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CHAPTER 1 

INTRODUCTION 
Breast cancer is the most common cancer in women, accounting for 30% of new 
female cancer diagnoses each year.1 With a lifetime risk of one in seven, its prevalence 
is substantial.2 Although treatments are improving and breast cancer death rates have 
almost halved since 1989, still ~2.5% of all women will finally die from (complications 
from or progressive) breast cancer. These statistics underscore the critical need for 
continued advancement in our understanding of this disease.   

Approximately 75% of breast cancers are estrogen receptor-positive, meaning that 
these breast cancer cells possess estrogen receptors.3 Estrogen, a hormone that is 
naturally produced in the body, can bind to these receptors, thereby stimulating the 
growth and division of cancer cells.4 However, this also means that anti-hormonal 
therapies that target estrogen receptors or estrogen can be effective treatments for 
this type of breast cancer.5,6 This thesis focusses on two important anti-cancer drugs 
in the management of estrogen receptor-positive breast cancer: the selective estrogen 
receptor modulator tamoxifen and the class of CDK4/6 inhibitors (palbociclib, ribociclib 
and abemaciclib).

Tamoxifen 
Tamoxifen is a selective estrogen receptor modulator, mainly deriving its efficacy in 
breast cancer from binding to the estrogen receptor competitively with estrogen. 
At this target, it acts as an estrogen receptor antagonist, suppressing the expression of 
estrogen-regulated genes, growth factors and angiogenic factors otherwise stimulated 
by estrogen (Figure 1).4-6 Despite being registered already since 1973, tamoxifen 
remains a cornerstone in the adjuvant treatment of estrogen receptor-positive breast 
cancer, typically administered following local or locoregional therapy, including surgery 
and often radiotherapy, to reduce the risk of breast cancer recurrence. The standard 
dose of 20 mg reduces the breast cancer recurrence rate by approximately 40% 
during the first ten years of follow-up, and the annual breast cancer death rate by one 
third.7,8 Tamoxifen is especially important in the treatment of premenopausal women. 
For this sub-group, tamoxifen is recommended for a duration of five to ten years.9-11 
Post-menopausal women are mostly advised to use two to three years of adjuvant 
tamoxifen, followed by an aromatase inhibitor, another form of hormonal therapy, for 
a similar period of time. 

Given its role as an estrogen receptor modulator, tamoxifen exhibits agonistic or 
antagonistic effects depending on the specific tissue it targets.12 As estrogen receptors 
are expressed in various healthy tissues, the binding of tamoxifen or its metabolites to 
these receptors can lead to a spectrum of (endocrine) adverse effects. For instance, hot 

177686_Buijs_BNW.indd   10177686_Buijs_BNW.indd   10 22/01/2025   14:0522/01/2025   14:05



11

1

Introduction

flashes likely result from an estrogen receptor antagonistic effect in the central nervous 
system, where estrogen receptors are also present, which can lead to thermoregulatory 
dysfunction.13 In contrast, tamoxifen’s estrogen receptor agonistic effects in the 
endometrium can induce endometrial abnormalities and vaginal discharge (Figure 
1).12 Other adverse effects are arthralgia, insomnia, mood alterations, weight gain and 
vaginal dryness.14 These adverse effects significantly impact patient quality of life, 
particularly given the long treatment duration in the adjuvant setting, which can extend 
up to ten years. Remarkably, nearly half of all patients discontinue tamoxifen early due 
to adverse effects, with one-third of these patients already discontinuing within the 
first year of treatment.15-18 Another substantial group of patients adhere to tamoxifen 
therapy but endure compromised health-related quality of life.14,19 

estrogen                             tamoxifen                            agonistic effects                  antagonistic effects 

Figure 1. Working mechanism of tamoxifen
I. Estrogen stimulates growth and division of breast cancer cells by binding to the estrogen receptor; II. 
Tamoxifen prevents estrogen from binding to the estrogen receptor, thereby preventing potential microscopic 
residual disease from progressing; III. Tamoxifen works in the brain as an estrogen receptor antagonist, 
leading to hot flashes; IV. In the endometrium, tamoxifen works as an estrogen receptor agonist, thereby 
causing vaginal discharge 
Figure created with Biorender. 

Tamoxifen is known for its complex metabolism. It is metabolized into multiple 
metabolites, which is catalyzed by many phase I and phase II metabolizing enzymes.20 
Most importantly, tamoxifen is metabolized by cytochrome P450 (CYP) enzymes 
CYP2D6 and CYP3A4 to 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen and endoxifen 
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(Figure 2). Among these metabolites, both endoxifen and 4-hydroxy-tamoxifen 
exhibit the highest affinity for the estrogen receptor, surpassing tamoxifen by more 
than 300 times.21 However, endoxifen is considered the most important metabolite 
resulting from its higher plasma concentration compared to other metabolites.22,23 
Several retrospective studies have revealed an exposure-response relation between 
endoxifen levels and tamoxifen efficacy with suggested endoxifen thresholds ranging 
from 10 to 16 nM.24-26 Among these thresholds, 16 nM is the most widely accepted, as 
demonstrated by the largest study conducted to date.24 It is also the most conservative 
threshold, minimizing the likelihood of patients continuing to use an ineffective 
dose. Nevertheless, thus far, no prospective study has succeeded in confirming the 
‘definitive’ endoxifen efficacy threshold, likely due to insufficient statistical power.27-29

Therapeutic drug monitoring (TDM) is a therapeutic strategy wherein drug plasma 
concentrations are measured and doses are adjusted based on these measurements 
in order to achieve a therapeutic threshold.30 The threshold of 16 nM is determined 
while comparing different quantiles of endoxifen exposure. Therefore, approximately 
20 percent of patients have endoxifen levels below the supposed threshold of 16 nM 
when using the standard dose of tamoxifen 20 mg. TDM can be used to increase 
the percentage of patients with endoxifen concentrations exceeding 16 nM. Earlier 
studies have demonstrated the feasibility of implementing TDM for tamoxifen in clinical 
practice.31,32  By implementing dose-escalations to tamoxifen 30 or 40 mg in patients 
with endoxifen levels below 16 nM, the percentage of patients with ‘too low’ endoxifen 
levels was nearly halved.  
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Figure 2. Metabolism of tamoxifen
I. A simplified, schematic overview of the metabolism of tamoxifen; II. Endoxifen and 4-hydroxy-tamoxifen 
have the highest affinity with the estrogen receptor, compared to tamoxifen and n-desmethyl-tamoxifen. 
However, endoxifen also has the highest concentration in the blood. 
Figure created with Biorender. 

PART I. Tamoxifen and adverse effects 
In this thesis, we first have searched for possible solutions to decrease tamoxifen-
related adverse effects because of the high incidence of adverse effects based non-
adherence. A prerequisite for this solution was that sufficient endoxifen levels would 
be attained. 

A potential approach to decrease tamoxifen-related adverse effects could be tamoxifen 
dose reduction. In chapter 2, an overview of existing research concerning lower 
dosages of tamoxifen and their impact on adverse effects and clinical efficacy is 
presented. Additionally, practical tools for implementing tamoxifen dose reductions in 
the adjuvant setting are provided and further research aimed at establishing optimal 
dosing strategies for individual patients is discussed.

While evidence supporting the clinical efficacy and enhanced tolerability of lower doses 
of tamoxifen is well-established in the primary and secondary prevention settings (e.g., 
among patients at higher risk for breast cancer or those with breast carcinoma-in-situ), 
there are almost no studies performed in the adjuvant setting. In chapter 3, we aimed 
to investigate whether endoxifen-guided tamoxifen dose reduction could lead to fewer 
adverse effects in the adjuvant setting while attaining endoxifen levels >16 nM. In this 
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clinical study, patients with bothersome tamoxifen-related adverse effects and endoxifen 
levels >32 nM underwent a dose reduction to tamoxifen 10 mg and before and after dose 
reduction adverse effects, quality of life and endoxifen levels were evaluated. 

In chapter 4, we investigated the combination of tamoxifen and CBD-oil. Primarily, 
the possible pharmacokinetic interaction between tamoxifen and CBD, a main 
component of cannabis,  was assessed. Since tamoxifen has a complex metabolism, 
it is prone for drug-drug or drug-herb interactions. As a secondary aim, we investigated 
whether the use of CBD-oil could be a solution for tamoxifen-related adverse effects. 
CBD is used frequently among patients with breast cancer in the hope to alleviate 
adverse effects.33 CBD can indeed modulate receptors such as the opioid, dopamine, 
melatonin, serotonin and acetylcholine receptors.34 Also the cannabinoid receptors, 
mostly present in the central nervous and immune system, are modulated by CBD.35 
However, CBD might also affect tamoxifen pharmacokinetics since it is a potential 
inhibitor of CYP2D6.36,37 We investigated the pharmacokinetic interaction between 
CBD-oil and tamoxifen and whether there could be a beneficial effect of CBD-oil on 
tamoxifen-related adverse effects and health-related quality of life. 

Tamoxifen can also lead to some more rare, but severe or even dangerous, adverse 
effects. For example, tamoxifen-treated patients face a 2-3.5 times elevated risk 
of venous thromboembolism compared to breast cancer patients without adjuvant 
tamoxifen treatment.39,40 Recent studies have also associated tamoxifen use with a 
decline in cognitive functioning.41,42 Estrogens, acting through estrogen receptor α 
and estrogen receptor β receptors, which are also present in the brain, exert various 
cognitive-enhancing effects in the brain.43,44 Tamoxifen, by inhibiting estrogen action 
via estrogen receptor binding, potentially impacts cognitive function directly and could 
also indirectly affect cognition through other tamoxifen-related adverse effects such 
as fatigue and mood disturbances.43,45 Consequently, cognitive decline is a plausible 
side effect of tamoxifen. Considering TDM and subsequent dose adjustments, it is 
important to know whether higher plasma concentrations of tamoxifen and endoxifen 
can influence the incidence of these (more long-term) adverse effects. 

It is not clearly understood how tamoxifen increases the venous thromboembolism 
risk, but it is known that tamoxifen decreases anticoagulant proteins, including 
antithrombin, protein C and tissue factor pathway inhibitor, and enhances thrombin 
generation.46-48 In chapter 5, we have investigated the levels of antithrombin, protein 
C, tissue factor and thrombin generation in tamoxifen users and assessed the potential 
relation of this tamoxifen-associated coagulation proteins with tamoxifen dose and 
tamoxifen and endoxifen plasma levels. 
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In chapter 6, we aimed to evaluate the effect of two years of tamoxifen treatment on 
subjective and objective cognitive function (measured using the Amsterdam Cognition 
Scan, a validated online neuropsychological test battery) in a large cohort of women 
with breast cancer. In addition, we investigated the association between tamoxifen 
and endoxifen plasma concentrations and objective and subjective cognitive function.  

PART II. Tamoxifen Model-informed precision dosing 
One drawback of TDM is that dose adjustments can only be performed once 
steady-state plasma concentrations are reached, which for tamoxifen is after three 
months of therapy. Consequently, patients requiring a tamoxifen dose-escalation 
after TDM might receive suboptimal treatment during the first three to six months 
of therapy.49 Model-informed precision dosing (MIPD) offers a potential solution by 
forecasting the appropriate tamoxifen dose prior to treatment initiation. MIPD relies 
on population-pharmacokinetic (POP-PK) models, which can delineate and predict 
the drug's absorption, distribution, metabolism, and elimination based on various 
patient characteristics. Hereby, plasma concentrations can be forecasted during or 
even before treatment.50

A POP-PK model is developed using Non-linear Mixed Effects Modelling (NONMEM). 
NONMEM is a powerful mathematic approach used to describe pharmacokinetics and/
or pharmacodynamics.51 It describes the course of these outcomes using mathematical 
formulas. By doing so, these models can help explain complex relationships between 
drug doses, blood concentrations and physiological responses.52 Additionally, these 
models quantify both inter- and intra-individual variability in pharmacokinetics acquiring 
individual-specific key pharmacokinetic parameters. This can be used to predict the 
correct dose and to explain variability between patients or dosing cycles by testing 
correlations of these parameters with patient characteristics. Thereby, NONMEM could 
be a tool to aid personalized medicine.

