the variants were already incorporated in the VC search database.

A.
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reference
human
coding
transcriptome

ombination Combi variant-free
C inati
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971

SQANTI predicted ORFs

Figure 1: Creation of the search databases. (A) Three databases were made to make comparison
between use of different sources of sequences. One with only translations of transcriptome
sequences (ONT), one with only the reference proteome (GENCODE), and one with the union
of the two. This comparison is denoted with a blue square. Variants from NA12878 were
incorporated into the combination database from A and compared to the combination database
without variants. This comparison is denoted with a red square. (B) The number of (predicted)
ORF in the different sources used to construct the VF search database and their overlap. The
sources included the GENCODE v29 reference ORFs and the predicted ORFs from ONT RNAseq.
Two ORF prediction softwares (ANGEL and SQANTI) were used to determine candidate ORFs and
the intersection was included in the final search database.
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Adding the long-read transcriptome for the cell line does not contribute to additional
peptide identifications in practice

Reliable peptide identification normally requires a comprehensive search database. We
first investigated whether novel transcripts from long-read transcriptome sequencing
would contribute to peptide identifications in the NA12878 shotgun proteomics data.
The ONT database contained 35,248 full-length transcript sequences, 64% of which
were novel. Although the combi database containing these novel predicted ORFs was
42% larger than the Ref database (Figure 1B), the number of unique peptides from
these sequences made up a mere 2.3% of the search database (Figure 2, top panel).
The addition of ONT-derived ORFs to the Ref ORFs thus translated to an only modest
increase in the number of unique peptides in the search database (Figure 2, lower
panel). A likely explanation for this is the fact that many of the novel ONT transcripts
demonstrate high similarity to existing reference sequences. The sequences usually
only differed in the length of the 3’ or 5" UTR or the in use of alternative exon junctions
rather than completely novel exons. The exact frequencies of these events are difficult
to estimate, but when looking at the set of novel ORFs from the ONT transcriptome,
73% of them can be attributed to known GENCODE coding genes. Conversely, the
GENCODE genes that had novel isoforms in the ONT set corresponded to 27% of all
GENCODE coding genes. In terms of observed peptide identifications, 67% of the ORFs
in ONT set had at least one peptide match (when including PSMs that also matched to
peptides present in GENCODE). However, the number of unique peptide matches to
the novel ONT transcripts was much smaller: only 0.3% of unique peptides identified
to the combi databases mapped exclusively to novel ONT transcripts. This indicates
that the transcriptome database does not contribute significantly to the proteomic
search results and suggests that alternative splicing and mRNA processing events do
not contribute much to the diversity of the MS-detectable fraction of the proteome.

Aside from the contributions from the ONT-only sequences, it is also interesting to
investigate protein identifications that were not found in the ONT transcriptome.
While these should theoretically not be present, roughly 20% of identified peptides
are exclusively matched with the ENCODE transcripts (Figure 2). As expected, this
percentage is smaller than the 42% of peptides in the search database that are exclusive
to GENCODE transcripts, but still a significant fraction. This suggests that it is best to still
use a reference transcript database, even if there is full transcriptome sequencing data
available.
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Figure 2: Detectible peptides per method. Theoretical (upper pie charts) and observed (lower pie
charts) proportions of peptides when searching against VC (right) or VF (left) search databases.
This shows percentages of matched peptides attributed only to GENCODE proteins, only ONT
proteins, and those that match to proteins in both databases.

Variant-containing method allows detection of many more genome-
supported variant peptides

We subsequently studied the effect of the inclusion of sample-specific variants in the
search database. In the VF method, the data is analyzed with an open variant search, thus
letting the search engine predict single amino acid substitutions. This is in contrast to
the VC method, where no variants are predicted and only genetically supported variant
are present in the search database. We detected 461 variant peptides by the VC method
and 62 by the VF method, with 59 overlapping between the two methods (Figure 3A).
The greater majority of variant peptides that were detected by the VF method only
(n=1,805), were not supported by the genome and are likely false positives (Figure 3B).
In addition, one third of variant peptide matches that appeared to be supported by the
genome, actually contained an incorrect amino acid substitution. Thus, the inclusion
of variant peptides derived from personal genomes in search databases is far superior
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to the use of a variant free database combined with an open variant search. Some

examples of identified variant peptides can be found in Figure S3.
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Figure 3: Detection of variant peptides using (combination) VF and VC databases.

(A) variant PSMs (left) and unique peptides (right) attributed to genome-supported variant
peptides. (B) PSM and peptide counts found by each method.

Detectible variant peptides have attributes that differ from expected variant peptides

Out of the 34,968 peptides in the genome-supported variant peptide list, only 462
were detected by either or both the VC and VF methods (Figure 4A). They are not a
random sample of all possible variant peptides. Namely, some variant peptides are
easier to detect than others depending on their abundance and/or properties, and
that differs even between methods. For instance, the VF method tends to find longer

variant peptides (in a range of 16-27 aa) and misses the shorter variant peptides (Figure
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4B). This highlights the larger amount of ambiguity in variant peptide identification
proportional to the lower number of peaks in the spectra. The VC method does not
suffer from this ambiguity and allows for detection of a wider range of variant peptide
lengths than variant-free, especially shorter variant peptides (p=0.0017 K2 samp). While
there is a bias in variant peptide length, we did not find clear evidence that the position
of the variant within the peptide affects detection of the variant peptide in either of the
methods. In addition, the amino acid substitution itself affects detectability, since the
corresponding mass shift in the MS/MS spectrum needs to be separated from noise or
similar mass shifts corresponding to other modifications in order to be identified. There
are some predefined limitations to SAAV detection with the VF method that lead to
certain amino acid substitutions getting detected less than expected (Figure 4C). Amino
acids on which there are fixed modifications can’t have variants in the open variant
search, meaning substitutions at K and C are not detected. Substitutions affecting the

trypsin digest, such as those involving R, can also not be detected.

Erroneous variant peptide identifications are difficult to discern from true variant
peptide identifications

The misidentifications from the open variant-free approach can be separated into false
negatives and false positives. False negative identification is where the VC method
identifies variant peptides, but those same spectra are identified by the VF method as
non-variant peptides. False positive misidentification is where the VF method identified

variant peptides that were not supported by the genome.

There were 402 unique false negative peptides observed (Figure 5A). These false
negatives peptides were classified as variant peptides by VC method but not by VF,
although they were contained in the VF search space. Identifying causes of false
negatives requires investigation of how the VC peptides were identified with the VF
method. There was no particular length peptide that was mis-identified more than
others in general, despite the difference in detectible peptide length (Figure S4). The
peptide identifications were similar between the VF and VC methods. In general, length
correlated highly between the identifications of the two methods (R?>=0.9071, p=0).
When comparing individual peptide identifications per method for mismatches and
length difference, the largest source of error was a 1 aa length difference. Nonvariant
peptides with a 1 aa length difference from the variant peptide were being identified
instead of the correct variant peptide in >30% of the false negatives (Figure S4).
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Figure 4. Properties of detected variants compared to expected. (A) The groups of variant peptides
being compared. Each circle, including all overlaps, are being compared to each other. (B) Length
distribution differences between detected variant peptides by the different variant detection
methods. (C) Normalized (divided by max) frequency of variation per original (reference) amino
acid.
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Another possible source of false negative errors that was investigated is SAAVs being
mistaken for unexpected post-translational modifications. In the false negative set, this
did not appear to be an issue. The false negative VF identifications had approximately

the same rate of unexpected PTMs (Figure S4).
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Figure 5: False negative variant misidentifications. (A) Investigation of causes of mis-identification
of peptides in the variant-free set. (B) Scores of those mis-identified peptides in VF vs VC set.
Each point corresponds to one false negative variant peptide. Percolator PSM score is used. Color
corresponds to delta retention time.

To further understand how false negatives could occur, we compared the peptide
matching scores of the false negative spectra for the VF and VC search methods (Figure
5B). Higher scores indicate higher confidence in assignment of spectra. VC scores for
false negative peptides were generally higher than the VF scores (mean score ratio VC/
VF = 1.31). However, a large fraction of the false negatives received comparable scores
in the VC and VF search methods. This could indicate a ranking problem: the variant
peptide received a score equal to another peptide, to which the peptide spectrum was

ultimately assigned. Delta retention time can often be a useful independent validator
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when score disagrees between the different search methods. Despite high retention
time discrepancies in this particular data set, observed retention time aligns relatively
well with predicted retention time for those spectra that received higher scores in VC.

The genome-supported variants are a tiny fraction of the high confidence variant peptide
predictions from the VF database, indicating a high false positive rate (Figure 6A). We
investigated whether there are distinguishing features between genome-supported
and genome-unsupported variants. Reassuringly, scores of true positives were slightly
higher than false positives (Figure 6B, p=1.34e-26, ANOVA).

A closer inspection of genome-unsupported variants reveals potential sources of
confusion for variant prediction algorithms, leading to false positive identifications.
There was a high level of concordance of peptides matched to these spectra in general.
Two thirds of spectra that corresponded to genome-unsupported variant peptide
identifications by VF had the same base peptide identifications in both the VF and
VC searches. Mass shifts predicted to be SAAV in VF were commonly predicted to be
‘unexpected’ PTMs by the VC method (Figure 6C). A common PTM mistaken as a SAAV
in VF was threonine oxidation, but many PTMs contributed to this mix-up. There was no
clear trend to the identification errors, underlining the difficulty of correctly classifying
minor mass shifts corresponding to PTMs and SAAVs.

Evaluation of the variant peptides’ SNPs of origin

The detection of variant peptides is ultimately a means to understanding which single
nucleotide variants (SNVs) are expressed on the protein level. By incorporating SNVs
into predicted ORFs, we ended up with a theoretical set of 34,968 variant peptides
originating from 9,298 SNVs from all chromosomes, of which 5,989 are heterozygous
variants.

In the case of a heterozygous variant, both variant peptides and their reference
counterparts can be identified in some ratio. A ratio different from 0.5 may be indicative
of preferred expression of one of the alleles on the protein level, otherwise known as
ASPE (allele specific protein expression). Presence and magnitude of ASPE is potentially
key information that can be used to understand biological mechanisms. However,
technical biases of search methodology may invalidate potential findings by distorting
these ratios. For the VF method, the reference peptide was identified more frequently
than the variant peptide (p=0.013, one-way ANOVA). The opposite was true for the VC
method.
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Figure 6: False positive misidentifications. (A) False positive misidentifications are genome-
unsupported (US) variants predicted by the variant-free method (VF). The venn diagram highlights
the subset of variants that are being investigated in this figure. These 2,998 variants were predicted
by ionbot™ to be variant peptides, but were not found with the variant containing set. All but
7 were variants unsupported by genome information. (B) Relative score distributions between
genome supported vs unsupported variants in the variant-free set. (C) Unexpected modifications
by the VC set corresponding to all ‘false positive’ predicted variant PSMs in the VF set.
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Homozygous variants can be used as a type of control to understand the bias in search
methods, since we know that only one of the two alleles can be expressed. In case of
homozygous variants, the variant peptide is expected to be present in all cases — with
no reference counterpart. This was observed for the VC but not for the VF method
(Figure 7A). Thus, without prior information about zygosity, the VF method tends to
be conservative in identifying SAAV peptides, resulting in a higher likelihood of the
reference peptide than its variant counterpart.

It is evident that some variant peptides were observed much more often than their
reference counterparts or vice versa. The VC heterozygous variant peptide identifications
should not suffer from the technical reference bias and allow for detection of allele
specific expression on the protein level. The VC-detected heterozygous variants
were divided in two groups; one group with more counts for the reference peptide
(reference-biased, N=78) and one group with more counts for the alternative peptide
(alternative-biased, N=123). The two groups demonstrated a clear and significant
difference in population allele frequency (p=6.45e-08. Figure 7B). Those with lower
allele frequencies displayed a stronger reference bias. This could be explained by the
fact that rare variants in coding regions have a higher likelihood of causing undesirable
effects on the resulting protein. Any deleterious effects resulting from the variant on

protein stability would be visible as depletion of the alternative allele.

One significant subgroup of heterozygous variants was particularly biased towards the
alternative allele. Fourty-four out of 183 variant peptides supported by more than two
PSMs did not have any detected reference counterparts. One third of these variants had
a substitution involving arginine or lysine (tryptic cleavage sites). One gene, HLA-DBQ],
had two alternative alleles instead of one reference and one alternative. In general, the
score distribution for these highly biased group was lower than the score distribution
for all VC detected variant peptides. The allele frequencies of this group were not
different to those of the overall alternative-biased group (p=0.5, ANOVA). There was
also no correlation between the RNA expression of these genes to the variant peptide
expression (R?=0.01). Also, a comparison the list of genes displaying ASE on the RNA
level from *7° to the heterozygous genes with variant peptides detected on the protein

level yielded negligible overlap (2 genes).
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Figure 7: Underlying SNPs detected on the protein level. (A) Variant peptide abundance vs
reference counterpart split by zygosity and search database, square root transformed. (B)
Separating heterozygous variants in the variant-containing database by whether more variant
peptide was found (variant-biased) or more of the reference counterpart was found (reference-
biased) revealed differences in allele frequency distributions. (C) Ratio variability of genes with
2 or more variant peptides. Ratio is defined by the variant counterpart abundance divided by

Reference counterpart count

Reference counterpart count

var_type = heterozygous var_type = homozygous

\
\
\
<.
r@
\.
\
\
\

4
N
291 jueLE)\ = 9seqejeq

o/ n=29 e

eseqeleq

.

\
AN
JUOD JUBLIEA

n=176

\
Buiure:

0 10 20
Variant peptide count

Variant peptide count

0.5

Variant-biased
Reference-biased

0.0

30

N
o

Max - Min

10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12
Allele frequency

.
[ ]
°
00%°4°° 00 o ¢° 00000000%c00® °°
N [l N3
R B S IS na 2 b PN K or 0BRSSy
WSS r5oa<arS<e0=Sma JNF<Os 1oL
LO02H0R RO 0SSy rWOLE O 0nT L0
=ZWPrt =7 1 COEpEenIoET 23TTT=
°® 22 YT 33
I
Gene

variant peptide abundance. Y axis shows max —min per gene.

42



Comparing Protogenomics and Open Variant Search Approaches for SAAV Detection

A total of 33 genes were detected through two or more unique variant peptides. For
variant peptides within a gene, the reference peptide to variant peptide ratio should be
consistent, unless there are different protein isoforms as a consequence of alternative
splicing. This was the case for the majority of genes with multiple variant peptides
belonging to the same gene (Figure 7C). Five of these genes were represented by
multiple variant peptides with inconsistent ratios. HLA-C, IFI16 and MKI67 had peptides
matching to non-identical (sets of) isoforms within the gene. PCM1 had peptides
matched to 24 isoforms. That is four times the average number of isoforms matched by
a variant peptide in the VC search. Thus, inconsistent variant to reference peptide ratios
within a gene can generally by attributed to differing abundances of protein isoforms.

Discussion

Here, we have carried out an investigation of the effects of proteogenomic additions to
a proteomics search database. To this end, we compared a typical proteomics approach
to a purely proteomics method utilizing state-of-the-art open search. We observed that
the addition of transcriptomic sequences to the search database did not have significant
effects on the overall peptide identification rate. There was a roughly equal number
PSMs from the three databases, despite the long-read transcriptome search database
being 40% smaller than that of the union of it and the reference. At the same time, the
matches to reference-only sequences in the combination database imply that >20% of
peptide identifications are missed. This suggests a large portion of false identifications
when using a database comprised of only ONT sequences.

The fact that around a quarter of peptide identifications cannot be attributed to the
transcriptomics data is rather surprising. There are a couple possible explanations. Using
transcriptomics data from different cells than the proteomics data (different labs and
different year) will unavoidably cause some discrepancies ¥3. This could also be attributed
to protein stability in the cell, as proteins are detectable for some time after RNA have
already been degraded #. Also notable is the fact that including the transcriptome
sequences did not seem to add significantly to the peptide detections; the proportion of
novel peptides found was lower than the proportion of novel transcripts found. As this
cell line/organism is so well studied, it is likely that the vast majority of present proteins
have already been characterized. For other cell types and organisms with more novel
transcripts, adding (full length) transcriptomes may lead to more peptide identifications.