To date, six population POP-PK models have been developed to describe the 
pharmacokinetics of both tamoxifen and endoxifen.53-58 These models showed that 
inter-individual variation in the rate of endoxifen formation was for the largest part 
explained by CYP2D6 phenotype or CYP2D6 activity score groups. In chapter 7 we 
developed a POP-PK model where CYP2D6 activity per allele was estimated on a 
continuous scale with the goal of developing a more sensitive POP-PK model for 
tamoxifen. Dense and sparse data from 3661 samples of 539 patients were used in 
this model. After inclusion of covariates, the model was subsequently validated using 
an independent external dataset (of in total 378 patients).  
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In chapter 8, the aforementioned PK-model was used in the implementation of MIPD 
before start of tamoxifen treatment. Age, body height, BMI and CYP2D6 activity 
(continuous scale) were used as predictors for steady-state endoxifen concentrations 
and based on these predictions, patients were prescribed a tamoxifen starting dose 
of 20, 30 or 40 mg. The aim of this study was to increase the proportion of patients 
achieving an endoxifen level >16 nM at the moment of steady-state and thereby 
potentially improve treatment outcomes. 

PART III. CDK4/6 inhibitors 
Cyclin-dependent kinase (CDK) 4/6 inhibitors are relatively new, targeted drugs in 
the treatment of advanced or metastatic estrogen receptor-positive breast cancer. 
As advanced or metastatic breast cancer is an incurable disease, the main purpose 
of treatment is to delay disease progression. CDK4/6 inhibitors target the cyclin-
dependent kinases 4 and 6, which are crucial in cell cycle regulation (Figure 3).59,60 
The CDK-RB1-E2F pathway is essential for progression through the cell cycle. 
CDK4 and CDK6 are normally kept in check by the protein p16 thereby inhibiting 
the binding between CDK4/6 and cyclin D, but this mechanism of cell cycle control 
is often disrupted in cancer.59 In breast cancer specifically, activation of estrogen 
receptors and other proliferation-inducing signals further stimulate the complexation of 
CDK4/6 with cyclin D1.59,61 This binding triggers phosphorylation of the retinoblastoma 
tumor suppressor protein (Rb1), releasing the binding with transcription factor E2F.60 
Consequently, the signal for (uncontrolled) cell division is initiated. However, when 
CDK4 and CDK6 are inhibited, Rb1 remains dephosphorylated.61 In dephosphorylated 
state, Rb1 can stay bound to the transcription factor E2F which is then unable to 
function, thereby halting (cancer) cell cycle progression. 

Palbociclib, ribociclib and abemaciclib are the three CDK4/6 inhibitors currently 
registered for the treatment of advanced or metastatic estrogen receptor-positive 
breast cancer. In both first and second line of treatments, all CDK4/6 inhibitors have 
demonstrated nearly doubling of progression free survival rates.62-67 When used in 
first line, CDK4/6 inhibitors are administered alongside aromatase inhibitors, while 
in second line they are combined with fulvestrant, an estrogen receptor antagonist. 
Endocrine therapy effectively suppresses estrogen-dependent stimulation of cancer 
cells, leading to downregulation of cyclin D1 and reduced formation of cyclin D1 with 
CDK4 and CDK6 (Figure 3).61 Therefore, endocrine therapy and CDK4/6 inhibitors are 
hypothesized to work synergistically. 
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CDK4/6
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CDK4/6 
inhibitors

CDK4/6
Cyclin D

p16

E2F
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Rb1Rb1
P P P
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Figure 3. Working mechanism of CDK4/6 inhibitors
I. Disrupted CDK-RB1-E2F pathway in breast cancer. The protein p16 no longer inhibits the complexation 
of CDK4 and 6 with cyclin D. Activation of the estrogen receptor by estrogen even further stimulates this 
complexation. When CDK4 and 6 bind to cyclin D, this stimulates the phosphorylation of tumor suppressor 
protein Rb1. When phosphorylated, Rb1 releases transcription factor E2F which can cause uncontrolled cell 
division; II. Mechanism of CDK4/6 inhibitors. While p16 is still no longer inhibiting the complexation of CDK4 
and 6 with cyclin D, CDK4/6 inhibitors can overtake this function. Also, due to the endocrine therapy there 
is less estrogen-dependent stimulation. Therefore, cyclin D is downregulated and cannot bind to CDK4/6 
causing Rb1 to remain dephosphorylated. E2F will then remain bound to Rb1 and the cell division is inhibited. 
Figure created with Biorender. 

Since CDK4/6 inhibitors demonstrated comparable effectiveness in both first- and 
second line treatment, it was unclear in which line CDK4/6 inhibitors could best be 
applied. To address this question, the SONIA-study was initiated.68,69 This study 
compared the addition of a CDK4/6 inhibitor alongside an aromatase inhibitor in 
the first line with its addition alongside fulvestrant in the second line. No significant 
difference in progression-free survival after two lines of treatment was observed 
between patients who received a CDK4/6-inhibitor in the first versus the second line, 
while adverse events were higher among patients who received a CDK4/6-inhibitor in 
the first line. Consequently, for most patients, second line treatment may emerge as 
the preferred option.

The most frequent adverse effect in CDK4/6 inhibitors is neutropenia, with an incidence 
of 60% in patients using palbociclib or ribociclib (grade 3 or higher) and 20% of 
patients using abemaciclib.63,65,73 This discrepancy is probably due to the fact that 
abemaciclib is a more potent inhibitor of CDK4 than CDK6 and CDK6 is more important 
in the hematopoesis.74,75 On the contrary, diarrhoea is much more frequent in patients 
using abemaciclib (10% grade 3 or higher), since abemaciclib also inhibits CDK9, a 
kinase linked to intestinal toxicity.65,76,77 Other frequently occurring adverse effects are 
anemia, thrombocytopenia, fatigue and nausea.62,65,73 Moreover, prolongation of QTc 
interval is a specific concern for patients receiving ribociclib.73 
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In chapter 9 we delved into another, less frequently described adverse event observed 
across all types of CDK4/6 inhibitors: the elevation of creatinine levels.66,74,78,79 Such 
an increase could indicate a decline in renal function. However, it is important to note 
that creatinine levels can also rise if tubular secretion of creatinine is inhibited. Active 
tubular secretion accounts for 10-40% of creatinine clearance and is mediated trough 
the organic cation transporter 2 (OCT2) on the basolateral membrane of the proximal 
tubules and the multidrug and toxin extrusion (MATE) protein1 and 2 on the apical 
membrane.80,81 In vitro research has demonstrated that abemaciclib can inhibit all 
three of these transporters, while ribociclib inhibits OCT2 and MATE1 and palbociclib 
solely inhibits OCT2.82 When creatinine levels rise due to inhibition of tubular secretion, 
while kidney function actually remains intact, this is called pseudo-acute kidney injury. 
The incidence of pseudo-acute kidney injury in patients using CDK4/6 inhibitors is 
currently unknown. In clinical practice, encountering an elevated plasma creatinine 
level prompts an investigation into the underlying cause of the acute kidney injury 
(AKI). Also, CDK4/6 inhibitors or other important, but nephrotoxic medication might 
be interrupted or decreased in dose. However, if pseudo-AKI emerges as a common 
issue in patients using CDK4/6 inhibitors, incorporating the measurement of cystatin C 
could offer a solution. Therefore, we aimed to determine the incidence of pseudo-AKI 
in patients treated with CDK4/6 inhibitors by assessing both creatinine and cystatin 
C in plasma. 

Among patients using CDK4/6 inhibitors there is a large variability in clinical efficacy and 
toxicity rates. This difference might be explained by a variability in pharmacokinetics. 
Indeed, all CDK4/6 inhibitors have a large inter-patient variability in, for example, trough 
plasma concentrations.83,84 For palbociclib specifically, the IC50 concentration, which 
is the plasma concentration to inhibit the target for 50% in vitro, are 33.5 and 48.7 
ng/mL for CDK4 and CDK6, respectively.84,85 This concentrations are almost similar 
to the average trough concentration of 47 ng/mL which suggests that palbociclib 
might be very sensitive for changes in exposure.83 If an efficacy or toxicity threshold 
for palbociclib (or other CDK4/6 inhibitors) can be found, this could guide in dose 
adjustments already at start of treatment. 

To better understand pharmacokinetics of palbociclib, a POP-PK model could help. 
Therefore, in chapter 10, a POP-PK model of palbociclib was developed. Using 
this POP-PK model we aimed to investigate whether a relationship exists between 
palbociclib levels and progression free survival or adverse events. 

Finally, chapter 11 provides a summary of this thesis and discusses future perspectives 
and the possibilities for further research.
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CHAPTER 2 

ABSTRACT 
Tamoxifen, a cornerstone in the adjuvant treatment of estrogen receptor-positive breast 
cancer, significantly reduces breast cancer recurrence and breast cancer mortality; 
however, its standard adjuvant dose of 20 mg daily presents challenges due to a 
broad spectrum of adverse effects, contributing to high discontinuation rates. Dose 
reductions of tamoxifen might be an option to reduce treatment-related toxicity, but 
large randomized controlled trials investigating the tolerability and, more importantly, 
efficacy of low-dose tamoxifen in the adjuvant setting are lacking. We conducted 
an extensive literature search to explore evidence on the tolerability and clinical 
efficacy of reduced doses of tamoxifen. In this review, we discuss two important 
topics regarding low-dose tamoxifen: 1) the incidence of adverse effects and quality 
of life among women using low-dose tamoxifen; and 2) the clinical efficacy of low-dose 
tamoxifen examined in the preventive setting and evaluated trough the measurement 
of several efficacy derivatives. Moreover, practical tools for tamoxifen dose reductions 
in the adjuvant setting are provided and further research to establish optimal dosing 
strategies for individual patients are discussed. 
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INTRODUCTION 
Tamoxifen is a selective estrogen receptor (ER) modulator frequently used in the 
treatment of ER-positive breast cancer. In the adjuvant setting, tamoxifen 20 mg 
daily for 5 years reduces the breast cancer recurrence rate by approximately 40% 
during the first 10 years of follow-up and decreases the annual breast cancer death 
rate by one third.1,2 Tamoxifen is recommended for a duration of 5-10 years for 
premenopausal patients and for 2-3 years for postmenopausal patients followed by 
3-7 years of an aromatase inhibitor.3-5 Tamoxifen has been registered since 1973, 
but is still a cornerstone in the treatment of ER-positive breast cancer, especially for 
premenopausal women.6 

As an ER-modulator, besides being an ER-agonist, tamoxifen also acts as an ER-
antagonist, depending on the specific ER-containing tissue to which it binds.7 Several 
healthy tissues express ER. As a consequence, a variety of (endocrine) adverse effects 
can occur after tamoxifen, or its metabolites, bind to these receptors. For example, 
hot flashes are probably caused by an ER-antagonistic effect in the central nervous 
system, since ERs are also present in the brain, which leads to thermoregulatory 
dysfunction.8 In contrast, tamoxifen’s ER-agonistic effect in the endometrium can 
cause endometrial abnormalities and vaginal discharge.7 Other mentioned bothersome 
adverse effects are arthralgia, insomnia, mood alterations, weight gain and vaginal 
dryness.9 Venous thromboembolism (VTE) and endometrial cancer can also occur 
and, although rare, are serious adverse effects of tamoxifen.10-12 The aforementioned 
adverse effects can have a huge impact on the patient's quality of life, especially since 
the duration of treatment in the adjuvant setting can be up to 10 years.13 This becomes 
painfully visible as almost half of the patients discontinue tamoxifen within 5 years 
due to adverse effects and one-third of these patients discontinue tamoxifen already 
within the first year of treatment.14-17 Another substantial group of patients adheres to 
tamoxifen therapy while compromising on health-related quality of life.9,13 

Tamoxifen is a prodrug and is metabolized by cytochrome P450 (CYP) enzymes 
CYP2D6 and CYP3A4 to 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen and endoxifen.18 
Both endoxifen and 4-hydroxy-tamoxifen have the highest affinity for the ER (more than 
300 times higher than tamoxifen); however, endoxifen is considered the most important 
metabolite because it also has the highest plasma concentrations of all metabolites.19-21 
Several retrospective studies among primary breast cancer patients using tamoxifen 
20 mg have indicated an exposure-response relation between endoxifen levels and 
tamoxifen efficacy, with suggested endoxifen thresholds varying from 10 to 16 nM.22-24 
Of these thresholds, 16 nM is the most widely accepted, as shown in the largest study 
thus far (1370 patients23 compared to 8622 and 306 patients24). It is also the most 
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conservative threshold, minimizing the chance of patients inappropriately continuing 
to use an ineffective dose.25,26 However, until now no prospective study was able 
to confirm the ‘definitive’ endoxifen efficacy threshold, possibly due to inadequate 
statistical power.27-29 The effect of tamoxifen and metabolite levels on the occurrence 
of adverse effects remains largely unclear. While some studies found no association 
between tamoxifen, endoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen and 
adverse effects30,31, others showed an association between elevated tamoxifen or 
endoxifen levels and increased adverse effects.32,33 Notably, none of the patients in 
these studies were treated with tamoxifen doses that were lower than the standard 
dose of 20 mg.