Two different search methods were used to identify non-reference peptides derived
from SNVs: a proteogenomics approach, in which all variants known from the genome
sequence were added to the search database, and an ‘open variant search’, where

43




Chapter 2

only reference peptides were included in the search database and one amino acid
differences were allowed by the search engine. The proteogenomics approach was
clearly superior, as it detected 7-times more variant peptides , whereas the open variant
search suffered from many false positive identifications that were not supported by the
genome sequence, and from large numbers of false negatives. Nevertheless, also the
proteogenomics search method detected only a minor fraction of the variant peptides
predicted to be present in the genome. It has been estimated before that maximum
~70% of variants in protein coding regions are theoretically detectible in an ideal shotgun
proteomics experiment considering peptide lengths 7-40 aa . The number of variants
found with a proteogenomics method in practice is much lower, depending on method
details. Some studies either use a statistically dubious ‘multi-tier’ method %7 or skip
FDR sub-setting altogether ¥ and report the number of variants detected to be in the
region of 10%. We detect only 1% of the theoretically present variant peptides, despite
the ~4M spectra present in this dataset, making it one of the deepest proteomics datasets
currently available. This is partly due to the careful control of FDRs in our study. Also
other conservative efforts to detect variant peptides using FDR sub-setting or targeted
proteomics validation detect <1% of all theoretically present variant peptides 7187189,

While open search lags behind the proteogenomics approach for the moment, it has
promise. Algorithms are being continuously improved to better differentiate signal
from noise, which will reduce the false positives and false negatives in variant peptide
detection °. There are several upcoming methodologies to further refine the open
search to increase accuracy, either adding to existing peptide identification tools or
standalone with promising results such as Open-pfind '*1, TagGraph 2, MSFragger 1%,
Crystal-C %3, There are considerable challenges still to face in their detection, particularly
in noise/signal differentiation. This is especially complicated as variants often co-occur
with other PTMs such as phosphorylation 3187, Current detection methods including
ionbot™ cannot handle the complexity of two modifications on one site. However,
deep neural networks show great promise with difficult peptide identifications 4.
Using methods of machine learning along with orthogonal information such as peptide
retention time should result in significant improvements in open search °°. This in
combination with rapidly improving data-independent acquisition removes detection
limitations of low-abundance or otherwise difficult to detect peptides °®, which is
currently a considerable hurdle in SAAV peptide detection . Including open search
is clearly useful and bound to get more accurate. This study used ionbot™ as the sole
predictor of unexpected modifications/SAAVs, and comparison between identification

tools was difficult as no other identification software tested reported the precise
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reporter ions per matched spectra (to be able to separate TMT tags corresponding
to different cell lines). A study to compare methods given these updates is certainly
warranted and ensemble methods may eventually be used to even more accurately

predict these unexpected modifications/SAAVs.

One important implication of correctly detecting SAAVs is the ability to observe allele
specific expression on the protein level. A targeted proteomics approach has recently
been described to study ASPE (allele specific protein expression) with high confidence
17 It found no correlation between RNA and protein level ASE for the few variants
studied, highlighting the utility of having higher throughput methods to study this
phenomenon. One simple way to measure ASPE when using a proteogenomics approach
is by comparing the spectral counts for the SAAV and its reference counterpart, since
a reference counterpart usually has equal detectability by MS/MS %, Here we found
low correlation between the abundance of the variant and reference counterparts
regardless of VF or VC method. This is potentially indicative for a high level of ASPE. In
contrast, ¥” demonstrated a high correlation between variant and reference peptides.
This may be attributed to the low stringency associated with using the multi-tier search
strategy for SAAV detection. We found no correlation between ASE and ASPE was found
in this study which is consistent with the findings of Shi et al.

Conclusions

Our study provides guidance for the detection of variant peptides that shape the personal
proteome. While personal genomes currently seem indispensable for the characterization
of personal proteomes, new computational and analytical tools and new file formats to
accommodate personal proteome information will allow us to get the fullest picture

possible of the individual proteome, even without personal genome information.
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Figure S3: Annotated variant peptide spectra in mirror plots, with theoretical spectra (as
predicted by MS2PIP) in the bottom half for reference. Plots made with spectrum_utils python
package. Top: variant peptide LQQQHSEQPPLQPSPVTTR, substitution M = T, on chromosome
1 pos 179882939, scan id Linfeng_012511_HapMap39_6.8739.8739.3. Middle: variant
peptide DVGEWQHEEFYR, substitution R = G, on chromosome 16 pos 3674464, scan id
Linfeng_030911_HapMap46_2.12742.12742.3. This is one of the peptides where no reference
counterparts were detected (while 90 variant peptides were identified). Bottom: variant peptide
DLEGLSQWHEEK, substitution W > R, on chromosome 22 pos 36292132, scan id Linfeng_080711_
HapMap59_5.15580.15580.3. This is one of the rare variant peptide identifications (AF = 0.001).
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Figure S4: Investigation of false negative (‘mislabeled’) identifications by ionbot™. Top figure
shows the density of mislabeled peptides per length, as compared to lengths of all variant
peptides identified by the VC method. Middle figure shows the 5 most common causes of
misidentification of variant peptides by ionbot™. Bottom figure shows unexpected modifications
of the false negatives versus the unexpected modifications by all VF identifications. Unlabeled y
axises refer to density.
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Table S1: Side-by-side comparison of the contents of the search database

Search database Sequences in Sequences in the NA12878-specific
contents GENCODE ONT transcriptome variants

ONT No Yes No

Ref Yes No No

VF Yes Yes No

VC Yes Yes Yes

Table S2: Absolute numbers of PSMs and peptides detected per method.

ONT Ref Combi variant-free Combi variant-containing
PSM 4,596,878 4,606,449 4,612,250 4,788,215
Peptide| 1,746,226 1,767,538 1,769,514 1,848,787

https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00264
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Abstract

We performed long-read transcriptome and proteome profiling of pathogen-stimulated
peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new
transcript and protein isoforms expressed during immune responses to diverse
pathogens. Long-read transcriptome profiling reveals novel sequences and isoform
switching induced upon pathogen stimulation, including transcripts that are difficult
to detect using traditional short-read sequencing. Widespread loss of intron retention
occurs as acommon result of all pathogen stimulations. We highlight novel transcripts of
NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression
differences did not result in differences in the amounts of secreted proteins. Clustering
analysis of secreted proteins revealed a correlation between chemokine (receptor)
expression on the RNA and protein levels in C. albicans- and Poly(l:C)-stimulated PBMCs.
Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights
the potential of these methods to identify novel transcripts, revealing a more complex

transcriptome landscape than previously appreciated.

LPS S.aureus Polyl:C C. albicans
| Healthy donors @ 24hr stimulation
N

N=5
Transcript discovery
N=1 e
PH-—-+E
—H-—a-——
Long read sequencing
(PacBio IsoSeq)
: Intron 1
pcrellnetipicatalogis Exon 1 Exon2 Exon3

(19%)

‘ Control
~32k
transcripts
Novel in catalog =
(28%)

~50% transcriptome novelty Isoform switching

2| ok A

LC-MS/MS secretome Short read RNAseq

§. Pathogen
stimulation

Exon 1 Exon 2 Exon 3

= Gencode
(53%)

Protein log2 Fold-Change.

proteomics o9 (QuantSeq)
05| - -
_ o . 1o = =
- = - -10 5 0 5 10 = =
RNAIog2 Fold-Change 3
Differential prgteoform Protein-gene expression correlation Differential expression
expression validation

52



Multi-omic profiling of pathogen-stimulated primary immune cells

Introduction

Immune system responses within the context of an infection are shaped by the
nature of the infection and by inter-individual variability, contributing to differential
susceptibility to infections and to various diseases with an inflammatory component.
Dynamic expression of transcripts and proteins in a range of cells responsible for the
innate immune response is important to shape the first line of defense against a wide
variety of pathogens'®®. Pattern recognition receptors (PRR) initiate acute inflammatory
responses, activating signaling cascades that converge on various transcription factors.
Multiple levels of regulation orchestrate the dynamic expression of transcripts and
proteins, including transcriptional and post-transcriptional checkpoints such as mRNA
splicing and protein translation. Examples of thisinclude the regulatory role of alternative
splicing of Toll-like receptors (TLR) and their downstream signaling factors!*%2%°,

Methods for investigating innate immune responses include in vitro stimulation of primary
immune cells with pathogens or microbial components. These methods allow for specific
investigation of host-pathogen interactions that shape the immune response elicited by
specific cell types and have been under extensive investigation in research on the innate
immune system?°2292_ Stimuli that are commonly used include molecules that stimulate a
specific TLR, such as E. coli lipopolysaccharide (LPS) for TLR4?°3, dsRNA mimicking Poly(1:C)
for TLR32% and imidazoquinolines for TLR7/82%. Stimulation is also often elicited by live or
heat-killed pathogens?°62”7, which stimulate at the same time a broader range of PRRs2%82%,

Transcriptome characterization is traditionally performed using short read RNA
sequencing. These sequencing approaches are limited by their short-read length
(approximately 150-300 bp), necessitating the computational reconstruction of whole
transcripts and making detection of different transcripts of the same gene inaccurate.
This limitation is especially pronounced in immune biology, where tight regulation of
isoform expression has previously been described to play a major role in processes,
such as the expression of multiple IL-32 transcripts with different inflammatory
potency?’® and alternative splicing of CD45 in T cell activation?!’. Recent long-read
sequencing approaches provide a more complete and accurate reflection of the
transcriptome. Sequencing technologies provided by PacBio and Oxford Nanopore
allow for the sequencing of mRNA (or cDNA) molecules from the ultimate 3’-end to
the ultimate 5’-end, which have given a more comprehensive view into the complexity
of the transcriptome. A number of studies have indicated that the isoform landscape
is much more complex than previously appreciated?2'4, Long-read mRNA sequencing
has provided insight into regulatory mechanisms of immune responses, for instance
in alternative splicing in macrophages®®® , and allows for accurate sequencing of
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complex transcripts in immune cells?*®. Further work on cell-type specific long-read
transcriptomes have shown preferential expression of transcripts in specific cell types?’.

The impact of the newly discovered transcripts as well as post-transcriptional
processes can only be fully understood by observing the proteome. Many studies
have characterized the transcriptomic landscape of the human immune response,
but a multi-omics view of immunity is necessary as mRNA profiles are not enough to
understand immune activation?®21°, Transcript information can be leveraged to study
the proteome, including identification of novel proteoforms resulting from alternative
splicing. Proteoforms discovered by proteogenomics methodologies have already been
found to have a role in immunological processes, for instance in immune-regulating
micropeptides??® and tumor neoantigen production??,

Here, we stimulated peripheral blood mononuclear cells (PBMCs) with multiple
microbial stimuli in vitro/ex vivo and performed long- and short-read RNA sequencing
and secretome proteomics to gain insight into potential differences inimmune response.
We aim to provide insight into the immune transcriptome and proteome of immune
cells during innate immune responses against a variety of pathogens.

Material & methods
Ex vivo PBMC experiments

Venous blood was drawn from five healthy donors®*? and collected in 10mL EDTA
tubes. Isolation of peripheral blood mononuclear cells (PBMCs) was conducted as
described elsewhere??. In brief, PBMCs were obtained from blood by differential density
centrifugation over Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1
dilution in PBS. Cells were washed twice in saline and re-suspended in serum-free cell
culture medium (Roswell Park Memorial Institute (RPMI) 1640, Gibco) supplemented
with 50 mg/mL gentamicin, 2 mM L-glutamine and 1 mM pyruvate. Cells were counted
using a particle counter (Beckmann Coulter, Woerden, The Netherlands) after which the
concentration was adjusted to 5 x 10%/mL. Ex vivo PBMC stimulations were performed with
5%10° cells/well in round-bottom 96-well plates (Greiner Bio-One, Kremsmiinster, Austria)
for 24 hours at 37°C and 5% carbon dioxide. Cells were treated with lipopolysaccharide
(E. coli LPS, 10 ng/mlL), Staphylococcus aureus (ATCC25923 heat-killed, 1x10%/mL), TLR3
ligand Poly 1:C (10 pg/mL), Candida albicans yeast (UC820 heat-killed, 1x10%/mL), or
left untreated in regular RPMI medium as normal control. After the incubation period
of 24h and centrifugation, supernatants were collected and stored at -80°C until further
processing. For the RNA isolation, cells were stored in 350 uL RNeasy Lysis Buffer (Qiagen,
Rneasy Mini Kit, Cat nr. 74104) at —80°C until further processing.
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RNA and protein isolation

RNA was isolated from the samples using the RNeasy RNA isolation kit (Qiagen) according
to the protocol supplied by the manufacturer. The RNA integrity of the isolated RNA was
examined using the TapeStation HS D1000 (Agilent), and was found to be >7.5 for all
samples. Accurate determination of the RNA concentration was performed using the
Qubit (ThermoFisher).

We extracted the secretome of the 24-hour stimulated PBMCs. To 250 pL of
supernatant, 250 pL buffer containing 10% sodium dodecyl sulfate (SDS) and 100 mM
triethylammonium bicarbonate (TEAB), pH 8.5 was added. Proteins were reduced
by addition of 5 mM dithiothreitol and incubation for 30 minutes at 55°C and then
alkylated by addition of 10 mM iodoacetamide and incubation for 15 minutes at RT in
the dark. Phosphoric acid was added to a final concentration of 1.2% and subsequently
samples were diluted 7-fold with binding buffer containing 90% methanol in 100 mM
TEAB, pH 7.55. The samples were loaded on a 96-well S-Trap™ plate (Protifi) in parts
of 400 pL, placed on top of a deepwell plate, and centrifuged for 2 min at 1,500 x g at
RT. After protein binding, the S-trap™ plate was washed three times by adding 200 pl
binding buffer and centrifugation for 2 min at 1,500 x g at RT. A new deepwell receiver
plate was placed below the 96-well S-Trap™ plate and 125 pL 50 mM TEAB containing 1
pg of trypsin was added for digestion overnight at 37°C. Using centrifugation for 2 min
at 1,500 x g, peptides were eluted in three times, first with 80 uL 50 mM TEAB, then with
80 pL 0.2% formic acid (FA) in water and finally with 80 puL 0.2% FA in water/acetonitrile
(can) (50/50, v/v). Eluted peptides were dried completely by vacuum centrifugation.

Long-read library preparation and sequencing

Libraries were generated from one donor using the Iso-Seq-Express-Template-
Preparation protocol according to the manufacturer’s recommendations (PacBio,
Menlo Parc, CA, USA). We followed the recommendation for 2-2.5kb libraries, using the
2.0 binding kit, on-plate loading concentrations of final IsoSeq libraries was 90pM (C.
albicans, S. aureus, Poly(l:C), RPMI) and 100pM (LPS) respectively. We used a 30h movie
time for sequencing.

The five samples were analyzed using the isoseq3 v3.4.0 pipeline. Each sample
underwent the same analysis procedure. First CCS1 v6.3.0 was run with min accuracy set
to 0.9. IsoSeq lima v2.5.0 was run in IsoSeq mode as recommended. IsoSeq refine was
run with ‘--require-polya’. The output of IsoSeq refine was used as input for IsoQuant
v3.1.223 with GRCh38.p13 v43 primary assembly from GENCODE. The settings were set
for full length PacBio data, and quantification included ambiguous reads. In IsoQuant,
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transcripts were considered novel if their intron chains did not match intron chains
found in GENCODE annotation version 39. Transcripts with fewer than 5 reads across all
samples were excluded from further analyses (Supplemental table 1).

We sought to validate the novel transcripts identified using long-read sequencing using
FANTOM5 CAGE data of CD14 monocytes (https://fantom.gsc.riken.jp/5/datafiles/
latest/basic/human.primary_cell.CAGEScan/CD14%2b%20monocyte%20derived%20
endothelial%20progenitor%20cells%2c%20donorl.NCig10041.11229-116C5.hg19.
GCTATA.clusters.bed.gz) that allows for the identification of transcripts with a matching
TSS from this 5’ sequencing data. Transcripts with novel 5 were considered to be
supported with a CAGE peak if within 150 basepairs from the TSS.