The high incidence of tamoxifen-related adverse effects affecting quality of life, as 
well as the high discontinuation rate of tamoxifen among patients with ER-positive 
breast cancer, raises the question whether reducing the dose of tamoxifen could lead 
to a better toxicity profile without reducing its efficacy. In the primary (for those at 
increased risk for breast cancer) and the secondary (for patients with premalignant 
lesions) chemoprevention setting, tamoxifen 20 mg is also recommended in National 
Comprehensive Cancer Network (NCCN) and American Society of Clinical Oncology 
(ASCO) guidelines, as it can reduce the risk for breast cancer development by one-
third.34-37 After a successful randomized controlled trial (RCT), low-dose tamoxifen 
(5 mg) is also considered an option in the primary and secondary chemoprevention 
setting.34,35,38 In the adjuvant setting, no RCT between tamoxifen 20 mg and lower 
doses of tamoxifen has been performed thus far. Given the impressively large number 
of patients needed, together with the long duration of follow-up that would be required 
to obtain firm conclusions 29,39, it is highly unlikely that such a study will ever be 
conducted. To determine whether there are other possibilities to solve this pressing 
question, the current literature was systematically reviewed to discuss two important 
topics: 1) tamoxifen-related adverse effects in women using low-dose tamoxifen 
compared with the standard adjuvant dose of 20 mg or placebo; and 2) clinical efficacy 
of low-dose tamoxifen compared with standard dose tamoxifen or placebo. Finally, 
based on these findings, we attempted to provide practical advice on how to respond 
when patients experience bothersome adverse effects of tamoxifen.

METHODS 
We conducted a search of the Embase, Medline ALL, Web of Science Core Collection 
and the Cochrane Register of Controlled Trials databases using the following search 
terms: “(tamoxifen) AND (drug dose reduction OR drug underdose) OR (tamoxifen 
NEAR (dose OR dosage OR reduct OR decreas OR tapering OR low OR lower OR 
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regiment OR de-escalat OR adjustment OR modificat OR alter OR altered OR change 
OR dependent OR underdose OR underdosage)” up to December 1st 2023. We excluded 
reviews, guidelines and editorials, prequels from other published studies, studies 
where no lower doses of tamoxifen (i.e. below the standard adjuvant dose of 20 mg) 
were investigated, studies where tamoxifen was not continuously administered, and 
studies where no adverse effects,  clinical efficacy or suitable derivatives for clinical 
efficacy of tamoxifen were assessed. To qualify as a 'suitable derivative for tamoxifen 
efficacy', the following criteria had to be met: 1) the derivative had to be associated with 
breast cancer risk; 2) the derivative could be influenced by tamoxifen and; 3) alteration 
of the derivative after tamoxifen could predict the long-term efficacy of tamoxifen. 

RESULTS 
Based on the systematic search, a total of 2081 results were found and screened 
by title or abstract for relevance, leading to 106 relevant abstracts; 19 articles were 
eventually included in this review. An overview of the article selection can be found in 
Figure 1, and the studies discussed in this review can be found in Table 1. 

Records identified through database 
searching and screened for title and 

abstract n = 2081

Full text articles assessed for 
eligibility n = 106

Studies assessing our two 
research questions  

n = 19

Records excluded
n = 1975

Records excluded n = 87
Review/guideline n = 34
No adequate biomarker n = 21
Conference abstract only n = 11
No low dose tamoxifen n = 11
Prequel other study n = 6
No continuous tamoxifen dosing n = 2
Full-text not available in English n = 1
Trial in progress n = 1

Figure 1. Article selection; articles found by systematic search up to December 1st 2023 
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Dose of tamoxifen and side effects 
To determine whether taking a lower dose of tamoxifen can decrease the high 
incidence of adverse effects, we first investigated whether low-dose tamoxifen leads 
to fewer adverse effects. An overview of the results considering low-dose tamoxifen 
and menopausal symptoms can be found in Table 2. Low-dose tamoxifen is defined 
as all tamoxifen doses below the standard dose of 20 mg daily. 

Menopausal symptoms 
Low-dose tamoxifen (<20 mg once daily) compared with standard-dose tamoxifen 
(20 mg once daily) 

Two studies compared the adverse effects of different levels of low-dose tamoxifen with 
that of a standard daily dose of tamoxifen 20 mg, and both showed a trend towards 
fewer adverse effects with low-dose tamoxifen.43,44,52 The first study was a large RCT 
randomizing 1230 healthy women with high mammographic density between placebo 
and tamoxifen 1, 2.5, 5, 10 or 20 mg daily for 6 months. Adverse effects were self-
reported using five-point Likert scale questionnaires assessing symptoms of anti-
hormonal treatment of breast cancer. In this study, lower doses of tamoxifen led to fewer 
adverse effects, specifically in vasomotor and gynecologic symptoms as well as muscle 
cramps.43,44 This reduction was however confined to premenopausal women.44 In the 
other much smaller study (n = 120) tamoxifen 1 , 5 or 20 mg daily was administered for 
4 weeks preoperatively to patients with invasive breast cancer. Patients in the 1 or 5 mg 
tamoxifen group experienced fewer hot flashes (32% and 36% in the 1 and 5 mg groups, 
respectively, vs 50% in the 20 mg group) and less vaginal discharge (26% and 22% in the 
1 and 5 mg group, respectively, vs. 47% in the 20 mg group) compared with patients in 
the tamoxifen 20 mg group52; however, these differences were not statistically significant, 
likely because of the small numbers of patients under study (only 40 participants per 
dose group). From this data, it can be concluded that lower doses of tamoxifen seem 
to lead to fewer adverse effects than the standard dose.43,44,52 

Low-dose tamoxifen (<20 mg once daily) compared with placebo 

The use of hormonal replacement therapy (HRT) in healthy women is associated with 
an increased risk for breast cancer development compared with non-users.58 In two 
primary prevention studies among healthy postmenopausal women using HRT for 
menopausal symptoms, women were randomized between low-dose tamoxifen or 
placebo.40,41 Besides the incidence of invasive breast cancer, menopausal symptoms 
were assessed in detail in both studies. In the smaller study (n = 210) no difference was 
found in 12 menopausal symptoms between women taking low-dose tamoxifen for 1 
year compared with placebo.41 Women were randomized between tamoxifen doses of 
1 mg daily, 5 mg daily, or 10 mg weekly, i.e. two-thirds of the women taking tamoxifen 
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received a very low tamoxifen dose (1 mg tamoxifen daily or 10 mg tamoxifen weekly). 
There was a trend towards more hot flashes, sweating and vaginal discharge when 
total weekly dose of tamoxifen increased. The second, much larger study (n = 1884) 
showed that using tamoxifen 5 mg daily for 5 years led to more hot flashes, nights 
sweats, vaginal discharge and vaginal dryness compared with placebo.40 The question 
is how generalizable these findings are for the general population, since, in this study, 
there was a clear preselection of women who had already proven to have complaints 
related to the physiological menopause for which they used HRT. 

In three prevention studies of patients with ductal carcinoma-in-situ (DCIS) or lobular 
carcinoma in situ (LCIS; n = 50038,45 and n = 23550,51) and patients with a history of 
chest-irradiation (n = 72)42, the use of tamoxifen 5 mg daily for a period of 2-3 years 
was compared with placebo. Studies assessed adverse effects using Common 
Terminology Criteria for Adverse Events (CTCAE), patient-reported symptoms, or 
menopause-related adverse effects questionnaires. In most of the over 40 evaluated 
adverse effects, no significant differences between tamoxifen and placebo were found. 
The same accounted for four menopausal quality-of-life domains. However, compared 
with placebo, tamoxifen did lead to increased frequency of hot flashes, but without 
an increase in the intensity of the hot flashes38 as well as more fatigue and myalgia.42 
Unfortunately, in the latter study, no correction for multiple testing was done despite 
comparing 26 different adverse effects.

Overall, low doses of tamoxifen (≤5 mg daily) showed a good safety profile. Although 
some increase in adverse effects was found with low-dose tamoxifen compare with 
placebo in three of five prevention studies, this was in a minority of the evaluated 
adverse effects.38,40,42 

Effect of lowering the tamoxifen dose 

Two single-arm studies assessed the effect on adverse effects of a dose reduction of 
standard tamoxifen dose (20 mg) in the adjuvant setting in patients who experienced 
tamoxifen-related adverse effects.56,57 In the first study, tamoxifen dose was decreased 
from 20 to 10 mg daily in 20 patients with invasive breast cancer experiencing severe 
hot flashes. The investigators evaluated the effects using a specific hot flash diary 
and measured subjective improvement in hot flashes after 8 weeks of taking the 
reduced dose of tamoxifen 10 mg.56 Seventeen patients (85%) reported a subjective 
improvement in hot flashes after dose reduction. There was a numeric difference in hot 
flash score (131 points with a 20 mg dose vs. 47 points with a 10 mg dose), although this 
did not statistically differ. In a second study from our own group, the tamoxifen dose 
was reduced from 20 to 10 mg daily for 3 months in 17 patients with invasive breast 
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cancer experiencing bothersome tamoxifen-related adverse effects who also had an 
endoxifen level >32 nM  (i.e. two times the conservative endoxifen efficacy threshold of 
16 nM).23,57 Endocrine symptoms (primary endpoint) and health-related quality of life, 
both measured using the FACT-ES questionnaire59, were assessed at baseline and after 
3 months of using a lower dose of tamoxifen. Both endocrine symptoms and health-
related quality of life improved statistically significant and clinically meaningful in 41% 
and 65% of patients, respectively. Almost three-quarters of the patients graded the 
improvement in tamoxifen-related adverse effects after tamoxifen dose reduction as 
sufficient. Endocrine symptoms and health-related quality of life were also compared 
in 60 patients who continued to take tamoxifen 20 mg for 3 months. No improvements 
were seen in this group over time.57 From these two studies, it seems that lowering the 
dose of tamoxifen compared with a standard dose improves tolerability by reducing 
menopausal symptoms, although performance bias due to the fact that patients were 
not blinded for dose reduction cannot be fully excluded.

Severe adverse effects: endometrial cancer and venous thromboembolism 
Beside menopausal symptoms, tamoxifen can also lead to some rare but severe adverse 
effects, such as VTE and endometrial cancer. The rate of endometrial cancer increases 
approximately two to three times with tamoxifen compared with breast cancer patients 
not using tamoxifen, although the absolute incidence is very low (1.6/1000 patients).60 
The risk increases with a longer duration of tamoxifen therapy61, likely due to increasing 
cumulative tamoxifen dose.62 Endometrial polyps also occur more frequently with 
tamoxifen use compared with non-users (>10% incidence after 4 years of tamoxifen 
standard dose in postmenopausal patients compared with non-tamoxifen users) and can 
transform into endometrial cancer.63,64 It would be very beneficial if reducing the dose of 
tamoxifen due to severe menopausal symptoms could also diminish these risks. 

Five studies that investigated the influence of low-dose tamoxifen on endometrial 
polyps38,40,50 or endometrial cancer were identified.40,47,49 All three studies that 
investigated the incidence of endometrial cancer, using low-dose (20 mg weekly, 5 
mg daily) tamoxifen for 2 to 5 years with a follow-up time of at least 5 years, included a 
large number of women (sample sizes reaching from 500 to 1884). Two studies included 
patients in a secondary chemoprevention setting47,49 and one study investigated 
healthy women receiving HRT.40 None of these studies found an increased incidence 
of endometrial cancer in the low-dose tamoxifen group compared with the placebo 
group.40,47,49 Three studies investigated low-dose tamoxifen and the incidence of 
endometrial polyps.38,50 In two small studies in the secondary chemoprevention setting 
(n = 500 and n = 235), a trend towards a higher incidence of endometrial polyps was 
found for women using tamoxifen 5 mg for 3 years compared with placebo, although 
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this was not statistically significant (11% vs. 7% p = 0.62; and 2.8% vs. 1.6% p = 0.54, 
respectively).38,50 The third much larger study among women receiving HRT (n = 1884) 
found an almost five times higher significant increase in endometrial polyps among 
those taking a daily dose of tamoxifen 5 mg for 5 years compared with placebo (2.9% 
in the tamoxifen group vs. 0.6% in the placebo group; relative risk [RR] 4.74, 95% 
confidence interval [CI] 1.96-11.5).40 These findings imply that there is an increased 
risk of developing endometrial polyps when using low-dose tamoxifen compared 
with placebo, although it is unknown how the low-dose tamoxifen polyp incidence 
compares with that of standard-dose tamoxifen.

A tamoxifen dose of 20 mg daily results in a RR for VTE ranging from 1.6 to 3.0.65-68  
The reported VTE incidence was 1-3% during standard dose tamoxifen treatment, and 
most events occur within the first 2 years of treatment.69,70 Two studies compared the 
incidence of VTE between tamoxifen 5 mg daily for 3-5 years and placebo. One study 
was performed in healthy women receiving HRT (n = 1884) and the other study was 
performed in patients with carcinoma in situ (n = 500). No significant difference was 
found (0.5% for tamoxifen vs. 0.2% for placebo [RR 2.64, 95% CI 0.51-13.6] and 0.4% 
for both tamoxifen and placebo with a p-value of 1.0, respectively) over a follow-up 
period of 6-10 years.40,46 Although the first mentioned study was in women receiving 
HRT,40 which might have influenced the VTE incidence because HRT leads to a higher 
VTE risk itself,71 the absolute incidence for VTE is very low. These findings support 
the idea that a reduction in tamoxifen dose may lead to a lower incidence of VTE than 
standard tamoxifen dosing, although this has not been directly investigated.  

Dose of tamoxifen and clinical efficacy 
Thus far, no RCT investigating the efficacy between a standard tamoxifen dose of 20 
mg and lower doses of tamoxifen in the adjuvant setting has been conducted and 
is highly unlikely to be conducted given the impressively large number of patients 
needed, together with the long duration of follow-up that is required. Consequently, 
direct evidence elucidating the clinical efficacy of lower tamoxifen doses in the adjuvant 
setting is lacking. To answer the question whether lower doses of tamoxifen still have 
antitumor efficacy, a search was conducted for articles that evaluated lower doses 
of tamoxifen versus standard dose or placebo using derived measures of tamoxifen 
efficacy in the adjuvant setting. First, the efficacy of low-dose tamoxifen in preventing 
the development of breast cancer (primary and secondary chemoprevention) will be 
discussed. Second, two derived measures of tamoxifen efficacy are discussed: 1) 
the effect of tamoxifen on mammographic density; and 2) the effect of tamoxifen on 
the proliferation marker Ki67. An overview of the results of low-dose tamoxifen on the 
different clinical efficacy derivatives can be found in Table 3.
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Table 2. Studies regarding toxicity of low-dose tamoxifen

  First author, year Population Type of study Outcome Strength

Low-dose 
tamoxifen vs. 
standard dose 

Eriksson, 202143 Healthy women with high mammographic density 
>5%

RCT Significantly fewer vasomotor symptoms in the tamoxifen 1 mg 
(-15.5%, 95% CI -23.9 to -7.0), 2.5 mg (-13.5%, 95% CI -22.1 
to -4.9) and 5 mg tam (-9.6%, 95% CI -18.4 to -0.8) groups 
compared with tamoxifen 20 mg (34%, 95% CI 27.8-40.7). 
Significantly fewer gynecologic symptoms in the tamoxifen 1 
mg (-8.0, 95% CI -15.3 to -0.7) and 5 mg (-9.2, 95% CI -16.4 to 
-2.1) groups compared with tamoxifen 20 mg (21.2%, 95% CI 
16.1-27.3)

Moderate, adverse effects were no primary 
endpoint but the study was an RCT and had a large 
sample size. However, adverse effects in different 
tamoxifen or placebo groups were only compared 
with tamoxifen 20 mg and not with each other

Hammarström,
202344

Healthy women with high mammographic density 
>5%

RCT Significantly fewer adverse effects in premenopausal women 
taking tamoxifen 2.5/5 mg compared with women taking 
tamoxifen 10/20 mg (sum of mean Likert score change: 1.61 
(95% CI 1.17-2.04) vs. 2.47 (95% CI 1.98-2.96)

Moderate, see Eriksson 2021.43 Moreover, adverse 
effects In this study were compared between low 
(2.5/5mg) and high (10/20mg) tamoxifen doses 
although 10 mg should also be considered as low-
dose tamoxifen

Decensi, 200352 Women >45 years of age with ER and/or PR+ BC RCT No significant difference between tamoxifen dose groups for 
HF (tamoxifen 1 mg, 32%; tamoxifen 5 mg, 36%; and tamoxifen 
20 mg, 50%) or vaginal discharge (tamoxifen 1 mg, 26%; 
tamoxifen 5 mg, 22%; tamoxifen 20 mg, 47%)

Low, not powered for adverse effect analysis, small 
sample size and treatment for only 4 weeks

Low-dose 
tamoxifen vs. 
placebo

Decensi, 200950 
Serrano, 201851

Premenopausal women with DCIS/LCIS, (n = 160), 
5-year Gail Risk >1.3% (n = 54),  pT1mic/PT1a BC 
(n = 21)

RCT No significant difference between tamoxifen and placebo in 
HF (38% vs. 37%) and vaginal discharge (38% vs 23%). No 
significant difference in four menopausal QOL domains

Low, not powered for adverse effect analysis 

Bhatia, 202142 Healthy women with a history of chest radiation RCT No significant difference between tamoxifen and placebo 
in 26 patient-reported symptoms  with the exception of 
myalgia (tamoxifen 21% vs. placebo 3%; p = 0.02) and fatigue 
(tamoxifen 29% vs. placebo 8%; p = 0.03)

Low, not powered for adverse effect analysis and 
small sample size. No correction for multiple testing 
has been performed despite testing 26 items

Decensi, 201938 
Buttiron Weber, 
202145 

Women <75 years with ER+ or unknown atypical 
ductal hyperplasia, DCIS or LCIS

RCT No significant difference between tamoxifen and placebo 
in vaginal discharge, dryness or pain with intercourse, 
musculoskeletal symptoms or arthralgia and HF score. 
Significantly higher daily number of HF with tamoxifen (RR 
1.46, 90% CI 1.05-2.00)

High, adverse effects were no primary endpoint but 
the study was an RCT and had a large sample size

Decensi, 200741 Healthy postmenopausal women <60 years using 
HRT or about to start it for menopausal symptom 
relief

RCT No significant difference between the tamoxifen groups and 
placebo in 12 menopausal symptoms

Low, not powered for adverse effect analysis, 
no comparison between placebo and different 
tamoxifen dose groups

Decensi, 201340 Healthy postmenopausal women using HRT for 
menopausal symptom relief

RCT Significantly more HF (RR 1.78, 95% CI 1.48-2.15), night sweats 
(RR 1.62, 95% CI 1.34-1.97), and vaginal dryness (RR 1.49, 
95% CI 1.25-1.76) and discharge (RR 2.13, 95% CI 1.71-2.65) 
with tamoxifen

Moderate, tamoxifen was combined with HRT 
in patients with menopausal symptoms and is 
therefore less comparable with clinical practice, but 
the study has a large sample size and  was an RCT

Low-dose 
tamoxifen in 
the adjuvant 
setting 
(without a 
control group)

Lee, 201956 Patients using adjuvant tamoxifen for primary BC 
with severe hot flashes when taking tamoxifen 20 
mg

Prospective 
intervention study

No significant difference after dose reduction from tamoxifen 
20 mg (median HF score 131, IQR 22-1482) to 10 mg tam 
(median HF score 47, IQR 5-864); p = 0.24

Low, not powered to find a difference in hot flash 
score and no focus on other adverse effects; study 
was not blinded or randomized

Buijs, 202357 Patients using adjuvant tamoxifen for primary BC 
with severe adverse effects and endoxifen levels 
>32 nM when taking tamoxifen 20 mg

Prospective 
intervention study 

Clinically relevant improvement in endocrine symptoms in 
41% of patients after dose reduction from tamoxifen 20 mg to 
tamoxifen 10 mg (90% CI 21-65%; p = 0.038)

Moderate, powered for difference but study was not 
blinded or randomized 

BC breast cancer, DCIS ductal carcinoma in situ, LCIS lobular carcinoma in situ, HRT hormone replacement 
therapy, ER estrogen receptor, PR progesterone receptor, RCT randomized controlled trial, sign: significant, 
HF hot flashes, QOL quality of life, RR relative risk, CI confidence interval, IQR interquartile range 
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Table 2. Studies regarding toxicity of low-dose tamoxifen

  First author, year Population Type of study Outcome Strength

Low-dose 
tamoxifen vs. 
standard dose 

Eriksson, 202143 Healthy women with high mammographic density 
>5%

RCT Significantly fewer vasomotor symptoms in the tamoxifen 1 mg 
(-15.5%, 95% CI -23.9 to -7.0), 2.5 mg (-13.5%, 95% CI -22.1 
to -4.9) and 5 mg tam (-9.6%, 95% CI -18.4 to -0.8) groups 
compared with tamoxifen 20 mg (34%, 95% CI 27.8-40.7). 
Significantly fewer gynecologic symptoms in the tamoxifen 1 
mg (-8.0, 95% CI -15.3 to -0.7) and 5 mg (-9.2, 95% CI -16.4 to 
-2.1) groups compared with tamoxifen 20 mg (21.2%, 95% CI 
16.1-27.3)

Moderate, adverse effects were no primary 
endpoint but the study was an RCT and had a large 
sample size. However, adverse effects in different 
tamoxifen or placebo groups were only compared 
with tamoxifen 20 mg and not with each other

Hammarström,
202344

Healthy women with high mammographic density 
>5%

RCT Significantly fewer adverse effects in premenopausal women 
taking tamoxifen 2.5/5 mg compared with women taking 
tamoxifen 10/20 mg (sum of mean Likert score change: 1.61 
(95% CI 1.17-2.04) vs. 2.47 (95% CI 1.98-2.96)

Moderate, see Eriksson 2021.43 Moreover, adverse 
effects In this study were compared between low 
(2.5/5mg) and high (10/20mg) tamoxifen doses 
although 10 mg should also be considered as low-
dose tamoxifen

Decensi, 200352 Women >45 years of age with ER and/or PR+ BC RCT No significant difference between tamoxifen dose groups for 
HF (tamoxifen 1 mg, 32%; tamoxifen 5 mg, 36%; and tamoxifen 
20 mg, 50%) or vaginal discharge (tamoxifen 1 mg, 26%; 
tamoxifen 5 mg, 22%; tamoxifen 20 mg, 47%)

Low, not powered for adverse effect analysis, small 
sample size and treatment for only 4 weeks

Low-dose 
tamoxifen vs. 
placebo

Decensi, 200950 
Serrano, 201851

Premenopausal women with DCIS/LCIS, (n = 160), 
5-year Gail Risk >1.3% (n = 54),  pT1mic/PT1a BC 
(n = 21)

RCT No significant difference between tamoxifen and placebo in 
HF (38% vs. 37%) and vaginal discharge (38% vs 23%). No 
significant difference in four menopausal QOL domains

Low, not powered for adverse effect analysis 

Bhatia, 202142 Healthy women with a history of chest radiation RCT No significant difference between tamoxifen and placebo 
in 26 patient-reported symptoms  with the exception of 
myalgia (tamoxifen 21% vs. placebo 3%; p = 0.02) and fatigue 
(tamoxifen 29% vs. placebo 8%; p = 0.03)

Low, not powered for adverse effect analysis and 
small sample size. No correction for multiple testing 
has been performed despite testing 26 items

Decensi, 201938 
Buttiron Weber, 
202145 

Women <75 years with ER+ or unknown atypical 
ductal hyperplasia, DCIS or LCIS

RCT No significant difference between tamoxifen and placebo 
in vaginal discharge, dryness or pain with intercourse, 
musculoskeletal symptoms or arthralgia and HF score. 
Significantly higher daily number of HF with tamoxifen (RR 
1.46, 90% CI 1.05-2.00)

High, adverse effects were no primary endpoint but 
the study was an RCT and had a large sample size