Short-read library preparation and sequencing

RNA input was normalized to 200 ng for all samples/donors and libraries were generated
using the QuantSeq 3’ mRNA-Seq Library Prep Kit-FWD from Lexogen (Lexogen) in
accordance with the manufacturers’ protocol. In order to ensure high quality libraries,
two separate preparations were performed, limiting the number of samples to 30
per preparation. End-point PCR was performed with 19 — 22 cycles, as indicated by
a quantitative PCR on a 1:10 aliquot of a subset of double stranded cDNA libraries.
Accurate quantification and quality assessment of the generated libraries was performed
using Qubit dsDNA High Sensitivity assay (Thermo Fisher Scientific) and Agilent 2200
TapeStation (High Sensitivity D1000 ScreenTape, Agilent). Molarity of individual libraries
was calculated using the cDNA concentration (Qubit) and average fragment size
(TapeStation). Safeguarding sufficient read-depth for each sample, libraries were split in
two separate runs. In each run, the baseline RPMI condition across all donors and time-
points was included, in turn allowing sequencing bias assessment. The cDNA libraries of
35 samples were pooled equimolarly to 100 fmol. After a final dilution of both pools to
a concentration of 4 nM, they were sequenced on a NextSeq 500 instrument (lllumina)
with a final loading concentration of 1.4 pM.

FastQC v0.11.5 (Babraham Bioinformatics) was used to assess the quality of the obtained
sequencing data, followed by removal of adapter sequences and poly(A) tails by Trim
Galore! V.0.4.4_dev (Babraham Bioinformatics) and Cutadapt v1.18?%*. Since QuantSeq
reads only provide coverage of the 3’ end of transcripts, we generated a set of transcripts
representative of the full transcriptome by grouping transcripts based on unique 3’
sequences. Therefore, we separately mapped the filtered and trimmed reads to the long

read transcriptome with Salmon v1.9.0 in mapping-based mode with decoys?*.
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Differential expression analyses

To measure differential gene expression from long-read RNA sequencing, low abundance
genes were filtered using a 10 CPM threshold with the conform package in python.
Differentially expressed genes (DEGs) and transcripts were calculated for each condition
versus control using the NOISeq R package?*® from the abundances generated with
isoquant. TMM normalization was chosen and g-value threshold for DE was set at 0.95.

DEGs were generated from the salmon-mapped short-read RNA sequencing data using
the samples from the same donor using NOISeg??. The two control samples (RPMI)
per donor were treated as technical replicates. TMM normalization was chosen and
g-value threshold for DE was set at 0.95. We validated the DEGs detected from long-
read sequencing with those generated with the short-read data by comparing the linear
correlation of the log2fold change values for each condition combination between both
datasets using the Im() R function.

The up- and downregulated DEGs per condition-control pair were analyzed for pathway
enrichment separately using gProfiler?®. We used Gene Ontology biological process and
molecular function and TRANSFAC transcription factor motifs gene sets??”2%8, A term size
filter of between 100-500 was used to generate the final enrichment profiles.

Isoform switching

A first-pass isoform switching analysis was performed using swanvis v2.0%%°. For a
second-pass isoform switching analysis, the resulting gene-level isoform switch p-values
were imported into IsoformSwitchAnalyzeR v1.16.0 package in R*°. Thresholds for
isoform switching were set at 10 DPI (differential percent isoform use) and nominal
p-value <0.05. Sequences corresponding to the significant isoform switches were
analyzed with CPAT v1.2.4'*, hmmscan v3.3.2 with Pfam??, and SignalP52*? as a part of
the IsoformSwitchAnalyzeR package.

Pathway analysis and gene network analysis of genes that were found to undergo isoform
switching was performed in Cytoscape?®®. Default pathway analysis was performed,
filtering for Gene Ontology Biological Process gene sets. An Enrichment Map was built
from the enriched gene sets with a Jaccard similarity cutoff of 0.4%34,

Genes found to undergo intron retention gains/losses and genes with domain gains/
losses were separately analyzed using gProfiler. We used Gene Ontology Biological
Process gene sets with a with a term size filter between 100-500 genes. We separately
analyzed genes with domain gains or losses were using dcGOR?*. We used the gene
ontology molecular function gene sets with a term size filter between 100-500 genes.
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LC-MS/MS analysis

Peptides were re-dissolved in 20 pL loading solvent A (0.1% trifluoroacetic acid in water/
acetonitrile) (98:2, v/v)) of which 4 uL was injected for LC-MS/MS analysis on an Ultimate
3000 RSLCnano system in-line connected to a Q Exactive HF mass spectrometer (Thermo).
Trapping was performed at 10 pL/min for 4 min in loading solvent A on a 20 mm trapping
column (made in-house, 100 um internal diameter (I.D.), 5 um beads, C18 Reprosil-HD,
Dr. Maisch, Germany). The peptides were separated on a 250 mm Waters nanoEase
M/Z HSS T3 Column, 1004, 1.8 um, 75 pm inner diameter (Waters Corporation) kept at a
constant temperature of 45°C. Peptides were eluted by a non-linear gradient starting at
1% MS solvent B reaching 33% MS solvent B (0.1% formic acid (FA) in water/acetonitrile
(2:8, v/v)) in 100 min, 55% MS solvent B (0.1% FA in water/acetonitrile (2:8, v/v)) in 135
min, 97% MS solvent B in 145 minutes followed by a 5-minute wash at 97% MS solvent B
and re-equilibration with MS solvent A (0.1% FA in water).

The mass spectrometer was operated in data-dependent acquisition mode, automatically
switching between MS and MS/MS acquisition for the 16 most abundant ion peaks per
MS spectrum. Full-scan MS spectra (375-1500 m/z) were acquired at a resolution of
60,000 in the Orbitrap analyzer after accumulation to a target value of 3,000,000. The
16 most intense ions above a threshold value of 15,000 were isolated with a width of
1.5 m/z for fragmentation at a normalized collision energy of 28% after filling the trap
at a target value of 100,000 for maximum 80 ms. MS/MS spectra (200-2000 m/z) were
acquired at a resolution of 15,000 in the Orbitrap analyzer.

Protein identification and quantification

Two search databases were constructed; one database for proteoform detection and one
database for quantification. The database used for sensitive detection of proteoforms
was generated using a slightly adapted version of the Long Read Proteogenomics
pipeline by Miller et al**®. Since the pipeline uses a different long-read transcriptomics
tool, small syntax adjustments were made to accommodate the use of Isoquant output.
Additionally, a custom script was written to have Isoquant output mimic the required
input format. The pipeline generated a GENCODE-PacBio hybrid database. The proteome
from C. albicans (taxon ID 5476) and S. aureus (taxon ID 1280) were downloaded from
UniProt and added to the search database. The search database used for quantification
was created by downloading the proteome from H. sapiens (taxon ID 9609), C. albicans
(taxon ID 5476) and S. aureus (taxon ID 1280) from UniProt. Metamorpheus default
contaminants were added to both search databases.
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Mass spectra were identified using Metamorpheus v1.0.0%’. The Human Proteome
Project Mass Spectrometry Data Interpretation Guidelines version 3.0 were applied?.
Quantification was performed using FlashLFQ v 1.2.4.294%* with all five individuals
set as biological replicates and the two control (RPMI) samples per individual set as
technical replicates. The following options enabled: normalization, shared peptide
quantification, Bayesian fold change analysis, and match between runs (Supplemental
table 2). An adapted version of SQANTI protein was used to search for novel peptides
in the Metamorpheus identifications. Enrichment of secreted proteins was determined

using the predicted secreted proteins from Human protein atlas?*° as reference.

Protein clustering

FlashLFQ raw protein expression values originating from the quantification database
search were first square root transformed. To normalize for donor effects, the mean
protein expression value per gene/individual was subtracted from all the expression
values from the same gene/individual. Then z-score normalization was performed
across all individuals per gene. K-means clustering was then performed using the
kmeans() function in R with seed #82 and default parameters. We found four clusters
to optimally represent the data according to the elbow plots (Supplemental figure 1).
A heatmap was constructed with those clusters using the ComplexHeatmap package?*.
The proteins identifiers assigned to cluster #4 were converted to gene names and
analyzed using gProfiler for enrichment analysis using both Gene Ontology Biological
Process and Molecular Function gene sets. We further analyzed the protein found to

form cluster 4 through a protein network analysis in Cytoscape?.

Results

We stimulated PBMCs from five donors with four different microbial stimuli, mimicking
bacterial (E. coli LPS, S. aureus), viral (Poly(l:C)) and fungal (C. albicans) infections. PBMCs
were stimulated for 24 hours. RPMI incubation was used as a negative control (Figure 1A).
To characterize full-length transcript structures, we performed long-read sequencing on
PBMCs from one donor (Figure 1B). Additionally, shotgun proteomics data was generated
from supernatants of the samples from all five donors. The proteomics data serves to
corroborate differential gene/transcript expression and provide evidence of the protein-
coding potential of novel transcripts identified through long-read RNA sequencing (Figure
1C). Short-read 3’ sequencing data of all five donors was generated to validate differential

gene expression data generated from long-read RNA sequencing (Figure 1D).
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Multi-omic profiling of pathogen-stimulated primary immune cells

Long read transcriptomes of both control and pathogen-stimulated conditions show
novelty

Sequences detected using long-read sequencing were categorized in terms of novelty
according to their intron chains. Transcripts are divided into three categories that
encompass reference transcripts (GENCODE), novel in catalog (transcripts that contain
annotated introns) and transcripts that are novel not in catalog (containing unannotated
introns) (Figure 2A). We identified a total of 37,312 unique transcript sequences from
11,872 genes across all samples. The majority of transcripts were in protein coding genes
(Supplemental figure 2A) including ~10% immune-related genes (Supplemental figure 2B).
We found 47.4% of detected transcripts to be novel, while these accounted for only 20.3%
of the total reads (Figure 2B). The distribution of reads per novel transcript was similar
to that of known transcripts with a slight skew towards lower abundance (Supplemental
figure 3A). Exon elongations were the most observed feature distinguishing novel from
known transcripts, occurring in nearly a third of the novel transcripts found in RPMI.
This was similar for the stimulated conditions (Figure 2C, Supplemental figure 3B). The
percentage of novel transcripts and transcript deviations were similar for all conditions
(Figure 2D). To corroborate the existence of novel transcripts, we analyzed FANTOMS5 CAGE
peaks in the vicinity of the transcription start sites for novel transcripts with novel 5’ ends.
We found 8,233 (51.3%) novel 5’ end transcripts across all conditions to be supported by
a CAGE peaks from unstimulated human monocytes (within 150 nucleotides)?*.

Principal component analysis of the expression levels for each transcript indicated that
stimulated conditions were more similar to each other than to RPMI. S. aureus and C.
albicans were most similar to each other (Figure 2F). Genes and transcripts expressed
were similar in the stimulated conditions with average Jaccard similarity indices of
0.9 and 0.82 for genes and transcripts, respectively (Figure 2G). Novel transcripts had
similar Jaccard indices to each other than for known transcripts (not shown). Differential
expression analysis yielded an average of 949 DEGs and 2,076 differentially expressed
transcripts per condition (Supplemental figure 4, Supplemental table 3-4).

We validated the DEGs through 3’ transcript counting (QuantSeq)?*. We gathered a set
of representative transcripts based on sequence differences at the 3’ end of transcripts
(29,760 transcripts, 79.8% of total) and investigated the correlation of differential
expression in the long-read sequencing data with the separately generated short read
dataset of the same donor. The DEGs that overlapped between both datasets correlate
well (R?0.62-0.81). Best matching pairs of stimulated conditions between the short- and
long-read confirmed the concordance of both sequencing approaches (Supplemental
figure 5, Supplemental table 5).
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Multi-omic profiling of pathogen-stimulated primary immune cells

Pathogen stimuli display upregulation of different pathways

Differential gene expression analysis using the long-read sequencing data resulted
in a total of 1,733 genes that were differentially expressed in stimulated conditions
compared to control. We performed pathway analysis for each condition using
gProfiler’** (Supplemental table 6). By overlapping the gene sets enriched in each of
the four conditions, we discerned biological processes/functions specific to certain
pathogen-stimulated conditions. There are a lot of constants in host response regardless
of the pathogen, and indeed the largest set of pathways was in the overlap between all
stimulated conditions (211 pathways, Figure 3A). This set has an enrichment of genes
involved in type Il interferon (IFN-y) responses. Genes involved in tertiary and specific
granules, which play a role in the defense against pathogens were found to be enriched
among upregulated genes in all conditions. Surprisingly, we also find these and related
gene sets to be enriched among downregulated genes as a result of S. aureus and
Poly(l:C) stimulation, potentially a result of the regulation of the inflammatory response.
Further gene sets included the response to molecules of bacterial origin (including
LPS), innate immune response signaling such as PRR signaling, antigen processing and
presentation and IL-1 production (Figure 3B).

Some pathogen-stimulated conditions had more enriched pathways in common than
others. There was a notable overlap of 131 gene sets enriched in C. albicans-, S. aureus-
and Poly(l:C)-stimulated conditions. Some of these were common to the set overlapping
between all conditions, such as interferon responses. The LPS-excluding set showed
particular enrichment related to viral processes such as the defense against viruses,
regulation of the viral lifecycle, likely due to interferon-stimulated gene expression,
such as STAT1, OAS1/3, OASL and IFIH1. Also, transcription factor binding matches
(TRANSFAC) such as IRF-2, 5, 8 and 9 were enriched, reflecting downstream signaling
through various signaling pathways leading to the regulation of the production of
interferons and immune cell development (Figure 3C)?*.

LPS and Poly(l:C) were the 2 stimuli with the most enriched pathways unique to
a single stimulus. For 55 gene sets unique to LPS, there was a downregulation of T
cell receptor signaling, in part due to the downregulation of CD4 expression, which
has previously been described as a result of endogenous production of TNF-a and
IL-1B as a result of LPS stimulation?®. We further found an upregulation of gene
sets involved in metabolic processes such as oxidoreductase complexes and cellular
responses to oxygen, possibly reflecting metabolic changes previously described to
occur in immune cells such as monocytes upon LPS stimulation?¥’. Furthermore, there
was an upregulation of genes involved in humoral immune responses (Figure 3D).
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Figure 3: Differential pathway analysis originating from differentially expressed genes on the RNA
level. A) Overlap between enriched pathways generated from the differentially expressed genes from
the four conditions. B) Selected pathways found to be enriched for all conditions, C) three of the four
conditions (Poly(1:C), C. albicans and S. aureus), D) specifically for LPS and E) specifically for Poly(l:C).

For 53 gene sets enriched uniquely in Poly(l:C), we found functions including viral gene
expression, apoptosis related signaling (regulation of cysteine-type endopeptidase
activity) and B-cell related gene sets such as increased antibody levels and BCR signaling.
Finally, there was an enrichment of MHC class Il antigen presentation (Figure 3E).

Isoform switches highlight transcriptome differences between conditions and control

Isoform switching (IS) genes are defined by a change (increase/decrease) of expression
of a particular transcript isoform as measured by percent of total reads for a gene. In
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different samples/conditions, a particular transcript isoform may comprise a different
isoform fraction (dIF) value for a given gene. Here, a change of at least 10% (0.10 dIF)
in control and the opposite change (decrease/increase) of expression of a different
transcript isoform in the same gene of at least 10% in the pathogen-stimulated condition
is considered an IS.

A total of 999 IS were detected in 398 genes. Nearly half (N=192, 48.2%) of these IS
genes were unique to their respective stimulus conditions, while 10.3% were found
in all conditions (N=41) (Figure 4A, Supplemental table 7-8). The majority of genes
demonstrating IS were not differentially expressed in their respective conditions (327
genes; 77%). Most genes that were found to undergo IS displayed only one IS instance
(Supplemental figure 6A). Pathway analysis of genes undergoing IS were enriched
for gene sets involved in metabolic processes, mRNA splicing, protein transport and
catabolism. Furthermore, immune and stress-related pathways such as MHC type |
antigen processing and transport through vesicles, inflammasomes, oxidative stress and
apoptosis were found to be represented in genes undergoing IS (Figure 4B, Supplemental
tables 9-13).

We sought to understand the molecular consequences of IS upon pathogen stimulation
by categorizing the differing features of the isoform pairs involved in the switch. Each of
the IS was annotated with one or more of the following predicted protein characteristics:
change in ORF length, ORF gain/loss, domain gain/loss, NMD sensitivity, intron retention
(IR) gain/loss, coding probability (ORF presence), and signal peptide gain/loss. These
consequences are not independent and often multiple consequences could be attributed
to one IS (Supplemental Figure 6B). We observed general IS trends on a genome-wide
scale (Supplemental figure 6C, Supplemental table 14). Strikingly, we found IR loss to
be the most common consequence of IS in this dataset. Isoforms with retained introns
comprised a higher isoform fraction for genes in the control condition, while their
respective intron-excluding counterparts had a higher isoform fraction for genes in the
pathogen-stimulated conditions. Genes displaying loss of IR were enriched for pathways
involved in mRNA processing, including spliceosome-related gene sets, antigen processing
and IL-1 production (Supplemental figure 7). IR has previously been described as a
regulatory mechanism of RNA processing, splicing, vesicle transport and type | interferon
production in the development of various immune cell types, including macrophages¢2%°,
granulocytes®° and B cells?**?°2, Our findings support previously described associations of
IR losses in immune-related processes, and adds new genes regulated by IR loss during
immune responses (Supplemental figure 7, Supplemental table 15).
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Figure 4: Isoform switching induced by pathogen stimulation. A) Overlap of isoform switching
genes between the four stimulus conditions. B) Pathway network analysis derived from genes
found to undergo isoform switching (IS) upon pathogen stimulation. Each pathway is colored
by p value, where a darker red indicates a lower p value. C) Proportions of total IS events in
each stimulated condition per IS consequence. D) Number of IS by category of switch pairs.
Categories are defined by involvement of novel transcripts in a given IS. “Novel down” indicates
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occurs between 2 reference transcripts. E) Fraction of each transcript novelty combination per IS
consequence. Normalized by total number of IS events per novelty category.

In addition, we found a higher proportion of transcripts to have domain gains than
domain losses. This could indicate that stimulation by a pathogen causes a gene to
switch expression to a transcript isoform that codes for a protein with an extra function.
Other observed trends included longer ORFs and NMD insensitivity in transcript
isoforms induced by pathogen stimulation (Figure 4C).

Since the addition or loss of domains could directly reveal protein function changes, we
explored the IS that had this consequence type. We found that genes with domain gain/
loss (N=158, Supplemental table 16) were enriched for involvement in various catabolic
processes. We also found enrichment of T cell activation genes, an effect previously
described as a functional consequence of CD8+ T cell co-stimulation?*3, Other enriched

66



Multi-omic profiling of pathogen-stimulated primary immune cells

gene sets include leukocyte cell-cell adhesion and activation and general innate
immune response genes (Supplemental table 17). When looking more specifically at
the molecular functions of the gained domains themselves, we found an enrichment
of domains with potassium channel regulator activity, kinase- and transferase activity
concerning phosphorus-containing groups and nucleic acid binding. These results
potentially indicate functional and cell-type specific effects of domain gains as a result
of IS in immune responses (Supplemental figure 8, Supplemental table 18).

Novel transcripts play an important role in IS. Of the 999 IS, more than half (N=592)
had at least one novel transcript involved in the IS. In most cases (N=438), the switch
was from a novel transcript to a known transcript (Figure 4D, Supplemental table 19).
Compared to IS cases where only known transcripts were involved, the IS consequences
were more often NMD insensitivity and IR loss (Figure 4E). Conversely, shorter ORFs,
domain losses and NMD sensitivity were more common effects when the IS was from
a known to a novel transcript isoform. In conclusion, the unstimulated condition is
characterized by the presence of many novel transcripts with retained introns, which
are difficult to detect with short read sequencing. IR is likely a mechanism to prepare
a cell for fast action after an immune stimulus, when splicing of the retained intron
could quickly generate a functional transcript with coding potential, which has been for

instance been described in CD4+ T cells?>.

A novel read-through transcript including CARD16 and CASP1

As an example of a remarkable finding with possible biological impact once validated,
we identified a read-through transcript that includes both CARD16 and CASP1 (Figure
5A). Read-through transcripts involve transcription that extends beyond the normal
polyadenylation site (PAS), terminating at the PAS of an adjacent gene or other nearby
locus®®°. These transcripts have been found to be expressed in specific circumstances,
including malignancy and infection?**>%®, This particular novel transcript encompasses
the coding region of CASP1 and has an extended 5’ UTR which spans CARD16, and
thus contains two ORFs. This IS was annotated as an intron retention loss, as the novel
transcript loses an intronic region in its 3" UTR (Figure 5B). Both the known and novel
transcripts in this IS are predicted to be coding (both 100%). CASP1 was found to be
differentially expressed upon Poly(l:C) stimulation (log2FC 1.73, p=0.049; Figure 5C).
The isoform expression of the known transcript was found to decrease upon Poly(l:C)
stimulation, while the novel transcript was found to increase (Figure 5D). This is further
reflected in the isoform fraction, increasing from 8.3% to 24.8%, while the known
transcript decreased from 85.5% to 74.2% (Figure 5E).
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CARD16 and CASP1 both have a function in proinflammatory IL-1p signaling, where
CARD16 has been shown to play a role in CASP1 assembly, although there remains
discussion on the exact regulatory effect of CARD16 on this process #”%°¢, We have
identified an IS specifically for Poly(l:C) stimulation, where a novel transcript of CASP1
was found to harbor CARD16in its 5 UTR was upregulated upon stimulation. This finding
could suggest a novel molecular mechanism in IL-1[3 signaling, potentially through the
regulation of CASP1 by its regulator CARD16.

A novel coding transcript of NFKB1

We identified a novel NFKB1 transcript that demonstrated IS in all four conditions. This novel
transcript was shorter than the canonical transcripts (Figure 6A). Further analysis revealed
that the novel transcript start site was supported by multiple nearby CAGE peaks (Figure 6B).
Strikingly, this novel transcript lacks a part of its Rel homology domain, a conserved domain
responsible for functions such as dimerization and DNA binding (Figure 6C)*°. NFKB1 was
not found to be significantly differentially expressed, although gene expression was found
to be higher in pathogen-stimulated condition compared to unstimulated condition (only C.
albicans shown, Figure 6D). The expression of the novel transcript was found to increase upon
pathogen stimulation (Figure 6E). This is reflected in the isoform fraction, which increases
from 23.5% to 50.7%, while the known transcript decreases from 39.0% to 21.2% (Figure 5F).

NFKB1 plays a central role in immune responses, regulating the response to infections
through transcriptional activation®’. Furthermore, the Rel homology domain
region is known to harbor disease-causing variants responsible for common viable
immunodeficiency (CVID)?*?, highlighting the importance of this domain in normal B cell
function. This finding could suggest a novel regulatory mechanism of NFKB1.

Isoform switching in CLEC7A and OAS1 in a stimulus-specific manner

We sought to identify genes with stimulus-specific IS patterns. We identified an IS in
CLEC7A, which codes for Dectin-1, a receptor that recognizes fungal glucans, triggering
the immune response®®*. While this gene was not differentially expressed upon pathogen
stimulation, we did identify an IS specific to C. albicans stimulation in this gene, involving
a decrease in expression of an NMD sensitive transcript, with the increase in expression
of the canonical coding transcript and a non-coding transcript (Supplemental figure 9A). In
contrast, IR loss in CLEC7A was previously identified as a result of stimulation with multiple
pathogen stimuli in monocytes. Additionally, no difference in gene expression levels was
found between IAV-stimulated and resting cells, where the change in splicing was most
pronounced®®?. While we find IR loss in CLEC7A specifically upon C. albicans stimulation,
this could therefore also indicate a shared transcriptional response to pathogen stimuli.
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Additionally, we identified an IS involving OAS1, which is involved in antiviral immunity.
This gene is differentially expressed in response to C. albicans, S. aureus and Poly(l:C)
(Supplemental figure 9B). We identified an IS in this gene resulting in an intron loss
and a domain gain. This IS was only observed for Poly(l:C) stimulation, potentially
indicating this transcript is necessary for antiviral immune responses (Supplemental
figure 9C). Previous work has identified common OASI1 haplotypes responsible for a
decrease in protein abundance through the expression of NMD sensitive transcript p42,
which contributes to COVID-19 severity?®3. We find this transcript to be downregulated
upon Poly(l:C) stimulation. However, the transcript we find to be upregulated lacks the
prenylation site needed for antiviral function, as shown for p462%,

Detecting secreted peptides

We sought to obtain evidence of the protein-coding potential of novel transcripts found
through long-read RNA sequencing. Mass spectrometry was performed for 30 secretome
samples from five donors’ stimulated PBMCs, which includes the samples from the individual
for which long read RNA sequencing was performed (see methods). These include 2 control
samples and 1 of each 24-hour pathogen stimulation condition for each individual.

We designed a search database comprising all proteins that we suspected could be
in the sample. This includes the GENCODE human proteome, the proteomes of the
pathogens used, as well as ORFs derived from novel transcripts found using long-read
RNA sequencing. Novel transcripts do not always correspond to novel ORFs; 32% of
the novel transcripts had an ORF that was present in the GENCODE reference database
(Supplemental Figure 10). In the collection of 30 samples, a total of 38,703 peptides from
15,964 proteins were identified. We found 404 (7.37%) of identified proteins were known
to be secreted according to the human protein atlas, which constitutes a significant
enrichment (OR=2.12, p=3.88x10?!, Fisher’s exact test). We did not detect microbial
proteins in the samples. Many of the novel ORFs predicted from the transcriptome have
high similarity to GENCODE ORFs, resulting in a small number of novel peptides that could
uniquely identify these. After rigorous filtering, we were unable to confidently identify
peptides that mapped uniquely to the predicted novel ORFs.

Wider deviations in expression in the secretome

To assess whether differences in transcript expression resulted in differences in the
amounts of secreted proteins, we performed a label-free quantification of the proteins
in the cells’ supernatants. Using PCA, we found that a large portion of variation in the
proteome was explained by inter-individual differences and that these differences were
larger than the differences induced by the immune stimuli (Supplemental figure 11).
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We found a total of 418 differentially expressed proteins (DEPs) between the stimuli
and control when controlling for individual variation. Differential protein expression
was not equally distributed between stimuli with over a third (N=131) of the DEGs
unique to Poly(l:C) stimulation (Supplemental figure 12A). With the exception of the S.
aureus condition, more proteins were significantly downregulated than significantly
upregulated in the secretome (Supplemental figure 12, Supplemental table 20). We found
few overlapping proteins per condition, which could indicate either a high specificity in

response to different pathogens or a lack of protein secretion in a subset of samples.

To determine which explanation is more likely, we visualized the specific (groups of)
proteins associated with response stemming from the stimuli. We clustered protein
expression values normalized by individual and stimulus (Figure 7A, Supplemental table
21). The clustering revealed a separation between poly(l:C) samples and the rest of the
stimuli. C. albicans showed a large overlap with poly(l:C) in the protein expression profiles.
Some C. albicans samples were grouped with poly(l:C) samples, which confirms the results
from the differential protein expression analysis (34 common DEPs, Supplemental figure
12A). Other stimulus conditions could not reliably be separated from RPMI.

We identified a cluster of proteins that are highly expressed in Poly(I:C) and C. albicans
(cluster 4, Figure 7A). This group of proteins is enriched for genes with functions in
leukocyte migration and chemotaxis, exemplified by neutrophil migration. We identified
further enrichments of gene sets involved in the response to IL-1, humoral antimicrobial
response, and cellular responses to LPS and type Il interferons. Analysis of the molecular
functions of these genes indicated an enrichment of cytokine activity and receptor
binding, GPCR receptor binding and various catalytic functions, likely due to immune
cell differentiation and immune responses involving the degradation of extracellular
matrix proteins during immune cell migration?®® (Figure 7B, Supplemental table 22). We
further assessed the proteins in cluster 4 through a gene network analysis (Figure 7C,
Supplemental table 23-24). Of the 84 proteins in this network, 61 were differentially
expressed on the protein level (72.6%, any condition). Of these DEPs, 18 are involved in
cytokine signaling (29.5%), of which 13 genes are chemokines (71.2%). A high proportion
of proteins are found in the extracellular region (n=47, 77.0%), for instance through
secretion in granules. The biological functions of the DEPs in cluster 4 reflect those
found for the complete set of proteins in cluster 4, mainly corresponding to pathways
associated with functions in neutrophil migration and chemotaxis (Supplemental table
25). As these pathways are not necessarily specific to these two stimuli, this may indicate
Poly(I:C) and C. albicans may be more effective at eliciting differential protein secretion

or have less delay in secretion compared to the other stimuli.
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Chapter 3

Comparison with RNA expression

As established earlier, a multi-omics approach is currently the best way to understand the
human immune response. Correlation between the RNA and protein levels, or lack thereof,
can provide important clues about the host response to pathogens. To assess the correlation
of differential gene and protein expression levels, we assessed the concordance of differential
expression on the RNA and protein level. This metric corresponds to the percentage of genes
for which differential expression on both levels matched in directionality (out of all genes
where DE was observed on both levels) (Figure 7D, Supplemental table 26).

We observed an overall poor concordance of directionality and fold change of
expression levels at the RNA and protein levels in the different stimulus conditions,
with the exception of C. albicans with 73% overall concordance. We overlaid the
genes in group 4 from our clustering analysis with the genes found to be DE on both
RNA and protein levels. There was an overrepresentation of the genes in this cluster
in the total group of dual-level DE genes (OR=6.99, p=4.813e-16). Further analysis of
concordant differential expression matches arising from proteins in cluster 4 (triangles
in Figure 7D), we observed high concordance in the genes induced by C. albicans and/or
Poly(l:C). Directionality concordance for Poly(l:C) and C. albicans for genes in in cluster
4 was significantly higher than overall directionality concordance (p=0.0313 Poly(I:C),
p=0.0003 C. albicans, Fisher’s test one-tailed). The cluster 4 proteins in the LPS and S.
aureus conditions are in the lower right quadrant, indicating that the increase of RNA
translated into a decrease of secreted proteins for these genes (Figure 7D).

We hypothesized in the IS analysis that a major regulatory mechanism in the host
response to pathogens was the loss of intron retention for rapid protein generation.
We cross-referenced the secreted proteins to support this conjecture. By overlapping
upregulated isoforms from intron retention loss events, we found 20 cases from 7
genes (Supplemental table 27). Of these genes, 2 were upregulated on the protein
level, supporting our hypothesis. The genes were GZMB and B2M, which are important
immune-regulatory genes that are both secreted®%%’. Considering the remaining 5 genes
that were downregulated on the protein level, however, this is not convincing evidence
that intron retention loss in general provides a rapid increase of protein production.

Discussion
The identification of novel transcripts and subsequent production of additional
protein isoforms could help identify molecular mechanisms that play a role in various

biological processes, including immune responses. Various immune system processes
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have previously been found to be regulated by alternative splicing 26826 270 271 |mmune
responses display significant inter-individual differences. Donor-specific effects such as
sex and ancestry have been shown to significantly influence the transcriptome. Previous
studies have further shown the impact of QTLs in the heritability of cytokine production
capacity?®2?72-274However, the effect of these processes on host defense mechanisms
against pathogens, together with the large inter-individual differences in transcription

and protein expression, remain to be elucidated.

We have generated a long-read transcriptome of pathogen-challenged primary
immune cells (PBMCs) together with the secreted proteome to investigate mechanisms
underlying immune responses during infection. We described the accurate identification
of known and novel transcripts in both control and pathogen-challenged conditions. Of
these transcripts, we identified a subset that is differentially expressed as a result of
pathogen stimulation, which we validated by short read RNA sequencing data (including
4 additional individuals) and publicly available CAGE data from neutrophils.