Decensi, 200741 Healthy postmenopausal women <60 years using 
HRT or about to start it for menopausal symptom 
relief

RCT No significant difference between the tamoxifen groups and 
placebo in 12 menopausal symptoms

Low, not powered for adverse effect analysis, 
no comparison between placebo and different 
tamoxifen dose groups

Decensi, 201340 Healthy postmenopausal women using HRT for 
menopausal symptom relief

RCT Significantly more HF (RR 1.78, 95% CI 1.48-2.15), night sweats 
(RR 1.62, 95% CI 1.34-1.97), and vaginal dryness (RR 1.49, 
95% CI 1.25-1.76) and discharge (RR 2.13, 95% CI 1.71-2.65) 
with tamoxifen

Moderate, tamoxifen was combined with HRT 
in patients with menopausal symptoms and is 
therefore less comparable with clinical practice, but 
the study has a large sample size and  was an RCT

Low-dose 
tamoxifen in 
the adjuvant 
setting 
(without a 
control group)

Lee, 201956 Patients using adjuvant tamoxifen for primary BC 
with severe hot flashes when taking tamoxifen 20 
mg

Prospective 
intervention study

No significant difference after dose reduction from tamoxifen 
20 mg (median HF score 131, IQR 22-1482) to 10 mg tam 
(median HF score 47, IQR 5-864); p = 0.24

Low, not powered to find a difference in hot flash 
score and no focus on other adverse effects; study 
was not blinded or randomized

Buijs, 202357 Patients using adjuvant tamoxifen for primary BC 
with severe adverse effects and endoxifen levels 
>32 nM when taking tamoxifen 20 mg

Prospective 
intervention study 

Clinically relevant improvement in endocrine symptoms in 
41% of patients after dose reduction from tamoxifen 20 mg to 
tamoxifen 10 mg (90% CI 21-65%; p = 0.038)

Moderate, powered for difference but study was not 
blinded or randomized 

BC breast cancer, DCIS ductal carcinoma in situ, LCIS lobular carcinoma in situ, HRT hormone replacement 
therapy, ER estrogen receptor, PR progesterone receptor, RCT randomized controlled trial, sign: significant, 
HF hot flashes, QOL quality of life, RR relative risk, CI confidence interval, IQR interquartile range 
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Table 3. Studies regarding clinical efficacy of low-dose tamoxifen 

Clinical efficacy 
derivative

First author, year Population Study design Outcome Strength

Breast cancer 
(invasive or in 
situ)

Decensi, 200950 Premenopausal women with pT1mic/PT1a BC, DCIS or 
LCIS or 5-year Gail risk >1.3%

RCT No significant difference in IBC or DCIS between tamoxifen or placebo (HR 
0.70, 95% CI 0.32-1.52). Breast cancer incidence: 3.5% in the tamoxifen 
arm and 5.2% in the placebo arm

Low, lack of power (n = 60 per 
treatment group)

Decensi, 201340 Healthy postmenopausal women using HRT for 
menopausal symptom relief

RCT No significant difference in IBC between tamoxifen or placebo (RR 0.80, 
95% CI 0.44-1.46), subgroup analysis in HRT users <5 years showed a 
decrease in IBC (RR 0.35, 95% CI 0.15-0.82)

Low, lack of power (only 24 BC events 
when receiving placebo and 19 BC 
events when taking tamoxifen)

Guerrieri-Gonzaga, 
200948

Women who underwent surgery for ER+ DCIS Observational 
study

Tamoxifen decreased BC in ER+Her2-  DCIS patients (HR 0.55, 95% CI 
0.32-0.97)

Low, non-randomized design. 

Guerrieri-Gonzaga, 
201347 

Women who underwent surgery for ER+ DCIS Observational 
study

Tamoxifen decreased IBC or BC in situ compared with no treatment (HR 
0.70, 95% CI 0.34-0.94), with greater benefit in postmenopausal women 
(HR 0.57, 95% CI 0.34-0.94) than premenopausal women (HR 0.79, 95% CI 
0.54-1.17)

Low, non-randomized design

Guerrieri-Gonzaga, 
201649

Women who underwent surgery for ER+ DCIS Observational 
study

Tamoxifen decreased ipsilateral recurrence or DCIS (HR 0.70, 95% CI 0.54-
0.91), with greater benefit >50 years (HR 0.51, 95% CI 0.33-0.77) than <50 
years (HR 0.84, 95% CI 0.60-1.18)

Low, non-randomized design

Decensi, 201938 Women <75 years of age with ER+ or unknown atypical 
ductal hyperplasia, DCIS or LCIS

RCT Tamoxifen halved IBC or DCIS (HR 0.48, 95% CI 0.26-0.92). Less 
contralateral BC in the tamoxifen group (HR 0.25, 95% CI 0.07-0.88)

High

Mammographic 
density (MD)

Bhatia, 202142 Healthy pre- (n = 44) and postmenopausal (n = 28) 
women with a history of chest radiation

RCT Tamoxifen significantly decreased MD compared with placebo (tamoxifen 
-10.2% vs. placebo -4.4% reduction)

High

Decensi, 200741 Healthy postmenopausal women receiving HRT for 
menopausal symptoms

RCT No significant difference when the tamoxifen groups were compared with 
placebo. Significantly more decrease in MD with tamoxifen 5 mg/day 
compared with tamoxifen 1 mg/day or  tamoxifen 10 mg/week (tamoxifen 5 
mg/d, 15.4%; tamoxifen 1 mg/d, 3.7%; tamoxifen 10 mg/w, 2.4% reduction)

Medium, no comparison has been 
made between tamoxifen 5 mg and 
placebo separately, HRT use might 
confound results

Decensi, 200950 Premenopausal women with pT1mic/PT1a BC (n = 21), 
DCIS or LCIS (n = 160) or 5-year Gail risk >1.3% (n = 
54)

RCT Tamoxifen significantly decreased MD (mean -16.2%), while placebo did 
not significantly decreased MD (mean -8.9%)

Medium, no direct comparison between 
tamoxifen and placebo

Eriksson, 202143 Healthy pre- (n = 210) and postmenopausal (n = 290) 
women  with high MD (>5%)

RCT Tamoxifen significantly decreased MD compared with placebo; tamoxifen 
>2.5 mg/day led to non-inferior MD reduction compared with 20 mg

High

Ki67 Decensi, 200352 Women >45 years of age with ER and/or PR+ BC RCT Tamoxifen significantly decreased Ki67 compared with the control group, 
with no differences within the tamoxifen dose groups. Median % ∆Ki67 
was -14.0% (95% CI -38.8 to 0.0) with tamoxifen 1 mg; -11.7% (95% CI 
-32 to 8.5) with tamoxifen 5 mg, and -15.6% (95% CI -44.5 to 14.1) with 
tamoxifen 20 mg. In control group without treatment, Ki67 increased with 
18.6% (95% CI -3.3% to 33.0%)

Medium, lack of power to find 
significant change in Ki67 expression 
in tamoxifen dose groups or control 
group / lack of power to find difference 
between dose groups

de Sousa, 200654 Women with invasive ER+ BC RCT Tamoxifen significantly decreased Ki67 from 24.69% to 10.43% (p < 0.001), 
while the control group without tamoxifen did not

Medium, no direct comparison between 
tamoxifen and control group

Serrano, 201355 Premenopausal women with invasive ER+ BC RCT No significant decrease in Ki67 after tamoxifen 10 mg/week in the total 
study cohort, only in normal CYP2D6 metabolizers

High, primary outcome was comparison 
between ∆Ki67

HRT hormone replacement therapy, BC breast cancer, DCIS ductal carcinoma in situ, LCIS lobular carcinoma 
in situ, ER estrogen receptor, PR progesterone receptor, MD mammographic density, IBC invasive breast 
cancer, HER2- HER2neu-negative, HR hazard ratio, CI confidence interval, RCT randomized controlled trial, 
RR relative risk 
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Table 3. Studies regarding clinical efficacy of low-dose tamoxifen 

Clinical efficacy 
derivative

First author, year Population Study design Outcome Strength

Breast cancer 
(invasive or in 
situ)

Decensi, 200950 Premenopausal women with pT1mic/PT1a BC, DCIS or 
LCIS or 5-year Gail risk >1.3%

RCT No significant difference in IBC or DCIS between tamoxifen or placebo (HR 
0.70, 95% CI 0.32-1.52). Breast cancer incidence: 3.5% in the tamoxifen 
arm and 5.2% in the placebo arm

Low, lack of power (n = 60 per 
treatment group)

Decensi, 201340 Healthy postmenopausal women using HRT for 
menopausal symptom relief

RCT No significant difference in IBC between tamoxifen or placebo (RR 0.80, 
95% CI 0.44-1.46), subgroup analysis in HRT users <5 years showed a 
decrease in IBC (RR 0.35, 95% CI 0.15-0.82)

Low, lack of power (only 24 BC events 
when receiving placebo and 19 BC 
events when taking tamoxifen)

Guerrieri-Gonzaga, 
200948

Women who underwent surgery for ER+ DCIS Observational 
study

Tamoxifen decreased BC in ER+Her2-  DCIS patients (HR 0.55, 95% CI 
0.32-0.97)

Low, non-randomized design. 

Guerrieri-Gonzaga, 
201347 

Women who underwent surgery for ER+ DCIS Observational 
study

Tamoxifen decreased IBC or BC in situ compared with no treatment (HR 
0.70, 95% CI 0.34-0.94), with greater benefit in postmenopausal women 
(HR 0.57, 95% CI 0.34-0.94) than premenopausal women (HR 0.79, 95% CI 
0.54-1.17)

Low, non-randomized design

Guerrieri-Gonzaga, 
201649

Women who underwent surgery for ER+ DCIS Observational 
study

Tamoxifen decreased ipsilateral recurrence or DCIS (HR 0.70, 95% CI 0.54-
0.91), with greater benefit >50 years (HR 0.51, 95% CI 0.33-0.77) than <50 
years (HR 0.84, 95% CI 0.60-1.18)

Low, non-randomized design

Decensi, 201938 Women <75 years of age with ER+ or unknown atypical 
ductal hyperplasia, DCIS or LCIS

RCT Tamoxifen halved IBC or DCIS (HR 0.48, 95% CI 0.26-0.92). Less 
contralateral BC in the tamoxifen group (HR 0.25, 95% CI 0.07-0.88)

High

Mammographic 
density (MD)

Bhatia, 202142 Healthy pre- (n = 44) and postmenopausal (n = 28) 
women with a history of chest radiation

RCT Tamoxifen significantly decreased MD compared with placebo (tamoxifen 
-10.2% vs. placebo -4.4% reduction)

High

Decensi, 200741 Healthy postmenopausal women receiving HRT for 
menopausal symptoms

RCT No significant difference when the tamoxifen groups were compared with 
placebo. Significantly more decrease in MD with tamoxifen 5 mg/day 
compared with tamoxifen 1 mg/day or  tamoxifen 10 mg/week (tamoxifen 5 
mg/d, 15.4%; tamoxifen 1 mg/d, 3.7%; tamoxifen 10 mg/w, 2.4% reduction)

Medium, no comparison has been 
made between tamoxifen 5 mg and 
placebo separately, HRT use might 
confound results

Decensi, 200950 Premenopausal women with pT1mic/PT1a BC (n = 21), 
DCIS or LCIS (n = 160) or 5-year Gail risk >1.3% (n = 
54)

RCT Tamoxifen significantly decreased MD (mean -16.2%), while placebo did 
not significantly decreased MD (mean -8.9%)

Medium, no direct comparison between 
tamoxifen and placebo

Eriksson, 202143 Healthy pre- (n = 210) and postmenopausal (n = 290) 
women  with high MD (>5%)

RCT Tamoxifen significantly decreased MD compared with placebo; tamoxifen 
>2.5 mg/day led to non-inferior MD reduction compared with 20 mg

High

Ki67 Decensi, 200352 Women >45 years of age with ER and/or PR+ BC RCT Tamoxifen significantly decreased Ki67 compared with the control group, 
with no differences within the tamoxifen dose groups. Median % ∆Ki67 
was -14.0% (95% CI -38.8 to 0.0) with tamoxifen 1 mg; -11.7% (95% CI 
-32 to 8.5) with tamoxifen 5 mg, and -15.6% (95% CI -44.5 to 14.1) with 
tamoxifen 20 mg. In control group without treatment, Ki67 increased with 
18.6% (95% CI -3.3% to 33.0%)