We examined isoform switching that occurred as a result of pathogen stimulation,
insight into transcripts that may play a role in pathogen responses. On a genome-
wide level, widespread intron retention losses were observed. Retained introns that
rendered the transcript unusable in the control condition were spliced out as a result
of microbial stimulation; a trend we observed in all conditions regardless of microbe.
We postulate that these are examples of unproductive splicing in unstimulated cells
switching to productive splicing after stimulation enabling fast production of proteins
relevant for the immune response. Genes that undergo intron retention loss mainly
have functions in mRNA splicing and processing and in immunity. Tissue- or cell-type
specific unproductive splicing has been widely observed as an autoregulatory process
for mRNA splicing factors?’®, which is supported by our data in immune cells. We were
however not able to confirm changes in protein expression of genes that underwent
IR losses using our secretome proteomics data, likely because these proteins are not
generally secreted. A couple of pertinent examples have been illustrated in greater
detail. We identified an IS specific to the viral stimulus that involves a novel read-
through transcript of CASP1 and CARD16. We found an instance of IS to a novel NFKB1
transcript with a shortened DNA binding domain that was found in all four conditions.
Additionally, we describe IS in CLEC7A and OAS1 for C. albicans and Poly(l:C), which
highlight stimulus-specific alternative splicing. Taken together, these results highlight
the potential for long-read sequencing to accurately resolve novel transcripts with
potential relevance in immune responses, including intron retention loss events that

are generally difficult to detect using short-read sequencing.
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The extent to which conclusions can be drawn about immune response mechanisms is
limited by the low sample size for long-read sequencing. In this explorative study meant
to provide insights into the novel technical possibilities utilizing latest sequencing
approaches, we generated long-read sequencing data for only a single individual
because of the expensive nature of this technology in combination with the required
sequencing depth and the number of conditions studied. This design did not allow us
to investigate the inter-individual differences in the transcriptome. Novel transcripts
that were detected could thus be specific to this individual. Future follow-up including
the sequencing of more individuals using accurate long-read sequencing methods and
functional studies could provide additional insight into the more general relevance
of these transcripts in immune responses. This study focused on the appraisal of the
transcriptome and proteome in PBMCs, which consist of multiple cell types. Use of
freshly isolated PBMCs accurately represents the complete immune cell population in
the peripheral blood and allows for communication between cell types during pathogen
stimulation, thereby potentially giving an accurate representation of this cell population
in vivo. However, no information on cell type specificity of transcripts is available. This

could be resolved by recent developments in single cell long-read sequencing?’®.

The proteome, in contrast, was generated for all samples from all 5 individuals and
highlighted significant differences between the secretome of individual donors, before and
after response to immune stimuli. Concordance between the transcriptome and proteome
levels was high in Poly(l:C) and C. albicans, and lower in LPS and S. aureus. We found
that genes with high correlation on the RNA- and protein levels form a cluster of protein
expression, separating the former two stimuli from the latter. These proteins are enriched
for secreted immune-related proteins, indicating that pathogen stimulation successfully led
to secretion of relevant proteins. This would indicate that cells have responded faster to
the Poly(l:C) and C. albicans stimuli than to the LPS and S. aureus stimuli, because RNA and
protein were isolated simultaneously from our samples. Delay in protein production after
expression of an mRNA may partially explain the lack of correlation of differential expression
on RNA and protein level. This delay is presumably even longer in the secretome as proteins

need to be first produced and subsequently secreted?”.

We focused our study on the secretome to reduce the complexity of the protein mixture
analyzed, and to obtain better peptide coverage of the secreted proteins that play an
important role in immune signaling. However, this limited our view on the complete
proteome affected by immune stimuli. Also, there is the added complication that only a
small number of peptides exist that could discriminate between proteoforms. To detect
the proteoforms derived from our long-read sequencing data, much deeper shotgun
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proteomics must be performed?”®. These limitations are reasons why no evidence of

novel transcripts could be validated with the proteome.

Multi-omics approaches are a promising method to further our understanding of
immune responses. Our study scratches the surface of biological insight to be reaped
from a combination of multi-omics and long-read sequencing data and was hindered
only by the aforementioned limitations in the samples themselves. Removing these
limitations will undoubtedly result in deeper mechanistic understanding and will
translate into better outcomes for patients. Insights gained from this methodology can
be used immediately in rare disease diagnostics applications, such as the reannotation
of variants using more accurate reference transcriptomes for specific tissues?’®,

contributing to the development of more personalized medicine.
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Chapter 4

Abstract

Our incomplete knowledge of the human transcriptome impairs the detection of
disease-causing variants, in particular if they affect transcripts only expressed under
certain conditions. These transcripts are often lacking from reference transcript sets,
such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic
diagnoses. We present SUsSPECT (Solving Unsolved Patient Exomes/gEnomes using
Custom Transcriptomes), a pipeline based on the Ensembl Variant Effect Predictor (VEP)
to predict variantimpact on custom transcript sets, such as those generated by long-read
RNA-sequencing, for downstream prioritization. Our pipeline predicts the functional
consequence and likely deleteriousness scores for missense variants in the context
of novel open reading frames predicted from any transcriptome. We demonstrate
the utility of SUSPECT by uncovering potential mutational mechanisms of pathogenic
variants in ClinVar that are not predicted to be pathogenic using the reference transcript
annotation. In further support of SUsPECT’s utility, we identified an enrichment of
immune-related variants predicted to have a more severe molecular consequence when
annotating with a newly generated transcriptome from stimulated immune cells instead
of the reference transcriptome. Our pipeline outputs crucial information for further
prioritization of potentially disease-causing variants for any disease and will become
increasingly useful as more long-read RNA sequencing datasets become available.
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Background

The advent of next-generation sequencing (NGS) and the exponential increase in
human genomes sequenced has caused a similarly strong increase in the number of
genetic variants detected. The identification of novel genetic variants has outpaced the
understanding of their functional impact. Since only a small fraction of all observed
variants can be characterized clinically or by functional tests, there is a heavy reliance
on computational methodology for prioritization. Several computational methods
predict the effect of genetic variant effects on function such as PolyPhen-2 3°, SIFT 2%,
and MutPred2 %8, Variant annotators such as the Ensembl Variant Effect Predictor (VEP)
282 and ANNOVAR 28 predict molecular consequences and integrate reference data and
pathogenicity scores from different resources including doNSFP 4,

Short-read RNA sequencing has provided us with the majority of knowledge we
currently have about the transcriptome, but has some intrinsic limitations when
it comes to discovery of alternative transcripts °?%>. Short read RNA sequencing is
done on transcript fragments and the assembly into full-length transcripts is far from
perfect, which has resulted in an incomplete reference transcriptome %%, Long-read
sequencing allows for the accurate elucidation of alternative transcripts 2’ and long-
read RNA sequencing datasets are proving that the human transcriptome has much
more diversity than previously thought 512828 |n addition, both short and long-read
sequencing have shown that gene expression is highly variable in a context dependent
manner, with divergent expression of transcripts expressed under different conditions
(infection, stress, disease) or in different tissues or cell-types 213290-292,

Some newly discovered transcripts result in open reading frames (ORFs) coding for
novel proteoforms 2629294 Knowledge on novel ORFs is key to predicting functional
consequences of variants within them. There are several computational methods
available to predict ORFs of these novel transcripts either based on sequence features
114,2952% or homology to existing protein coding transcripts '1+292%, The prediction of
ORFs on novel sequences is an essential first step for the detection of new proteoforms,
as mainstream proteogenomics technologies for the discovery of proteoforms rely on
databases with peptide sequences present in the predicted ORFs. Transcripts derived
from long-read sequencing can provide better predictions of (novel) proteoforms
(Figure 1).
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Figure 1: Premise for the creation of SUSPECT. A) Some pathogenic variants may be missed
without actual information about all alternative transcripts expressed in a relevant sample. A
variant in a particular genomic position may be incorrectly predicted to be non-deleterious. B) A
variant at the same genomic position may cause a different missense variant in different transcript
structures due to varying open reading frames per transcript.

Current variant annotation tools do not take full advantage of the knowledge of novel
transcripts because they work with precalculated pathogenicity scores calculated with
respect to a fixed set of reference transcripts. This necessitates manual evaluation of
the functional effects of variants on alternative proteoforms, since disruption of their
function may have implications for clinical diagnosis and treatment. The pipeline
presented here, SUSPECT (Solving Unsolved Patient Exomes/gEnomes using Custom
Transcriptomes), is designed to leverage cell/tissue-specific alternative splicing patterns
to reannotate variants and provide missense variant functional effect scores necessary
for downstream variant prioritization. This pipeline was designed to be generalizable to

any type of rare disease variant set paired with a relevant (long-read) transcriptome.
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For example, a researcher interested in annotating variants in a patient with a rare
intellectual disability could consider using this tool along with a brain transcriptome
dataset. We demonstrate the usefulness of this tool by reannotating ClinVar variants

with a newly generated immune-related long-read RNA sequencing dataset.

Results

Analysis pipeline overview

We developed SUsPECT to reannotate variants using custom transcriptomes (Figure 2).
This pipeline takes a custom transcriptome (GTF file) and a VCF file as input and returns a
VCF file with alternative variant annotations for downstream evaluation and prioritization.
SUSPECT predicts the ORFs in the alternative transcripts, calculates the molecular effects
of the input variants with respect to these transcripts and predicts the pathogenicity of
missense variants in the alternative proteoforms. SUsPECT displays subsets of variants
predicted to have more severe effects when based on the custom transcriptome instead
of the reference transcriptome. The predicted molecular consequences can be one of five
severity levels, ranging from “modifier” to “high” (Figure 2A). A schematic overview of the

pipeline is presented in Figure 2B. The main steps in the pipeline are:

e  Validate pipeline input, including 1) an assembled (long-read) transcriptome in GTF
format with novel transcripts. A long-read transcriptome assembly tool such as
TALON will output a suitable file. 2) A VCF containing patient(s) variants.

e  ORF prediction is performed on the transcripts that are not present in the human
reference transcriptome.

e Ensembl VEP predicts molecular consequence annotations based on the user-
provided set of transcripts/ORFs. Variants considered as missense in the user-
provided transcriptome are reformatted and submitted to Polyphen-2 and SIFT.

e Polyphen-2 and SIFT calculate functional effect scores. These are reformatted and
incorporated into the final VCF annotation file.

e Asub-list of variants that have a more severe molecular consequence in the custom
transcriptome are provided in tabular format.
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Figure 2: Reannotation with SUsPECT. A) Defining “more severe”. The five categories of severity
are modifier, low, moderate, damaging missense and high. We consider levels 3 and 4 to be
deleterious, and thus potentially pathogenic. B) The schematic of the pipeline.

A long-read sequencing transcriptome of stimulated peripheral blood mononuclear
cells

We have generated long-read sequencing data on atypical, i.e. in vitro stimulated
samples - provoking a strong expression response, to illustrate the use of the pipeline.
We chose this dataset to exemplify less-studied tissues/conditions because novel
transcripts are more numerous in these samples and SUsSPECT is most likely to yield
interesting results when the input transcriptome has many novel transcripts. Our custom
transcriptome is based on long-read transcript sequences related to host-pathogen
interactions and is derived from human peripheral blood mononuclear cells (PBMCs)
exposed to four different classes of pathogens. We combined the transcript structures
of all four immune stimuli and control samples for the reannotation. We identified a
total of 80,297 unique transcripts, 37,434 of which were not present in the Ensembl/
GENCODE or RefSeq reference transcriptomes. Relative abundances of novel transcripts
were lower than of reference transcripts (Suppl. Figure 1). The custom transcriptomes
resulted in prediction of 34,565 unique novel ORFs passing CPAT’s coding capacity
threshold. The majority of transcripts had at least one ORF predicted (Suppl. Figure 2).

Reannotation of ClinVar variants

Variants may be predicted to have a more severe molecular consequence in novel (non-
reference) transcripts, but the functional and ultimately clinical implications remain
unclear. To demonstrate that SUsPECT can suggest new candidate pathogenic variants
associated with clinical outcomes, we reannotated ClinVar variants. ClinVar contains
variants with clinical significance asserted by different sources. We hypothesized that
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ClinVar variants that were annotated as pathogenic and not predicted to be deleterious
with the reference transcript annotation, but predicted deleterious with a (relevant)
sample transcriptome, would support the utility of this pipeline.

We tested SUSPECT on a recent ClinVar > release (April 2022), excluding all variants
that were annotated in ClinVar to be (probably) benign. We compared the predicted
severity of the 776,866 variants using our custom transcript annotation versus the
reference. After applying filters as described in the Methods section, 1,867 candidate
variants remained. Of these variants, 145 were associated with monogenic immune-
related disorders (Suppl. Table 1), which is significantly more than expected by chance
(odds ratio=5.46, p=1.51x10", Fisher’s exact test). This could indicate that annotation
with an immune-relevant transcriptome is better suited for the identification of variants
with an impact on immune function than annotating with a reference transcriptome.
The strongest argument for the utility of this pipeline can be made with variants that
are curated in ClinVar to be pathogenic rather than those of uncertain significance.
After excluding variants of unknown significance (VUS) from the full candidates list,
there are 90 variants remaining, of which 5 immune-related. These 90 variants had an
enrichment of severity level 4 events (Suppl. Figure 3). An overview of the number of

variants remaining after the different filter steps is given in Suppl. Figure 4.

Five immune-related variants curated in ClinVar to be pathogenic were reannotated
from a low severity molecular consequence in the Ensembl/GENCODE and Refseq
transcript set to a moderate or high severity in our transcriptome (Table 1). Two were
missense variants in the custom annotation and three were start-loss/stop-gain. We
visualized the variants in the context of the transcript structures/ORFs on the UCSC
genome browser. Two examples can be seen in Figure 3. The variant in IFNGR1 (dbSNP
identifier rs1236009877) is associated with IFNGR1 deficiency. It is curated by a single
submitter in ClinVar as ‘likely pathogenic’ using clinical testing. Annotation of the
variant with reference transcripts results in a low severity (intronic variant) result, but
results in a stop-gain variant (high severity) when annotating with our transcriptome.
Our custom transcriptome contained multiple novel transcripts with a retained intron at
the site of the variant, but only 1 of these transcripts had a predicted ORF in this intron.
The particular transcript affected by this stop gained variant was found in all samples
sequenced with minimum 3 and up to 10 supporting reads, indicating that it is unlikely
an artifact. The predicted ORF extended 30 base pairs into the retained intron in the
region of this variant. It was the most probable ORF for that transcript with a coding
probability by CPAT of 0.934.
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Figure 3: Two examples of ClinVar pathogenic variants being reannotated. Both variants were
considered low severity variants when using hg38 reference transcriptome to annotate. A)
IFNGR1 whole view and close-up of region around the variant. Variant causes a stop-gain effect
(K>*) in the custom transcript novelT001005410. B) STAT1 whole view and close-up of region
around variant. Variant causes a start loss (M>T) in the custom transcript novelT001115628.

In addition, the variant in STAT1 (dbSNP identifier rs387906763) was pathogenic

according to the LitVar 3% literature mining tool and a clinical testing submission. It is a
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missense variant (Tgc/Cgc) in the reference annotation that is predicted by PolyPhen-2
to be benign. However, in one novel transcript it causes an M/T substitution, leading to
loss of translation start site. Further inspection revealed that the transcript affected by
the start-loss was expressed in C. albicans, S. aureus and PolyIC stimulated conditions by
up to 6 supporting reads, but not in the control condition. STAT1 is previously described
to be involved in the immune disease (chronic mucocutaneous candidiasis) linked to
this variant by weakened response to C. albicans 3%, which is a condition where this
novel transcript was expressed. The ORF affected was the most probable ORF for that
transcript and had a coding probability of almost 1 by CPAT.

Discussion

SUsSPECT predicts the functional consequences of genetic variants in the context of
novel open reading frames predicted from a user-defined transcriptome. It is important
to underline that the pipeline does not return a statement on the pathogenicity of
variants. The pipeline simply brings new candidates forward for further interpretation;
the user may choose to cross-reference the clinical phenotypes of the patients with the
functions of the genes that the patients’ variants are found to disrupt. In our use case,
ClinVar variants were used as they already have widely accepted annotations. However,
40% of ClinVar variants are of unknown significance, some of which are suspected to
have some impact on clinical phenotype. Nearly 2% of these variants changed rating
to be predicted as deleterious in our reannotation. As more people generate sample-
specific transcriptomes to annotate variant sets, an increasing number of VUS may be
classified as benign or deleterious.

Alternative splicing is known to increase the proteomic diversity, but it is less well
understood how the novel transcripts contribute to the diversity of proteoforms and
their function, and how these are impacted by genetic variants 3°23%>, One of the most
commonly used variant annotators, Ensembl VEP, predicts molecular consequences
for variants in custom transcripts in standard formats, but lacks functional effect
predictions for missense variants in those transcripts. Considering the well-established
importance of missense variants on a variety of diseases 3%3%, this presents a hurdle in

the reannotation of variants with a custom transcriptome data.

We observed that many missense variants were predicted to have more severe effects
when annotated based on custom transcriptomes. This may be due to the numerous
new ORFs. Multiple ORFs passing CPAT’s ‘human threshold’ were often predicted per
novel sequence; for our 37,434 novel transcript sequences we predicted 34,565 novel
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ORFs. Some proteogenomics tools choose the ‘best” ORF per sequence, but we have
decided to keep all that passed the probability threshold. We do not filter out non-
coding genes when predicting ORFs, because some of them may still have protein coding
capacity. Missense results implicitly depend on the confidence of the ORF predictions
that are produced by CPAT. New deleterious missense variants will not be relevant if the
predicted protein is not produced in the cell. Coding ability of novel transcripts is an area
of active research 373! and new techniques to identify credible ORFs may be added to
the pipeline as they become available. In the meantime, it may be prudent to validate
interesting candidates using targeted proteomics techniques before establishing a

genetic diagnosis.

SUSPECT is flexible; it takes transcriptomes from either short-read or long-read
sequencing, PacBio or Oxford Nanopore, cDNA or direct RNA, as long as novel
transcripts exist in the dataset. SUsSPECT may produce the most comprehensive results
if the transcriptome dataset comes from patient cells or tissues that are affected by the
condition under study. However, it is also possible to use existing or newly generated
long-read transcriptomes from relevant cells or tissues of healthy individuals, like
we have demonstrated in the current work. The modularity of the tool means its
components are also adaptable. The module that reads input can be updated as new
(long-read) transcript analysis tools become available, which is useful considering new
tools are actively being developed 2. Its modularity facilitates incorporation of other
functional effect prediction tools 323 than the currently implemented PolyPhen-2
and SIFT software. The current implementation and future extensions of SUSPECT may
thus contribute to increase the diagnostic yield for disorders that are associated with

transcripts expressed in specific tissues or under specific conditions.

Conclusions

The full complexity of the human transcriptome is not represented in the current
reference annotation. Analysing variants using alternative transcripts may aid in
explaining missed genetic diagnoses, especially when disease or tissue-specific
transcripts are used. SUsPECT puts genetic variants in the context of alternative transcript
expression and can contribute to an increase in diagnostic yield. We used missense
variants with ClinVar assertions of pathogenicity to demonstrate the potential of this
methodology and have demonstrated a higher yield of missense variants are predicted
to be deleterious. The enrichment of immune-related variants after reannotation
suggests there is biological significance to these findings. Thus, long-read transcriptome
data relevant to the disease of interest may not only improve our understanding of the
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ever-growing number of genetic variants that are identified in human disease context,

but also aid in diagnoses for rare and/or unsolved disease 3!3%7,

Methods

Severity classification

SUSPECT classifies variants according to their expected impact and their molecular
consequence. Impact scores used by SUsPECT are based on the predicted molecular
consequence groupings in Ensembl VEP (Figure 2A) with higher numbers corresponding
to more severe consequences: zero being equivalent to “modifier”, one to “low” severity,
two to “moderate” severity, and four to “high” severity. SUsSPECT uses Polyphen-2
predictions to distinguish between (likely) benign (score: 2) and (likely) deleterious
(score: 3) missense variants.

Additional filters for output variant list

SUSPeCT initial output is a list of variants with higher severity scores based on the
custom transcriptome annotation compared to the reference annotation (homo_
sapiens_merged cache version 104 which includes both Refseq and Ensembl/GENCODE
transcripts). The variants that remain in the final list of “increasing severity” are
filtered to retain only variants that are potentially interesting for establishing a disease
diagnosis. Thus, the pipeline removes variants that are already considered deleterious
based on the reference annotation, i.e. variants that already have scores of 3 or 4. An
additional criterion was applied for missense variants. Missense variants for which
the same amino acid substitution found in the custom and reference annotation are
also removed. To reduce computational time further, missense variant alleles in novel
sequences that are common (AF > 0.01) are removed. These filters are integrated in
SUsSPECT. For the use case described in this manuscript, missense variants present in
the custom annotation that are predicted by PolyPhen-2 to be “benign” in both custom
and reference annotation are removed. In our ClinVar example, we define “immune-
related” variants as those variants that contain the string “immun” somewhere in the

clinical description.

Software details

A pipeline was built to streamline the process of variant prioritization using custom
transcript annotation. The pipeline is written in Nextflow 3%, using Ensembl VEP as the
variant annotator. Each step of the pipeline runs Singularity/Docker containers pulled
automatically from Docker Hub. The input of the pipeline is the sample-specific/non-
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reference long-read transcriptome in GTF format, variants in a VCF file, and a FASTA file

of the genome sequence. It is designed for use with output from TALON 3%

First, the GTF file is converted to BED format with AGAT v0.9.0 3%, ORFs for any novel
sequences are predicted based on the BED annotation and FASTA genome reference
using CPAT v3.0.4. CPAT output is converted to BED format with the biopj python package
and filtered for a coding probability of at least 0.364, which is the cutoff for human ORFs
recommended by the authors of CPAT 4, Conversion from CPAT CDS to protein FASTA
is performed with EMBOSS transeq v6.5.7. This ORF BED file is combined with the BED
file of transcripts to make a complete BED12 file with ORF/transcript information. Then,
we convert this BED12 file to GTF with UCSC’s bedToGenePred and genePredToGtf.
The resulting GTF file is used for a preliminary annotation of the variants with Ensembl
VEP to fetch variants predicted as missense in the custom transcript sequences. Next,
variant filtering was performed as outlined in the previous section with the filter_vep
utility distributed with Ensembl VEP as well as bedtools v2.30.0. The functional effect
predictions from Polyphen-2 and SIFT are reformatted and one final run of Ensembl VEP
(with the custom plugin enabled) integrates these predictions to the VCF. The output is
the annotated VCF, as well as a VCF with the subset of variants predicted to have higher

severity.

Ex vivo PBMC experiments

Venous blood was drawn from a healthy control 32! and collected in 10mL EDTA tubes.
Isolation of peripheral blood mononuclear cells (PBMCs) was conducted as described
elsewhere 222, In brief, PBMCs were obtained from blood by differential density
centrifugation over Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1
dilutionin PBS. Cells were washed twice in saline and re-suspended in cell culture medium
(Roswell Park Memorial Institute (RPMI) 1640, Gibco) supplemented with gentamicin,
50 mg/mL; L-glutamine, 2 mM; and pyruvate, 1 mM. Cells were counted using a particle
counter (Beckmann Coulter, Woerden, The Netherlands) after which, the concentration
was adjusted to 5 x 10°/mL. Ex vivo PBMC stimulations were performed with 5x10°
cells/well in round-bottom 96-well plates (Greiner Bio-One, Kremsmdinster, Austria) for
24 hours at 37°C and 5% carbon dioxide. Cells were treated with lipopolysaccharide (E.
Coli LPS, 10 ng/mL), Staphylococcus aureus (ATCC25923 heat-killed, 1x10%/mL), TLR3
ligand Poly I:C (10 pug/mL), Candida albicans yeast (UC820 heat-killed, 1x10%/mL), or left
untreated in regular RPMI medium as normal control. After the incubation period of
24h and centrifugation, supernatants were collected and stored in 350uL RNeasy Lysis
Buffer (Qiagen, RNeasy Mini Kit, Cat nr. 74104) at —80°C until further processing.
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RNA isolation and library preparation

RNA was isolated from the samples using the RNeasy RNA isolation kit (Qiagen) according
to the protocol supplied by the manufacturer. The RNA integrity of the isolated RNA was
examined using the TapeStation HS D1000 (Agilent), and was found to be >7.5 for all
samples. Accurate determination of the RNA concentration was performed using the
Qubit (ThermoFisher). Libraries were generated using the Iso-Seq-Express-Template-
Preparation protocol according to the manufacturer’s recommendations (PacBio,
Menlo Parc, CA, USA). We followed the recommendation for 2-2.5kb libraries, using the
2.0 binding kit, on-plate loading concentrations of final IsoSeq libraries was 90pM (C.
albicans, S. aureus, PolylC, RPMI) and 100pM (LPS) respectively. We used a 30h movie
time for sequencing. The five samples were analyzed using the isoseq3 v3.4.0 pipeline.
Each sample underwent the same analysis procedure. First CCS1 v6.3.0 was run with
min accuracy set to 0.9. Isoseq lima v2.5.0 was run in isoseq mode as recommended.
Isoseq refine was run with ‘--require-polya’. The output of isoseq refine was used
as input for TranscriptClean v2.0.3. TranscriptClean was run with ‘--primaryOnly’
and ‘--canonOnly’ to only map unique reads and remove artifactual non-canonical
junctions of each of the samples. The full TALON pipeline was then run with all five
samples together using GRCh38 (https://www.encodeproject.org/files/GRCh38_no_
alt_analysis_set_GCA_000001405.15/@ @download/GRCh38_no_alt_analysis_set_
GCA_000001405.15.fasta.gz). Assignment of reads to transcripts was only allowed
with at least 95% coverage and accuracy. A minimum of 5 reads was required to keep
alternative transcripts in the final transcript set (default of talon_filter_transcripts).
GENCODE annotation (v39) was used by TALON to determine novelty of transcripts in
the sample.
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Supplementary figure 1: Relative abundance of novel transcripts relative to known transcripts.
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Supplementary figure 2: Number of predicted ORFs passing CPAT’s human coding threshold.
ORFs were predicted per novel transcript and sorted by most to least likely to be coding (1 being
most likely). All predicted ORFs in blue, those that passed the human coding threshold in orange.
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Supplementary figure 3: Comparing subsets of variants that changed annotation from benign
to deleterious. “All ClinVar” corresponds to all reannotated clinvar variants including VUS and all
clinical phenotypes that were reannotated from benign to deleterious with our transcriptome
(N=1867). “Pathogenic” is a subset of all reannotated variants that excludes VUS variants (N=90).
“Immune-related” is a subset of all reannotated variants that includes only immune-related
clinical phenotypes (N=145). A) Impact level of variants after reannotation. The impact level
shown is associated with annotation in the custom transcriptome. B) PolyPhen-2 predictions of
variants after reannotation. C) Specific molecular effects of variants after reannotation.
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Applications

Proteogenomics can shed light on important biological processes, including mechanisms
underlying post-transcriptional regulation. Since many diseases disrupt or intercept
these processes, the methods presented in this thesis potentially uncover those disease
mechanisms too. Understanding post-transcriptional regulation has real-world, clinical
relevance. In this section, some common applications of proteogenomics methodology
in disease diagnostics and biomarker discovery will be outlined.

Diagnostics of rare disease

Rare diseases tend to have wide phenotypic and genetic variability, which makes them
particularly challenging to diagnose. The majority (80%) have a genetic cause; NGS has
helped greatly in these cases by identifying variants in an unbiased and high-throughput
manner3?, Decisions about what variants proceed through diagnostic evaluation are
largely done on a case-by-case basis according to what information was available at
the time. Generally, patient variants are narrowed down to a small handful that are not
common in the general population and/or in genes that are involved in processes relevant
to the disease, but the information about population frequencies and gene panels are
being constantly updated. As a result, many rare disease patients remain undiagnosed.
Definitively unraveling mechanisms of variant pathogenicity can be accomplished with
functional studies®®. In these studies, the effects of variant on proteins and biological
systems can be tested in model organisms®**3% or in patients’ own cells®?%3?’, The process
of functional validation is time consuming, however. Recently, the introduction of protein
information has shown promise in the diagnosis of these cases by revealing biochemical
consequences of variants, providing a valuable bridge between early- and late-stage
diagnostic processes??3%, SUsPECT, developed in Chapter 4, aims to replicate that bridge
in silico to reduce the number of variants that need to undergo functional validation.

Biomarker discovery in cancer

Proteogenomics has emerged as a powerful approach in biomarker discovery, providing
a holistic understanding of the molecular landscape of diseases. A biomarker is a
measurable and quantifiable indicator of a biological process, condition or response to
a therapeutic intervention®, Insights into the relationship between genetic alterations
and protein expression enables the identification of novel biomarkers associated
with various diseases. Variant peptides, the focus of this thesis, have great biomarker
potential, as they can be used to distinguish diseased versus healthy phenotypes

(diagnostics) and provide potential therapeutic targets (treatment).
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The most striking example of success in proteogenomic biomarker discovery is in cancer.
Full proteogenomic characterization (like in Chapter 4) has been performed on countless
cancer types®?. Considering the low correlation (0.3-0.45 range) of RNA-protein
correlation reported in cancer and elsewhere3**3%, the addition of proteomics data has
been a real benefit for patient stratification. Recent studies in, among others, prostate
cancer®®*, pediatric brain cancer®**”, medulloblastoma?®3%, clear cell renal cell carcinoma3*
identified outcome-correlated subtypes of their respective cancers. In these studies,
addition of proteomics data in addition to existing RNAseq data either contributed
to or was solely responsible for the subtype definition. Post-translationally modified
proteins were also included in most of the aforementioned cases; in colorectal cancer,
phosphorylation separated primary tumors with metastasis from those without3¥. The
defined subtypes characterized by proteogenomics will inform treatment and predict
treatment response in the clinic.

Proteogenomics does not only aid in the definition of the cancer (sub)types, it also
facilitates in development of the treatments. Neoantigens may arise from variant
peptides arising from single nucleotide variants, intron retention and cryptic splicing.
They are critical targets for immunotherapy since they are derived from tumor-specific
mutations and thus presented only on cancerous tissue. Proteogenomic analyses are
key for the identification and validation of neoantigens, enhancing our understanding
of the tumor immunopeptidome and guiding the development of personalized cancer
vaccines®'34 T-cell responses against tumor-specific antigens were successfully
mounted using immunotherapy**>3¢, and the therapy has been shown to improve long-
term survival®”’. The use of proteogenomics for neoantigen detection is so pervasive
that multiple software pipelines have been built for this purpose3#¥352, Cancer is one
illustrative example of where proteogenomics has proved valuable for both disease
subtyping and therapeutics. Proteogenomics requires large volumes of omics data. The
breadth of proteogenomics research can thus be attributed to the resources allocated
to cancer research; many of the studies cited here originate from cancer-related
consortiums with many members involved. The consortiums are well organized and
make large multi-omics datasets available to the scientific community, encouraging re-

use®s,

The applications of proteogenomics in biomarker discovery extend beyond cancer;
many complex and heterogenous diseases benefit from the multi-faceted picture
that proteogenomics provides. In neurodegeneration, disease stratification using
proteogenomics was successful with Parkinson’s disease®* and alternatively spliced

proteoforms were found differentially expressed in Alzheimer’s brains*®. Non-canonical
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proteoforms are also prevalent in the human heart®®, with age-related differential
expression that could be used as biomarkers in age-related heart disease®’. Host-
defense peptides, which selectively alter innate immune pathways in immune cells in
response to pathogen infection, have been indicated as suitable biomarkers for both
infectious and non-infectious diseases regardless of whether constituently expressed or
only as response to pathogenic infection3*®3*°, Proteogenomics may aid in uncovering
the latter, as indicated in Chapter 3. Proteogenomics has demonstrated great diagnostic
and therapeutic potential, even with methodology challenges in sequencing (short-
reads) and in proteomics. Methods like those developed in this thesis (Chapter 4) are
well-positioned to discover candidate biomarkers in a high-throughput manner. We are
only beginning to scratch the surface of clinically-useful proteogenomics findings; fully
addressing limitations in the manner described in the remainder of this chapter will
increase both sensitivity and specificity of biomarkers candidates in any disease model.