Medium, lack of power to find 
significant change in Ki67 expression 
in tamoxifen dose groups or control 
group / lack of power to find difference 
between dose groups

de Sousa, 200654 Women with invasive ER+ BC RCT Tamoxifen significantly decreased Ki67 from 24.69% to 10.43% (p < 0.001), 
while the control group without tamoxifen did not

Medium, no direct comparison between 
tamoxifen and control group

Serrano, 201355 Premenopausal women with invasive ER+ BC RCT No significant decrease in Ki67 after tamoxifen 10 mg/week in the total 
study cohort, only in normal CYP2D6 metabolizers

High, primary outcome was comparison 
between ∆Ki67

HRT hormone replacement therapy, BC breast cancer, DCIS ductal carcinoma in situ, LCIS lobular carcinoma 
in situ, ER estrogen receptor, PR progesterone receptor, MD mammographic density, IBC invasive breast 
cancer, HER2- HER2neu-negative, HR hazard ratio, CI confidence interval, RCT randomized controlled trial, 
RR relative risk 
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Low-dose tamoxifen in preventing breast cancer development 
A standard dose of tamoxifen is known to be effective in not only preventing breast 
cancer recurrence after invasive breast cancer but also in primary and secondary 
prevention, i.e. preventing (new) primary breast cancers in patients with high breast 
cancer risk or a history of breast carcinoma in situ, such as DCIS.36 For example, 
in women with DCIS, tamoxifen 20 mg  reduces the risk of developing invasive 
breast cancer by 36%.36 These findings have resulted in ASCO and NCCN guidelines 
to consider a daily dose of tamoxifen 20 mg for women with high risk for breast 
cancer, DCIS or LCIS to prevent breast cancer development.34,35 Aiming to increase 
the compliance for the primary and secondary prevention indication, studies with 
low-dose tamoxifen for this patient group were performed. Six prevention studies 
(three observational and three randomized) examined the clinical efficacy of low-dose 
tamoxifen in terms of preventing the development of breast cancer.38,40,47-50 

In three large observational studies, low-dose tamoxifen (5 mg/day, 10 mg every other 
day, or 20 mg per week) for 2-5 years was compared with no tamoxifen (not placebo-
controlled) in women who underwent surgery for DCIS.47-49 They found approximately 
30% reduction in breast cancer risk in women taking low-dose tamoxifen (independent 
of dose) compared with women who did not use tamoxifen.47-49 In sub analyses, the 
significant breast cancer risk reduction of low-dose tamoxifen disappeared in women 
below 50 years of age.49 The same trend was seen for premenopausal women.47 

Three randomized, placebo-controlled trials were conducted in healthy women 
using HRT40 and women with carcinoma in situ,38,50 comparing tamoxifen 5 mg daily 
with placebo for 2-5 years. In two studies, only a numerical (but no statistical) lower 
incidence of invasive breast cancer or DCIS in tamoxifen-treated patients could be 
found.40,50 One study had a small sample size of only 60 patients per treatment group50 
and the other study enrolled a significantly lower number of women than estimated  
(n = 1884 instead of 4500) due to challenges in recruitment and an earlier-than-
expected cessation of inclusion,  also leading to a lack of power.40 In the third study 
(n = 500), taking tamoxifen for 3 years halved the incidence of breast cancer.38,46 
Consistent with the observational studies, the efficacy of low-dose tamoxifen was more 
pronounced in postmenopausal women than in premenopausal women.46

Taken together, these data provide evidence for efficacy of low doses of tamoxifen 
in the primary and secondary prevention setting, mainly in postmenopausal women. 
It is however not entirely clear whether the efficacy in preventing the development 
of primary breast cancer can simply be translated into efficacy in preventing breast 
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cancer recurrences in the adjuvant setting. Also, no direct comparisons were made 
with tamoxifen 20 mg daily. 

Lowering mammographic density as derived measure of tamoxifen efficacy 
Mammographic density is based on the distribution between stromal, epithelial and 
fat cells, where women with high mammographic density have relatively more stromal 
and epithelial cells and less adipocytes.72 Several studies have shown that high breast 
tissue density, as assessed by mammography, is associated with an increased risk for 
developing breast cancer in both pre- and postmenopausal women compared with low 
breast density.72-75 Although it is not completely understood why higher mammographic 
density is associated with higher breast cancer risk, it is hypothesized that a combination 
of higher cell proliferation of stromal and epithelial cells and genetic damage to these 
proliferating cells in dense breast tissue increases the risk of breast cancer.76 

A standard dose of tamoxifen 20 mg daily can significantly reduce mammographic 
density compared with placebo after 1 year of treatment.77 Interestingly, in the 
preventive setting, a reduction in mammographic density of >10% after 1 year of 
tamoxifen 20 mg daily led to a reduction in breast cancer risk of 63% compared 
with a group of women who received placebo.78 This reduction in breast cancer risk 
was not seen in women treated with tamoxifen who experienced <10% reduction in 
mammographic density. Similar results were found in the adjuvant setting. Breast 
cancer patients with a 20% reduction in mammographic density after an average 
of 1 year of standard-dose tamoxifen had a 50% reduction in the risk for breast 
cancer-specific death compared with patients taking tamoxifen with no reduction in 
mammographic density.79  

Low doses of tamoxifen (5 mg daily) also led to a significant reduction in mammographic 
density after 6-12 months in women with a high baseline mammographic density43, 
HRT for menopausal symptoms41, history of chest radiation42 or carcinoma in situ50 
compared with placebo (or ultralow-dose tamoxifen)41-43,50 and a non-inferior reduction 
compared with standard dose of tamoxifen.43 Notably, the breast density reduction 
was predominantly seen in premenopausal women.43,50  

Ki67 changes in response to endocrine therapy 
Tamoxifen slows the proliferation of breast cancer cells by inhibiting the cell cycle 
progression from the G1-phase to the S-phase.80 To express the degree of proliferation 
in cancer cells, Ki67 staining is often used. Ki67 is a nuclear marker expressed in all 
phases of the cell cycle other than the G0-phase, is absent in nuclei of resting cells, 
and is expressed in proliferating cells.81,82 Ki67 is a well-known prognostic marker in 
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primary breast cancer.81,83 More interestingly, changes in Ki67 expression in cancer 
cells in response to standard endocrine therapy have shown to be strong predictive 
markers for efficacy of endocrine therapy.83,84  

Nearly twenty years ago, Dowsett et al. were the first to demonstrate, that only 2 weeks 
of endocrine therapy (tamoxifen or aromatase inhibitors) before surgery could lead to 
a decrease in proliferation (expressed as Ki67 decrease) of ER-positive breast cancer 
cells, and that this phenomenon might be predictive of recurrence-free survival.85 
In the POETIC study, a large, randomized, phase 3 study, it was confirmed that the 
effect of 2 weeks of preoperative aromatase inhibitors on ER-positive breast cancer 
cell proliferation was a strong predictor of time-to-recurrence and therefore could 
be used as a surrogate endpoint for the long-term efficacy of endocrine therapy.83 
These investigators came to the conclusion that there is efficacy of the endocrine 
therapy if the Ki67 falls below 10% after 2 weeks of treatment. If the value is already 
below 10% before the start of treatment, no reliable conclusion can be drawn as to 
whether or not the endocrine therapy is effective. Since then, this surrogate endpoint 
has been widely used in preoperative endocrine therapy studies (both tamoxifen 
and aromatase inhibitors) to answer important clinically relevant research questions, 
of which the ADAPT study is a perfect example.86,87 In that study, breast cancer 
patients who had an adequate decrease in Ki67 after a short duration of neoadjuvant 
endocrine therapy were spared adjuvant chemotherapy.86 In contrast, in the ongoing 
POETIC-A trial, breast cancer patients who did not have an adequate response in 
Ki67 after neoadjuvant endocrine therapy are offered additional adjuvant abemaciclib 
(Clinicaltrials.gov NCT04584853).86 

The ability of low doses of tamoxifen to suppress the proliferation of ER-positive breast 
cancer, as a measure of efficacy, has been investigated in three studies, with somewhat 
conflicting results.52,54,55 In the first study, three groups of patients (40 patients per 
group) with ER-positive breast cancer were randomized to treatment with tamoxifen 
1, 5 or 20 mg compared with non-randomized breast cancer patients who were not 
treated preoperatively. After 4 weeks of tamoxifen treatment, Ki67 decreased similarly 
in all three treated groups (i.e. no dose-response relation) and the decrease was 
significantly lower than in the untreated patient group. This suggests that treatment 
with a lower dose of tamoxifen also shows antitumor activity. Furthermore, no evidence 
of an association between change in Ki67 expression and concentrations of tamoxifen 
or 4-hydroxy-tamoxifen in serum could be found.53 Unfortunately, no endoxifen levels 
were measured. In a second smaller study, these results were confirmed.52 Eighteen 
ER-positive breast cancer patients were treated with tamoxifen 10 mg daily for 2 weeks 
and showed a significant reduction of Ki67, from a mean expression index of 25% to 
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a mean expression of 10%, while in the control group who did not receive tamoxifen 
no significant reduction in Ki67 was seen.54 In the third study, these results could not 
be confirmed for ultra-low dose tamoxifen. In that study, premenopausal patients with 
invasive breast cancer (n = 125) were randomized between an ultra-low dose tamoxifen 
of 10 mg/week or placebo for 6 weeks before surgery.55 No significant decrease in 
Ki67 expression was seen after preoperative treatment with ultra-low dose tamoxifen 
among these premenopausal patients.

DISCUSSION 
Our review shows that low-dose tamoxifen demonstrates a clinically relevant, better 
toxicity profile than standard-dose tamoxifen, and that there is strong indirect evidence 
that lower doses of tamoxifen also possess antitumor efficacy. This is important 
because it could allow dose reduction in those patients who experience bothersome 
adverse effects from tamoxifen at a standard dose of 20 mg daily. However, in the 
absence of randomized trials in the adjuvant setting, the challenge is to select the right 
patients with invasive breast cancer for whom dose reduction can potentially be used. 

The ultimate goal of reducing the tamoxifen dose in case of severe adverse effects 
is to increase the adherence to tamoxifen and thus improve the prognosis for breast 
cancer patients. Unfortunately, there were no studies in patients with breast cancer that 
have examined whether lowering the adverse effects by reducing the tamoxifen dose 
also led to an increase in adherence. This has been investigated in prevention studies 
with tamoxifen in women at high risk of developing breast cancer. Patients preferred 
low-dose tamoxifen over standard-dose tamoxifen in the preventive setting.88,89 
Furthermore, adherence rates were numerically higher for low-dose tamoxifen (93.3% 
versus 85%) although this did not meet statistical significance.88 Adherence between 
placebo and low-dose tamoxifen was equal in several prevention studies;38,40,42,51 
however, treatment compliance among study populations within prevention studies 
tends to be lower than in the adjuvant setting, with adherence rates often falling 
below 50%.90 This can be partly attributed to adverse effects, but might also be 
influenced by lower intrinsic motivation of patients to use medication for primary or 
secondary prevention. Consequently, the findings from such studies may possess 
limited generalizability to the adjuvant setting. 

A first evidence that lower doses of tamoxifen also have an antitumor effect comes 
from preventive studies that showed that low doses of tamoxifen compared with 
placebo also prevent the development of breast cancer. This evidence led to including 
tamoxifen 5 mg daily as an alternative option (compared with tamoxifen 20 mg daily) 
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for patients with high breast cancer risk, DCIS or other breast carcinoma in situ in 
ASCO an NCCN guidelines.34,35 The effect of low-dose tamoxifen in primary prevention 
was mainly observed in postmenopausal women. The explanation of menopausal 
status as a possible effect-modifier must probably be sought in the working mechanism 
of tamoxifen, i.e. competitive inhibition of the ER with estradiol. In the studies that 
also included premenopausal women, these women did not receive gonadotropin 
hormone-releasing hormone (GnRH) agonists next to the tamoxifen treatment, and 
thus estradiol levels were much higher compared with the postmenopausal women. 
Moreover, in contrast with postmenopausal women, estradiol levels increase with 
tamoxifen use in premenopausal women.91 The elevated estradiol levels might compete 
with the relatively low endoxifen levels for the ER. This could therefore explain the 
smaller preventive effect of low-dose tamoxifen in premenopausal women. Indeed, 
in one of the RCTs the effect of low-dose tamoxifen on breast cancer prevention also 
seemed more pronounced in women with lower than median, compared with higher 
than median estradiol levels.46,92 

A second indirect indication that lower doses of tamoxifen have an antitumor effect 
comes from studies that looked at a decrease in mammographic density, which has 
been shown to be predictive of reducing the risk of breast cancer recurrence.78,79 
Although low-dose tamoxifen also reduces breast density, this was found to be 
mainly the case in premenopausal women. Although this seems in contrast with the 
efficacy of low-dose tamoxifen in primary prevention studies, the absence of an effect 
in postmenopausal women is probably caused by the much lower mammographic 
density at baseline found in postmenopausal women compared with premenopausal 
women.93 Unfortunately, for now, mammographic density reduction does not seem 
to be practical to use as an individual test for tamoxifen efficacy because of the long 
duration of tamoxifen treatment (6-12 months) that is needed to influence the density 
of the breast. One small study (n = 42) showed significant mammographic density 
reduction after 3 months of tamoxifen, but more research to confirm this timing is 
needed.94 Moreover, no clear limits of adequate or inadequate mammographic density 
reduction are known. 