Challenges

Proteogenomics, like any less well-established method, faces a variety of challenges.
There is much novel biology to be found, but the success of proteogenomics is very
dependent on the content of the search database. Utilizing long-read sequencing
technology results in a database with fewer likely artifacts, but being a newer
technology itself, faces its own set of limitations. The improvement in search database
enables more novel proteoform discovery in general. However, accurate reporting of
these novel protein products is important. Published results can be incorrect without
established standards and may compromise our understanding of biological processes

under study.

Defining transcript novelty

There are clear discrepancies in transcriptomes produced by different tools for
transcriptome assembly/annotation of long-read sequencing data. Estimates for the
number of unique transcripts in a dataset can vary substantially depending on the
tool used, as seen in the transcriptome comparison in Chapter 2. This variation begins
at sequence correction, an essential step in processing long-read sequencing data.
Mismatches, indels and splice junctions are corrected by using external information such
as reference annotations or high-accuracy short reads, or self-correction in a de novo
fashion. There are numerous algorithms to perform the correction that result in different
sets of corrected reads; fortunately, these algorithms have recently been evaluated and
benchmarked %, Algorithms for assembly of transcripts based on the corrected reads
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have lagged behind. Several algorithms became available for transcriptome assembly of
long reads during the course of this thesis, each incrementally better than the last, but
with varying definitions of transcript novelty®*®>22331% A proper benchmark using synthetic
spike-in RNAs was published near the completion of this thesis*®*. For this benchmark, an
in silico mixture strategy was used to generate a ground truth dataset that allowed the
performance evaluation of several transcript analysis tools. Some tools performed better
than others in isoform detection, but all suffered from frequent identification of artifactual
isoforms. These methods will need to improve to enable more accurate observations of
differential isoform expression and usage in various biological settings, such as those of

the pathogen stimulated versus unstimulated case in Chapter 332,

“Good” ORF prediction is not good enough

Improved isoform characterization will also impact potential open reading frames
(ORFs). ORF length is known to be the most important feature of coding potential
prediction, and basic ORF predictors using the longest ORF per transcript perform
reasonably well. Developments like CPAT, a popular ORF prediction tool, show that
the addition of just a few sequence-based features lead to even better predictions'“.
Some ORF predictors were developed to specifically predict ORFs for long read
transcripts (SQANTI and ANGEL used in Chapter 2), but these did not out-perform CPAT
and were ultimately depreciated. In practice however, CPAT tends to predict several
high confidence ORFs per transcript. While not implausible that multiple proteins
are produced from the same transcript in some cases (discussed in detail below), the
overabundance of ORFs predicted by CPAT has a material effect on the work in Chapters
3 and 4; it increases peptide search database size leading to less sensitive detection,
and causes potentially inaccurate variant reannotations with SUsPECT. A recent long-
read proteogenomics pipeline includes in-house scripts to further filter CPAT output
predictions®*®. Considering the potential biological impact of novel ORFs, “good”
predictions are not good enough?®%3. Luckily, promising improvements are being made
in eukaryotic ORF detection, for instance by using more contextual information®®, The
use of context relevant to protein production regulation mechanisms will continue to

yield improvements in ORF prediction accuracy.

Detecting other protein products

The reduction in database size from eventual improved ORF prediction opens the
possibility to shed light on the “dark proteome” (largely unexplored alternative protein
products) by including it in the search database. Proteins/peptides can be produced
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from alternative ORFs?*°. One example are peptides originating from short ORFs, or
sORF-encoded proteins (SEPs). The longest ORF is considered to be the most likely to
produce protein, so SEPs are not generally included in search databases even though
they have been found to be a common class of protein products that are likely to be
functional?®=%, Likewise, peptides from upstream ORFs in the 5’ untranslated regions
have long been known to be important translational regulators®’°=72, Proteins can also
be produced from unexpected start codons, as in the case of alternative translation
initiation. Ribosomes may skip AUG start codons (leaky scanning) or start translation at
non-AUG start codons, depending on transcript sequence or cellular conditions373374,
Proteins can even be produced from transcripts that were not expected to be protein
coding at all, such as IncRNA and pseudogenes®’>*’®, All these alternative protein
products would need to be specifically added to the database to find them, and
searched for in a single step to avoid statistical irregularities. This is, however, not an
attractive option due to the database size considerations. Ribosome profiling has been
key technology in discovery of alternative protein products®”’, and remains the best
method to corroborate findings amidst low identification power from large search
database size. However, it is currently too expensive and labor-intensive to be practical

for use in already resource intensive genome-wide proteogenomics studies.

Quality assessment of proteogenomics findings

Assessing the quality of findings in proteogenomics is much more challenging than
in classic proteomics. Novel peptide identifications from proteogenomics strategies
suffer from high false negative rates when using target-decoy FDR control, but
abundant false positives when reducing the cutoff®’®. Methods to circumvent the
issue (detailed in Chapter 1) do not have a solid statistical basis. Without standards or
validation requirements prior to publication, false positive and false negative variant
peptide identifications are abundant in current literature®°3, Standards have been
painstakingly created by the Human Proteome Organization (HUPO) for reporting
peptide findings to the proteomics community®®. However, these are not widely
adopted for proteogenomics as they are considered too conservative for variant
peptide detection'®. Instead, reports of variant peptides are frequently validated in the
form of manual inspection of PSMs, as done in Chapter 2. Several software tools to aid
manual visual assessment have been developed?®8?32; these largely exclude Al and deep
learning efforts as these deep learning algorithms are primarily used for initial spectrum
matching or result re-scoring rather than perpendicular validation of individual PSMs.
Manual PSM inspection has become common practice because FDR is a global quality
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metric that is unable to distinguish true vs false positives, and often results in incorrect
peptide identifications with big proteogenomics databases®*®. Proteogenomics will
eventually require its own set of standards for objective assessment of the quality of
findings. A consensus on acceptable database creation/analysis approaches will be
a prerequisite of creating such standards, which is itself challenging due to ongoing
improvements in the field. This consensus will need to include an alternative method
for FDR estimation in proteogenomics.

Biology versus detectability

With all the aforementioned challenges, underlying biological truth in regards to
proteomic variation remains elusive. Most studies, including Chapter 2, detect much
fewer variant peptides than could be expected with known genetic information. We
observe that methodology falls short; proteogenomics remains too biased to the
composition of the search database and novel computational proteomics (as defined
in the introduction) suffers from too many false positives to reliably detect the variant
peptides in a sample. An alternative explanation for poor detection could be their
absence®®. However, the reality may be more nuanced. A recent, comprehensive
study hinted at the existence of widespread proteomic variation?’®. This study makes
clear that proteomic data depth plays a crucial role in detectability, implying a lower
relative abundance of protein-level variants and begging the question of their biological
importance. Lower abundance does not equate to biological irrelevance®’. The impact of
low abundance proteins and proteoforms is an important topic to address (perhaps on a
case-by-case basis) considering the re-annotated disease variants found in the SUsPECT
test case were more often found in non-dominant transcript isoforms. Relativity aids
interpretation; low abundance proteoforms may be higher abundant in certain cellular
contexts or time points. While variant peptide detection challenges persist, the best
policy would be to always validate any significant findings using synthetic peptides
before application to a diagnostic setting or going into functional validation studies.

Improvements to come

The plethora of challenges in proteogenomics are bound to be addressed with clever
solutions in the coming years. The interdisciplinary nature of proteogenomics has the
advantage that improvement is possible in multiple areas. These improvements can be
made in the experimental or bioinformatics methodologies. Since sequencing methods
have already become quite well-established in comparison to proteomics, proteomics
has some of the most exciting experimental method developments to come. The new
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developments will in turn lead to more data and method generation, which will need
the appropriate infrastructure to be shared and accessible for the benefit of the whole
scientific community.

Experimental method development in proteomics
Data independent acquisition

In terms of new technologies, proteomics will see the most innovation. There is
already significant improvement in the domain of peptide spectrum acquisition. Data
independent acquisition (DIA) is a method to analyze complex samples that has several
significant improvements over the standard DDA, DIA comprehensively targets all
precursor ions in a defined mass range per run instead of DDA’s stochastic selection,
increasing reproducibility and reducing bias. DIA is able to capture both highly and lowly
abundant peptides with its increased dynamic range as compared to DDA. However,
this increase of precursor ions results in composite fragment-ion spectra which are so
complex that their analysis is non-trivial. Deconvoluting the multiplexed output spectra
produced by DIA is in fact the biggest challenge of the method. The use of spectral
libraries became somewhat of a necessity to extract data used to identify peptides in
DIA38393 Typically, DDA scans from the same or similar samples are used to create
these spectral libraries(Guan et al., 2020; Lam et al., 2007; F. Zhang et al., 2020), but
large publicly available libraries exist for some species. Of course, this comes with the
caveat that peptides that are not in the spectral library cannot be analyzed. While
most publications with DIA use spectrum-library based approaches, newer library-free
methods are most interesting for the identification of non-canonical peptides sought in
proteogenomics®7:3%,

DIA applied in a DM1 biomarker study

We attempted to use DIA data in a proteogenomics search for biomarker peptides
associated with myotonic dystrophy type 1 (DM1). DM1 is an inherited neuromuscular
disorder caused by a CTG repeat expansion, thereby causing abnormal RNA splicing3°-°,
Aberrant splicing as a result of the disorder could potentially yield distinct proteoforms
that can be used as a biomarker for the disease. We had whole blood samples
originating from 248 DM1 patients including DDA, DIA, and both short- and long-read
RNA seq. Since both DDA and DIA data were available, DIA data was analyzed using
two methods for comparison; once with a DDA data-based search database and one
spectral-library prediction-based database. We expected novel transcript isoforms to be
present in patient samples due to the nature of the disease, and there were: 7,683 novel
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isoforms were detected in a set of 14,053 total by long-read RNA sequencing. Despite
the abundance of novel transcripts detected, no viable peptide biomarker candidates
were detected. Analysis of DDA data yielded two potential novel exon/splice peptide
candidates. However, one of them was in an exon that was not supported by short-read
data, and the other was more common in controls than disease samples. Neither of the
candidates could be found in the DIA data, regardless of the post-processing method.
The discrepancy between DIA and DDA findings from the same samples demonstrates
how improvements still need to be made in DIA analysis. The failure of the biomarker
search project can be partly attributed to the samples themselves; whole blood is
challenging to analyze relative to other tissues due to a higher dynamic range in protein
abundance, and DM1 patients from which the samples were derived were only mildly
affected by the disease. A recent study performing a similar DM1 biomarker search
in mouse muscle tissue was successful®®?, forecasting potential success for a future

attempt with a different study design including targeted proteomics.

Top-down proteomics

Much information is lost when digesting a protein to peptides in LC-MS/MS protocol.
Sequence similarities between proteins are common, which leads to many cases of a
peptide that could originate from multiple different proteins (as seen in Chapter 2). The
process of protein inference is riddled with uncertainty and error*®, Ideally, digestion of
a protein into peptides would not be necessary to identify them. Somewhat analogous to
long-read nucleotide sequencing versus short reads, top-down proteomics is a detection
method to characterize whole proteins. Intact protein undergoes fragmentation instead
of its peptides, eliminating the necessity for protein inference. Top-down proteomics
unfortunately is much more challenging to execute in practice due to data complexity
and technical limitations®*®#4%, Updates to instrumentation and protocol (mainly in
protein separation) are ongoing*“%, We may yet see top-down proteomics become a
more viable option to observe proteomic diversity.

Nanopore-based peptide sequencing

Reading out amino acid sequences in the same way NGS reads out nucleotide
sequences is currently not possible. However, attempts to repurpose ONT sequencers
into peptide sequencers have shown some recent success. Discerning the electrical
signals of the 20 distinct amino acids is a considerable challenge; amino acid sequences
are heterogeneously charged unlike nucleic acid sequences, and thus do not translocate
neatly through the pore. Tackling this challenge required creative engineering. Several
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strategies were proposed to unfold whole proteins prior to translocation through
a nanopore®®*13, Pores were fitted with blockades to keep amino acids in the pore
long enough to detect the differences between them**. The newer methods employ
DNA-peptide conjugation to encourage movement through the pore®*>*'’. The newest
development made near the completion of this thesis is a nickel ion-modified nanopore
(specifically Mycobacterium smegmatis porin A) able to distinguish all 20 amino acids.
Peptide sequence reading using nanopores still has a long road ahead, but will slowly
become a reality. If it does live up to its promise, it will be a feat of engineering that will
render peptide database searching largely unnecessary.

Bioinformatic improvements in proteogenomics
Towards a complete database

The working assumption in proteogenomics is that the reference database isincomplete.
Research questions relating to samples that come from e.g. a less well-studied tissue,
species or a disease-affected individual may require sequencing/proteomics data
generated from that specific sample. Using comparable samples originating from
other labs or tissues can be informative in some cases, and save resources. Similar
samples will become increasingly abundant over time. Increasing accessibility and
accuracy of long-read sequencing will lead to generation of more (publicly available)
datasets, more proteogenomics studies and eventually a more complete reference
transcriptome and proteome. There are considerable efforts in the scientific community
to collect experimentally verified genetic variant and alternative proteoform data in
comprehensive databases such as Ensembl*'?, RefSeq*'® and UniProt*®*. NextProt**! and
UniProt only include information if these are verified also in the proteome. Classically,
these databases and the Human Proteome Project have focused on the set of all
canonical proteins in the human proteome*??, Recently a consortium was created to
document all proteoforms, acknowledging the biological information to be gained
outside of canonical proteins*®. There are also databases that specifically document
variant peptides identified in proteogenomics studies'¥%°. These knowledgebases
are added to and revised continuously. As the knowledge of the human transcriptome
deepens and a complete, refined search database becomes possible, additional variant
peptide discoveries can be made using existing proteomics data in re-analysis®?44?,
The continuation of these efforts and improved data centralization will lead to a more
complete database, facilitating proteogenomics efforts.
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Proteogenomics accessibility

Proteogenomics pipelines are highly heterogeneous as the components are all
customizable to researchers’ questions and available datasets®?®. In addition,
proteogenomics can be resource intensive as data must be generated for multiple omics
levels. Research design must be carefully thought out to properly allocate available
resources, and design decisions determine the appropriate analysis protocol. New
technologies demand parallel updates to methodology and accompanying software;
analysis of long-read RNA sequencing uses different tools than short-read, DDA different
from DIA, etc. Many tools are developed to do only one piece of proteogenomics
protocol to accommodate variation in research design. They must be performed in
the correct order with attention to formats, pre- and post-processing requirements
and computational needs, and useful visualizations should then be produced.
Carrying out these tasks requires a skilled bioinformatician. To make proteogenomics
methods accessible to biologists who could benefit from it, centralization and pipeline
development that accommodate diverse research questions are critical. Galaxy for
Proteomics (Galaxy-P) is one such option that is web-based, flexible and accessible.
Galaxy-P provides training materials to teach users implement their proteogenomics
pipelines, and has been successful in aiding proteogenomics research in a variety of
studies. Other more comprehensive one-stop-shop options have been developed
and include additional features®*®3#2-*¥, Maintenance is crucial however; increased
customizability via containerization as was implemented in SUsPECT, along with user-

friendliness and continuous updates are needed to keep proteogenomics accessible.