The results of the functional test used to determine the efficacy of endocrine treatments 
by measuring Ki67 after low-dose tamoxifen is probably the most compelling evidence 
for efficacy of low-dose tamoxifen for invasive breast cancer. Two studies showed this 
convincingly, although a third study was seemingly in contrast with these finding.55 
Seemingly, since three explanations could be given for these findings. First, a tamoxifen 
dose of 10 mg/week might be too low to be effective. A sub-analysis of patients with a 
normal CYP2D6 enzymatic function (in contrast to poor or intermediate metabolizers) 
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further supports this theory.55 In this analysis, in normal CYP2D6 metabolizers Ki67 
did show a significant reduction after tamoxifen 10 mg weekly, likely because patients 
with a normal CYP2D6 function reach higher endoxifen levels than poor or intermediate 
metabolizers. Second, the post-treatment breast cancer samples on which the Ki67 
was measured were derived from resection material (core cuts). An additional analyses 
of the POETIC trial showed that in patients who underwent a core biopsy and a 
resection after a short duration of endocrine therapy preoperatively, the decrease 
in Ki67 found on core biopsies was not seen on the resection sample.95 Although 
further research is needed to clarify these findings, it could have played a role in this 
study. Finally, as previously mentioned, treating premenopausal patients with low-dose 
tamoxifen without a GnRH agonist could result in inefficacy of tamoxifen due to the 
loss of competition with high plasma estradiol levels for the ER.

How can the findings described in this review be applied in the clinical setting for 
patients with bothersome adverse effects from standard doses of tamoxifen? 
One approach could be a dose reduction of tamoxifen based on endoxifen levels. 
For this approach, the precise threshold value for endoxifen, the most active metabolite 
of tamoxifen, must be known. Previous studies have shown different lower limits ranging 
between 10 and 16 nM.22-24 Based on linear kinetics, it can be predicted that halving 
the tamoxifen dose approximately halves the level of endoxifen. If a conservative lower 
limit for endoxifen of 16 nM is used, a dose reduction can only be safely achieved in 
patients with an endoxifen level of 32 nM or higher with the standard tamoxifen dose. 
This seems to be the case for only 30% of patients using tamoxifen at a standard dose 
of 20 mg (Figure 2).96 Although the minimal effective concentration of endoxifen is 
likely much lower, there is still too little evidence to recommend a safe dose reduction 
based on a much lower threshold of endoxifen. In addition, the efficacy of tamoxifen 
is not solely dependent on the dose but also on factors such as tamoxifen resistance 
mechanisms and, importantly, the expression of ER- and PR receptors on the breast 
tumor cells. Tamoxifen dose reduction based on endoxifen levels alone therefore 
appears to be an approach that is too limiting, as patient and tumor characteristics 
are not taken into account enough. 

The use of a functional endocrine sensitivity test could be the fitting solution for 
individualized tamoxifen dosing in the future. The difference in Ki67 percentage before 
and after short exposure of tamoxifen treatment preoperatively could serve as an 
endocrine sensitivity test used on an individual base. This approach incorporates all 
individual patient and tumor characteristics and could be performed preoperatively 
without postponing breast cancer treatment. After all, after 2-3 weeks of preoperative 
treatment, often corresponding to the waiting time until surgery, this test already leads 
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to a result. Since endoxifen only reaches steady-state after 12 weeks, the endoxifen 
levels reached after 2-3 weeks will be specifically low and therefore useful for tamoxifen 
dose reduction in case of adverse effects when tamoxifen will be administered in the 
adjuvant setting. Although promising, there are still some challenges that need to 
be resolved before this test for tamoxifen sensitivity can be routinely used in clinical 
practice. These include the Ki67 staining on breast cancer cells causing high intra- 
and intervariability in inexperienced hands, and the fact that demonstration of the 
inefficacy of tamoxifen at a certain dose has not yet demonstrated the efficacy of a 
somewhat higher dose. This is likely the reason why, at the moment, this test is mainly 
used within innovative trials. 

CONCLUSIONS 
Our review shows that low-dose tamoxifen has an improved toxicity profile compared 
with standard-dose tamoxifen. In the primary and secondary chemoprevention setting, 
low-dose tamoxifen has already proven its clinical efficacy. Although there is growing 
evidence that a lower dose of tamoxifen may also have antitumor efficacy against ER-
positive breast cancers, this cannot yet be translated into a generally accepted lower 
dose of tamoxifen at which efficacy is guaranteed in the adjuvant setting. Nevertheless, 
in one-third of patients with unacceptable adverse effects after receiving standard 
doses of tamoxifen, a dose reduction of tamoxifen can be performed based on 
endoxifen levels (Figure 2). For the remaining patients, further development of the 
functional test based on the Ki67 changes on ER-positive breast cancer after a short 
preoperatively treatment with tamoxifen is likely of great value. 

Practical advices for patients receiving treatment

no side effects

continue tamoxifen 20 mg daily

side effects

consider dose-reduction to tamoxifen 10 mg

consider dose-reduction to tamoxifen 15 mg

no options for dose-reduction, consider switch to Ai <24 nM

 >24 nM

 >32 nM

ENDO

adjuvant tamoxifen

>3m0

 >16 nM

 <16 nM consider dose-escalation to tamoxifen 30 or 40 mg

ER+ primary 
breast cancer

Figure 2. Practical advice for patients receiving treatment
Patients with ER-positive breast cancer who are treated with adjuvant tamoxifen reach steady-state levels 
of endoxifen after 3 months of treatment. From then on, the endoxifen concentration should be measured at 
least once. When a patient does not experience (bothersome) adverse effects, the standard dose of tamoxifen 
20 mg can be continued if the endoxifen concentration is >16 nM. In case a patient experiences bothersome 
adverse effects, for some patients tamoxifen dose reduction can be considered using the conservative endoxifen 
threshold of 16 nM. AI aromatase inhibitor, ER+ estrogen receptor-positive. Figure created with Biorender  
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ABSTRACT 

Background 
Tamoxifen is important in the adjuvant treatment of hormone-sensitive breast cancer 
and substantially reduces recurrence; however, almost 50% of patients are non-
compliant mainly due to side effects. The aim of this study was to investigate whether 
endoxifen-guided tamoxifen dose reduction could lead to fewer side-effects. 

Methods 
Effects of tamoxifen dose reduction were investigated in patients with bothersome 
side-effects and endoxifen levels >32 nM and compared to patients with side-effects 
who remained on tamoxifen 20 mg. Endocrine symptoms and health-related quality of 
life (HR-QOL) were assessed after 3 months with the Functional Assessment of Cancer 
Therapy – Endocrine Symptoms (FACT-ES) questionnaire. 

Results 
Tamoxifen dose was reduced in 20 patients, 17 of whom were evaluable for side-effect 
analyses. A clinically relevant improvement of >6 points was observed in endocrine 
symptoms and HR-QOL in 41% and 65% of the patients, respectively. In total, there 
was a significant and clinically relevant improvement in endocrine symptoms (5.7, 
95% confidence interval (CI) -0.5–11.5) and HR-QOL (8.2, 95% CI 0.9-15.4) after dose 
reduction. This was not seen in patients whose doses were not reduced (n=60). In 21% 
of patients, endoxifen dropped slightly below the 16 nM threshold (12.8, 15.5, 15.8, 
15.9 nM). 

Conclusions 
Endoxifen-guided dose reduction of tamoxifen significantly improved tamoxifen-
related side-effects and HR-QOL. Nearly 80% of patients remained above the most 
conservative endoxifen threshold. 
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INTRODUCTION 
Tamoxifen is currently recommended in the adjuvant treatment of early estrogen 
receptor-positive breast cancer for 5-10 years for premenopausal women and for 
2-3 years for postmenopausal women.1 Unfortunately, during this long treatment 
period many patients experience tamoxifen-related side-effects such as hot flashes, 
arthralgia, vaginal dryness, mood alterations and insomnia.2 Therefore, almost twenty 
percent of all patients stop tamoxifen treatment already in the first year of therapy 
and another annual 5%-10% of patients are non-compliant for the remainder of 
the treatment period.3,4 For patients remaining on tamoxifen therapy, a substantial 
proportion of them have side-effects impacting their quality of life.5 Despite the high 
incidence of this problem, there is currently a lack of successful interventions in case 
patients experience tamoxifen-related side-effects. 

A possible solution could be to carry out dose reductions in patients who experience 
many side-effects. From earlier research - where tamoxifen was prescribed to patients 
with high mammographic density - we already know that the incidence of tamoxifen-
related side effects was ≈50% lower with tamoxifen 1-5 mg daily compared to tamoxifen 
20 mg daily.6 In another study with patients with ductal carcinoma in situ, tamoxifen 5 
mg daily led to side-effects which were equal to placebo.7 Also, a study with tamoxifen 
in the preventive setting showed that the tamoxifen discontinuation rate of tamoxifen 
5 mg daily was almost two-thirds lower than when tamoxifen 20 mg was prescribed.8 
Thus, in the non-invasive setting, lower dosing of tamoxifen seems effective in reducing 
side-effects. However, surprisingly, in primary breast cancer patients on adjuvant 
tamoxifen, the effect of dose reduction on side-effects has hardly been studied. 

Tamoxifen is a prodrug and is metabolized in, mainly, endoxifen, the metabolite that 
contributes for the most part to the antiestrogenic effect of tamoxifen.9,10 Endoxifen can 
be measured easily in plasma.11 There are several retrospective studies suggesting an 
exposure-response relationship for endoxifen.12-14 An analysis including 1370 patients 
receiving adjuvant tamoxifen found that patients in the lowest endoxifen exposure 
quintile (up to 16 nM) had a 26% higher risk of recurrence than patients in the other 
four endoxifen exposure quintiles.12 When exploring dichotomized cut-off points for 
a lower risk of recurrence, again an endoxifen threshold of 16 nM was found.12 Two 
other small studies found a higher risk of recurrence in patients with endoxifen levels 
below 14 nM and below 9 nM, respectively.13,14 The threshold of 16 nM (i.e. 5.97 ng/
mL) is most generally accepted in the field of precision dosing of tamoxifen, since it 
has been found in the largest study thus far and is the most conservative threshold, 
at which the likelihood of patients being under dosed is assumed negligible.12,15,16 This 
endoxifen threshold could be used to carry out a responsible tamoxifen dose reduction 
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in patients who experience bothersome tamoxifen-related side-effects. Only one study 
investigated halving the tamoxifen dose in the adjuvant setting before, but this study 
only focussed on severe hot flashes and was not guided by endoxifen levels.17  

Therefore, the aim of the present study was to investigate whether endoxifen-guided 
dose reduction of tamoxifen in patients with bothersome tamoxifen-related side-effects 
could lead to fewer side-effects and better quality of life while retaining adequate 
endoxifen levels. 

METHODS 
The TOTAM (Therapeutic drug monitoring Of TAMoxifen) trial is a large intervention 
study coordinated by the Erasmus MC Cancer Institute in Rotterdam, the Netherlands. 
This study was approved by the local Medical Ethics Committee in January 2018 
and registered in the International Clinical Trial Registry Platform (ICTRP; https://
trialsearch.who.int/; NL6918). Informed consent was obtained from all participants. 
The main goal of the TOTAM study was to investigate the feasibility of therapeutic drug 
monitoring of tamoxifen. A secondary endpoint of this trail was to investigate the effect 
of reducing the tamoxifen dose in patients with bothersome side-effects and a steady-
state endoxifen plasma level of 32 nM or higher (i.e. two times the threshold of 16 nM). 