Improved prediction of effects of variants on protein function

While proteogenomics enables the detection of protein variants, the true utility lies in
theirinterpretation. We would like to know how the functioning of the protein in question
changes as a result of the observed variation, which eventually can lead to correlation
to a phenotype. As proteins are three-dimensional molecules whose functions are
tightly linked to their structures, understanding of protein structure and perturbations
thereof are essential to predicting functional change*. Proteogenomics involves the
prediction of potential new protein sequences, whose structures were until recently
quite challenging to predict based on sequence alone*?. During this PhD, a new method
called Alphafold was created to predict structures from sequences with unprecedented
accuracy®3. Prediction of probable protein structures can help assess protein-coding
potential of novel ORFs detected in proteogenomics, thus providing a valuable tool to

filter search databases. During the construction of SUsPECT, many variants changed
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predicted effect from benign to missense when annotated with sample-specific novel
transcripts. Missense variations are a very heterogeneous class of variant effect with
widely varying outcomes on proteins’ structure and function*. Shortly after the release
of Alphafold, AlphaMissense was released to tackle the challenge of structural change
in response to missense variation*®. These tools are invaluable to interpretation of

protein variation uncovered by proteogenomics.

Concluding remarks

Proteogenomics provides the lens that brings the whole picture of post-transcriptional
regulation into focus, and the picture is becoming sharper with new innovations. While
its multi-omics nature means that proteogenomics takes on the challenges in each of
the omics fields individually atop the existing challenges of data integration, it also
means that the innovations per field directly influence the quality of proteogenomics
findings for the better. This is certainly the case for long-read transcriptome sequencing,
which is the innovation that this thesis focuses on specifically. The reduced noise in the
peptide search database leads to more discovery of variation in the proteome. Despite
the advantages this sequencing technology brings, it cannot completely compensate
for the considerable limitations in proteomics. The challenges in proteogenomics
seem vast, but addressing them will be worth the hassle. A complete understanding of
proteome variation gets us a big step closer to a world where every person receives the
correct diagnosis and treatments for them, every time.
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Data management plan
Data sharing

All studies in this thesis were/will be published open access. The RNA/proteomics
data that were generated for this thesis were deposited in their suitable respective
databases. Raw RNA sequencing data was deposited to EGA under the accessions
EGAS00001006779 and EGAS50000000007 (Chapter 3) and EGA50000000188 (DM1
project). Proteomics data generated for Chapter 3 was deposited to PRIDE with
accession PXD045237. All other data was publicly available as outlined in the respective
chapters. The code used in the analysis of the data or the development of tools are

stored in the following public Github repositories:

Chapter 2 — https://github.com/cmbi/NA12878-saav-detection

Chapter 3 — https://github.com/cmbi/hpi_isoseq_paper (MIT license)

Chapter 4 — https://github.com/cmbi/SUsPECT (Apache 2.0 license)

Ethics and privacy

PBMCs from Chapter 3 and 4 were retrieved form healthy, anonymized donors, as part
of the human functional genomics project (HFGP). The HFGP study was approved by the
Ethical Committee of Radboud University Nijmegen, the Netherlands (no.42561.091.12).
Experiments were conducted according to the principles expressed in the Declaration
of Helsinki. Samples of venous blood were drawn after informed consent was obtained.
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Summary

Large-scale DNA sequencing efforts in the past decade have led to a staggering volume
of discoveries in human genetic variation. However, our understanding of genetic
variant effects is lagging behind. The effect of variants can only be accurately predicted
when the expression of DNA throughout the entire biological system is fully understood,
including transcripts and proteins. At present, both the reference human transcriptome
and proteome are incomplete. They are missing many of the different proteins, or
slightly altered versions of the same proteins (called proteoforms), that are only present
in a specific tissue, time, person, or cellular condition. These protein variations can

reveal much about regulation that occurs in the cell and its malfunctioning in disease.

The missing knowledge is largely attributed to technological limitations. Short-read
RNA sequencing, the current standard, does not have the resolution needed to observe
the rich diversity of human transcript isoforms. Full transcript sequences must be
inferred based on small sequence fragments, and they are often wrong. Long-read RNA
sequencing is a relatively recent solution that captures the entire transcript sequence.
This new technology is rapidly expanding our understanding of human genetic
expression; novel transcripts are being discovered in droves. Understanding how these
findings affect the proteome is important, as proteins play crucial roles in the structure

and function of cells in living organisms.

Unfortunately, the technological limitations are even worse on the protein level than
the RNA level. In a typical proteomics experiment, proteins from a sample are broken
down into peptides, which are then measured with a mass spectrometer. A spectrum
is produced for each peptide. The spectra cannot be accurately read out as a sequence
directly; to identify them, they must be compared to every peptide in a database
containing all peptides that are expected to be in the sample. The problem is that if a
database contains only previously-known peptides, the discovery of variant peptides is
impossible.

One solution is the use of proteogenomics. Proteogenomics is a relatively recent method
that leverages nucleotide data to enable identification of variant peptides. The growing
abundance of genetic data has made proteogenomics an increasingly powerful tool
in this regard. Predicted proteins inferred from sequencing data, including all genetic
and transcriptomic variation, are added to the database used to search spectra. The
composition of the search database is a central aspect in proteogenomics, and also its
greatest challenge: ironically, the larger the database, the less likely spectra are to be
identified.
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Short-read transcriptomes resulted in larger databases. Several potential coding regions
known as open reading frames (ORFs) needed to be added per transcript to observe
variant peptides, since ORF could not be resolved from sequence fragments. Using
long-read transcriptomes reduces the number of additions to the search database
by providing one confident ORF per transcript. In Chapter 2, we assess the state-of-
the-art in variant peptide identification. We compare the ability of new long-read
proteogenomics methods to that of the latest computational proteomics methods to
detect genetic variants in peptides. Based on a well-characterized cell line NA12878,
we successfully showed that using long-read proteogenomics indeed results in more

accurate variant peptide identification.

This thesis also aims to fill the aforementioned knowledge gap in the reference
annotation by studying cells under specific conditions. To this end, we performed a
multi-omics characterization of pathogen-stimulated human immune cells in Chapter
3. Four different pathogens were used, including bacteria, fungal and viral types. Long-
read RNA sequencing revealed the presence of many novel transcript isoforms (around
40% of unique transcripts) in both control and all pathogen-stimulated cells. Thanks to
the accurate elucidation of transcript isoforms, we were able to study isoform switching
(1S) in addition to general gene/transcript differential expression. IS is a lesser-studied
phenomenon where the relative isoform expression changes within a gene in response
to a condition, regardless of overall gene expression. We found 398 genes taking part
in IS, the majority of which were not differentially expressed on the gene level. The
IS events occurred in a wide variety of genes involved in metabolic processes, mRNA
splicing, protein transport and catabolism. About half of all IS cases involved a novel
transcript. Protein evidence of the alternative splicing events could not be confirmed in
the secreted proteome; we suggest using whole cells for proteomics analysis in future
studies to fully uncover the rich transcriptomic and proteomic diversity resulting from

pathogen stimulation.

The novel transcripts found in long-read transcriptome studies like Chapter 3 can be
directly leveraged to benefit patients of rare, undiagnosed diseases. We developed a
software pipeline called SUSPECT in in Chapter 4 that uses sample-specific transcripts
to re-analyze genetic variants of patients with rare disease. The pipeline uses a variety
of tools to predict ORFs of novel transcripts, predict variant effects on new transcripts,
compare these to the old effects, and provide missense effect predictions where
applicable. The end result is a list of variants with a more severe predicted effect in
the provided sample than the reference. In practice, this could mean that certain heart
disease-causing variants in some patients could have been marked as benign when in
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reality, they have a severe molecular consequence in heart-specific transcripts/proteins.
We used the transcripts from Chapter 3 to show that SUSPECT uncovers candidate

variants for disease causality. The pipeline is publicly available on GitHub.

There is a wide knowledge gap in the effects of genetic variation, transcript expression
and protein expression on one another. Filling this gap will require the generation of
much more data, further innovation in experimental methodology, and continuous
development of bioinformatic tools. This thesis explores the current state-of-the-art
in both experimental and bioinformatics methodologies for use in capturing proteomic
variation. It demonstrates ways in which long-read proteogenomics methods can be
used for detecting new biology and provides a tool to directly leverage these discoveries

for disease diagnosis.
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Samenvatting

Grootschalige inspanningen op het gebied van DNA-sequencing hebben in het afgelopen
decennium de variatie in het menselijk genoom in kaart gebracht. Desondanks loopt ons
begrip van de effecten van deze genetische varianten achter. Het effect van varianten kan
alleen nauwkeurig worden voorspeld wanneer de genexpressie in het hele biologische
systeem volledig wordt begrepen, inclusief transcripten en eiwitten. Op dit moment zijn
zowel het referentie menselijke transcriptoom als proteoom onvolledig. Er ontbreken
nog veel eiwitten, of licht gewijzigde versies van eiwitten (genaamd proteovormen), die
alleen aanwezig zijn in een specifiek weefsel, op een bepaald moment, bij één individu
of onder een bepaalde cellulaire conditie. Deze eiwitvariaties kunnen veel onthullen
over de regulatie die in de cel plaatsvindt en het dysfunctioneren ervan bij ziekte.

De ontbrekende kennis wordt grotendeels toegeschreven aan technologische
beperkingen. Short-read RNA-sequencing, de huidige standaard om transcriptomen te
karakteriseren, heeft niet de resolutie die nodig is om de rijke diversiteit van menselijke
transcriptisovormen waar te nemen. Volledige transcriptsequenties moeten worden
afgeleid op basis van kleine sequentiefragmenten, en zijn bijgevolg vaak onjuist.
Sequencing van lange RNA-sequenties is een relatief recente oplossing die de volledige
transcriptsequentie vastlegt. Deze nieuwe technologie breidt snel ons begrip van
menselijke genexpressie uit; er worden in groten getale nieuwe transcripten ontdekt.
Het is belangrijk te begrijpen hoe deze het proteoom beinvlioeden, aangezien eiwitten

cruciale rollen spelen in de structuur en functie van cellen in levende organismen.

Helaas zijn de technologische beperkingen op eiwitniveau misschien nog wel groter dan
op RNA niveau. In een typisch proteomics experiment worden eiwitten uit een monster
afgebroken tot peptiden, die vervolgens worden gemeten met een massaspectrometer.
Dit toestel bepaalt een massaspectrum voor elk peptide. Deze spectra kunnen niet direct
worden gelezen als een sequentie; om ze te identificeren, moeten ze worden vergeleken
met elk peptide in een databank die alle peptiden bevat die worden verwacht in het
monster. Als een databank alleen eerder bekende peptiden bevat is de ontdekking van
variantpeptiden en nieuwe eiwit(vorm)en bijgevolg onmogelijk.

Een oplossing is het gebruik van proteogenomics. Proteogenomics is een relatief recente
methode die nucleotidegegevens benut om identificatie van variantpeptiden mogelijk
te maken. De groeiende overvloed aan genetische gegevens heeft proteogenomics
tot een steeds krachtiger instrument in dit opzicht gemaakt. Voorspelde eiwitten
afgeleid uit sequentiegegevens, inclusief alle genetische en transcriptomische variatie,
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worden toegevoegd aan de databank die wordt gebruikt om spectra te doorzoeken. De
samenstelling van de zoekdatabank is een centraal aspect in proteogenomics, en ook de
grootste uitdaging: ironisch genoeg, hoe groter de databank, hoe minder waarschijnlijk

dat spectra worden geidentificeerd.

Short-read transcriptomen resulteerden in grotere databanken. Verschillende potentiéle
coderingsgebieden die bekend staan als open leesframes (ORF’s) moesten per transcript
worden toegevoegd om variant-peptiden te observeren, aangezien ORF’s niet kon worden
opgelost uit korte sequencing-fragmenten. Het sequencen van lange RNA sequenties
vermindert het aantal toevoegingen aan de zoekdatabank omdat het leesraam per
transcript met grotere zekerheid kan worden vastgesteld. In Hoofdstuk 2 beoordelen we
de technologische stand van zaken voor identificatie van variant-peptiden. We vergelijken
het vermogen van nieuwe proteogenomische methoden met lange leeslengte met dat van
de nieuwste computationele proteomica-methoden om genetische varianten in peptiden
op te sporen. Gebaseerd op een goed gekarakteriseerde cellijn NA12878, hebben we
succesvol aangetoond dat het gebruik van lange RNA sequenties inderdaad resulteert in
meer accurate identificatie van variantpeptiden.

Dit proefschrift heeft ook tot doel eerdergenoemde gaten in de referentieannotatie op te
vullen door cellen te bestuderen onder specifieke omstandigheden. Hiertoe voerden we
in Hoofdstuk 3 een multi-omics karakterisering uit van door pathogenen gestimuleerde
menselijke immuuncellen. Vier verschillende pathogenen werden gebruikt, waaronder
pathogenen van bacteriéle, schimmel en virale oorsprong. Lange RNA-sequenties
onthulden de aanwezigheid van veel nieuwe transcriptisovormen (ongeveer 40% van
de aanwezige transcripten) in zowel controle- als alle door pathogenen gestimuleerde
cellen. Dankzij de nauwkeurige opheldering van transcriptisovormen konden weisovorm-
switching (IS) bestuderen naast algemene gen-/transcript-differentiéle expressie. IS
is een weinig bestudeerd fenomeen waarbij de relatieve isovormexpressie verandert
binnen een gen als reactie op een conditie, ongeacht het totale expressieniveau. We
vonden 398 genen die IS ondergingen, waarvan de meerderheid niet differentieel
tot expressie kwam op het gen-niveau. De IS-evenementen vonden plaats in diverse
genen die betrokken zijn bij metabole processen, mRNA-splicing, eiwittransport
en katabolisme. Ongeveer de helft van alle 1S-gevallen betrof een nieuw transcript.
Bewijs van deze alternatieve splicing-evenementen kon niet worden gevonden in het
uitgescheiden proteoom; we stellen daarom voor om hele cellen te gebruiken voor
proteomics-analyse in toekomstige studies om de rijke transcriptoom en proteoom
diversiteit als gevolg van pathogenenstimulatie volledig bloot te leggen.
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De nieuwe transcripten die zijn gevonden in lange RNA sequenties zoals gegenereerd
in Hoofdstuk 3 kunnen direct worden benut om patiénten met zeldzame,
ongediagnostiseerde ziekten te helpen. We hebben in Hoofdstuk 4 een software-pijplijn
ontwikkeld genaamd SUsSPECT, die gebruikmaakt van monster-specifieke transcripten
om genetische varianten van patiénten met zeldzame ziekten opnieuw te analyseren.
De pijplijn maakt gebruik van verschillende tools om ORF’s van nieuwe transcripten te
voorspellen, varianteffecten op nieuwe transcripten te voorspellen, deze te vergelijken
met eerder voorspelde effecten, en missense-effectvoorspellingen te geven waar van
toepassing. Het eindresultaat is een lijst met varianten met een ernstiger voorspeld
effect in het verstrekte monster dan in de referentie. In de praktijk zou dit kunnen
betekenen dat bepaalde varianten die een hartziekte veroorzaken als goedaardig zijn
aangemerkt hoewel ze in werkelijkheid een ernstig moleculair gevolg hebben in hart-
specifieke transcripten/eiwitten. We hebben de transcripten uit Hoofdstuk 3 gebruikt
om aan te tonen dat SUsSPECT kandidaatvarianten voor ziekte-oorzaak blootlegt. De
pijplijn is openbaar beschikbaar op GitHub.

Er is een groot gat in kennis in de effecten van genetische variatie, transcriptexpressie
en eiwitexpressie op elkaar. Het vullen van dit gat zal vereisen dat er veel meer data
wordt gegenereerd, verdere innovaties in experimentele methodologie plaatsvinden,
en voortdurende nieuwe bio-informatica-tools worden ontwikkeld. Dit proefschrift
onderzoekt de huidige stand van zaken in zowel experimentele als bio-informatica-
methodologieén voor het vastleggen van proteoom variatie. Het demonstreert
manieren waarop proteogenomics-methoden op basis van lange RNA sequenties
kunnen worden gebruikt om nieuwe biologie op te sporen en voorziet algoritmen om

deze ontdekkingen direct te benutten voor ziekte-diagnose.
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