Patients and study design 
Female patients who were using tamoxifen in the standard daily dose of 20 mg for 
3 months were included in the TOTAM study. The design of the study and the main 
results have been described in detail elsewhere.18,19 For the current research question, 
all patients had to fill in the Functional Assessment of Cancer Therapy – Endocrine 
Symptoms (FACT-ES) questionnaire at baseline (= 3 months of tamoxifen) and after 6 
weeks (= 4.5 months of tamoxifen) and 3 months (= 6 months of tamoxifen). During the 
study, a dose reduction of tamoxifen from 20 mg to 10 mg was proposed to patients 
who experienced bothersome subjective side-effects which impacted their quality of 
life or wherefore they were considering discontinuation of tamoxifen. Simultaneously, 
they had to have an endoxifen level >32 nM. Also, the endocrine symptoms (ES19) 
score of the FACT-ES questionnaire had to be <72 points (maximum: 76 points) in order 
to be able to measure a clinically relevant difference in  ES19 (i.e. 4 points) after dose 
reduction. Patients were seen at 3 months, 4.5 months and 6 months of tamoxifen use 
or, when this time points did not coincide, at 6 weeks and 3 months after tamoxifen 
dose reduction.
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Pharmacokinetic analysis 
Tamoxifen and endoxifen trough levels (Cmin concentrations) were obtained during 
every study visit. Plasma levels were measured using a validated ultra-performance 
liquid chromatography with a tandem mass spectrometry method (UP-LCMS/MS).11

Quality of life and side-effect analysis 
Also, during every study visit, the toxicity of tamoxifen was assessed using the US 
National Cancer Institute’s Common Terminology Criteria for Adverse Events version 5 
(CTCAEv5) and quality of life and tamoxifen-related side-effects were evaluated using 
the FACT-ES questionnaire. The FACT-ES is a validated and reliable questionnaire of 
in total 46 questions and is a measure of health-related quality of life (HR-QOL, 27 
items) using physical, social, emotional and functional well-being questions and a 
measure of side-effects of endocrine treatments given in breast cancer patients (ES19, 
endocrine subscale of in total 19 items). Four other endocrine-related items (sleep, 
fatigue, nervousness and nausea) are already included in the HR-QOL items. The result 
of these four items in addition to the 19 items of the endocrine subscale can also be 
scored as an additional and more extended endocrine subscale (ES23, 23 items).20 
The different endocrine subscale items can be found in the supplementary. Higher 
scores of the FACT-ES equate with good quality of life and/or experiencing few side-
effects, while lower scores indicate poorer quality of life and/or experiencing many/
severe side-effects. As an additional insight into the effect of dose reduction, patients 
were asked to score the beneficial effect of their dose reduction on a 10-point Likert 
scale (range 1-10, 1: no improvement, 10: excellent improvement) 3 months after the 
tamoxifen dose was reduced. 

Statistical analysis 
The primary endpoint of this study was the individual difference in total ES19 score 
as part of the FACT-ES questionnaire in patients whose tamoxifen dose was reduced 
before and after 3 months of tamoxifen dose reduction. Change scores of >0.5 of the 
baseline standard deviation (SD) are considered clinically relevant changes and seen as 
more than a moderate effect size.21 Before the start of the study, it was estimated that 
the SD would be 7-8 points and therefore a change score of minimally 4 points, also 
used in an earlier endocrine subscale validation study, was expected to be clinically 
relevant.20 We hypothesized that the ES19 score would improve with at least 4 points 
in >50% of dose-reduced patients. To test this hypothesis against a null hypothesis 
of 20% with a one-sided α of 0.05 and a power of 80%, the tamoxifen dose had to be 
reduced in at least 13 patients. 
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Table 1. Patient characteristics

Dose-reduction cohort 
(n = 17)

Patients with side-effects 
who remained on tamoxifen 

20 mg (n = 60)

Age (years) median [IQR] 59 (49 – 64) 59 (49 – 66)

BMI (kg/m2) median [IQR] 25.8 (21.8 – 30)  26.2 (23.2 – 30.5)

Tumour stage, n (%)
T1
T2
T3
T4
Tx

10 (59%)
7 (41%)

-
-
-

27 (45%)
23 (38.3%)
8 (13.3%)
1 (1.7%)
1 (1.7%)

Nodal stage, n (%)
N0
N1
N2
N3

11 (65%)
5 (29%)
1 (6%)

-

33 (55%)
19 (31.7%)

6 (10%)
2 (3.3%)

Histologic classification, n (%)
Ductal (NST)
Lobular
Other

15 (88%)
2 (12%)

-

44 (73.3%)
13 (21.7%)

3 (5%)

Histologic grade (Bloom 
Richardson), n (%)
BR I
BR II
BR III

3 (18%)
11 (65%)
3 (18%)

5 (8.3%)
44 (73.3%)
11 (18.3%)

Progesterone receptor, n (%)
Positive 
Negative

13 (80%)
4 (20%)

52 (86.7%)
8 (13.3%)

Her2Neu receptor, n (%)
Positive
Negative

1 (6%)
16 (94%)

3 (5%)
57 (95%)

Local treatment, n (%)
Lumpectomy alone
Lumpectomy + RTx
Mastectomy
Mastectomy + RTx

1 (6%)
14 (82%)
1 (6%)
1 (6%)

1 (1.7%)
36 (60%)

11 (18.2%)
12 (20%)

(Neo)adjuvant chemotherapy, n (%)
Yes
No

8 (47%)
9 (53%)

30 (50%)
30 (50%)

CYP2D6 phenotype, n (%)
PM
IM
NM
UM

-
5 (29%)
10 (59%)
2 (12%)

-
18 (30%)
42 (70%)

-

Use of ovarian function suppression 
(OFS), n (%)
                Yes
                No

2 (11.8%)
15 (88.2%)

5 (8.3%)
55 (91.7%)

Days of tam before dose reduction, 
median [IQR] 

113 [101 – 153.5] - 

BMI, body mass index; IQR, interquartile range 
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The primary endpoint was analysed by means of the binomial probability test. 
The percentage of patients with a reduction in experienced side-effects of >0.5 of 
baseline SD will be given together with the binomial exact 90% confidence interval (CI). 

As secondary endpoints, the individual differences in ES23 and HR-QOL measured with 
the FACT-ES before and after dose reduction were determined and compared with >0.5 
of baseline SD that was found in this study. Also, the within-group difference before and 
3 months after dose reduction was determined with a paired sample t-test or a Wilcoxon 
signed rank test when a sample was not normally distributed. To check for a potential 
effect of time on tamoxifen-related side-effects, analyses were repeated in the group of 
patients with side-effects who remained on the regular tamoxifen 20 mg dose between 
3 and 6 months of treatment. Differences in specific side-effects (separate items of the 
extensive endocrine subscale) were analysed descriptively. In an exploratory way, we 
searched for a correlation between change in FACT-ES scores before and after dose 
reduction and endoxifen levels at 3 months of tamoxifen 10 mg use.  

RESULTS 

Patient selection 
In total, 151 patients were included in this secondary aim of the TOTAM trial. Two patients 
were excluded due to not yet reaching a steady-state endoxifen level or accidentally 
using a lower tamoxifen dose. Of the 149 assessable patients, 125 (84%) patients 
experienced any tamoxifen-related side-effect and scored <72 points on the endocrine 
subscale. Of these 125 patients, 37 patients (30%) had an endoxifen level >32 nM and 18 
of these patients experienced their side-effects as bothersome and thus were eligible for 
tamoxifen dose reduction. Later on in the study, two additional patients who at 3 months 
of therapy had endoxifen levels just below 32 nM but at the time of dose reduction 
had endoxifen levels >32 nM and bothersome side-effects underwent a reduction in 
tamoxifen dose. Eventually, in 20 out of 149 (13%) patients in this study, tamoxifen dose 
was reduced and of these patients, 17 were assessable for the primary endpoint. This 
number is slightly higher than the minimum number of patients required for this study 
(n=13). This difference occurred because eligible patients were offered dose-reduction 
until at least 13 evaluable patients used tamoxifen 10 mg tamoxifen for at least 3 months. 
Interestingly, also four patients who at baseline refused a dose reduction asked for 
dose reduction themselves after a longer duration of tamoxifen treatment. A flowchart 
visualizing the selection process can be found in the supplementary. All patients 
with side-effects, an endocrine subscale score <72 and endoxifen levels >16 nM who 
remained on tamoxifen 20 mg from baseline until 6 months of tamoxifen (n= 60) were 
used as a control group, which also can be found in the supplementary. 
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Patient characteristics 
The baseline characteristics of the 17 assessable patients after dose reduction can 
be found in Table 1. For comparison, the baseline characteristics of the 60 patients 
with side-effects who remained on tamoxifen 20 mg from baseline until 6 months of 
tamoxifen use are also shown. Patients in both the 20-mg and 10-mg groups had a 
median age of 59 years. The incidence of (neo)adjuvant chemotherapy treatment was 
similar between both groups. The use of ovarian function suppression (OFS) was very 
low but slightly higher in the dose-reduction group. After a median of 113 days of 
tamoxifen use, patients underwent a reduction in their tamoxifen dose. 

FACT-ES scores before and after 3 months of dose reduction 
FACT-ES scores were assessed after a median of 91 days (interquartile range (IQR) 
85-95) after dose reduction. The baseline SD of the ES19 was higher than expected and 
therefore an improvement of >0.5 SD (i.e. clinical relevant) was equal to 6 points. Out of 
the 17 assessable patients in whom the tamoxifen dose was reduced, 7 patients (41%, 
90% CI 21 to 65%, P = 0.038) had an improvement in ES19 score of at least 6 points. 
The ES23 score had to improve with ≥7 points to be clinically relevant, which was 
achieved in 5 out of 17 patients (29%, 90% CI 12 to 52%). The HR-QOL improved with 
6 points or more (>0.5 SD) in 11 out of 17 patients (65%, 90% CI 42 to 83%). Change 
scores of all individual patients in ES19, ES23 and HR-QOL can be found in Table 2. 
There was a significant and clinically relevant within-group improvement in HR-QOL 
after dose reduction compared with scores before dose reduction (Table 3). There 
was also a clinically relevant improvement in ES19 and ES23 and this improvement 
had a trend towards statistical significance (P = 0.053). 

FACT-ES scores at 3 and 6 months of tamoxifen 20 mg use 
To check for a potential effect of time on side-effects, the FACT-ES scores after 3 
months of tamoxifen were compared with the FACT-ES scores after 6 months of 
tamoxifen in patients who had side-effects and remained on the standard dose of 
tamoxifen 20 mg. There was no statistically or clinically relevant within-group difference 
in FACT-ES scores at 6 months of tamoxifen compared to 3 months of tamoxifen. 
Cis and P values can be found in Table 3. Also, when making a sub-selection of 
patients with endoxifen levels >32 nM who remained on tamoxifen 20 mg (n = 16), no 
difference in FACT-ES scores between 3 and 6 months of tamoxifen was found (data 
not shown). In 11 out of 60 (18%, 90 CI 11 to 29%) patients, the HR-QOL improved with 
at least 6 points. In 13 out of 60 patients (22%, 90% CI 13 to 32%) the ES19 improved 
with at least 5 points and in 14 out of 60 patients (23%, 90% CI 15 to 34%) the ES23 
improved with 6 points or more (i.e. clinical relevant improvements). 
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Table 2. Individual change scores in FACT-ES

Change in scores after 3 months of dose reduction

Subject HR-QOL Endocrine subscale 19 Endocrine subscale 23

1 18 23 26

2 2 -1 -3

3 11 3 2

4 -6 2 5

5 19 9 6

6 6 1 1

7 16 21 24

8 -5 -3 -2

9 45 14 23

10 18 10 11

11 -4 1 0

12 5 7 6

13 -21 -12 -13

14 8 -2 1

15 9 -9 -7

16 12 30 36

17 6 3 4

0.5 SD 5.65 5.35 6.05

Change in scores of FACT-ES questionnaire after 3 months of tamoxifen dose reduction compared to FACT-
ES scores at steady-state tamoxifen 20 mg. Negative change scores stand for worsening of symptoms, 
while positive change scores stand for improvement of symptoms. Change scores of >0.5 baseline SD are 
considered clinically relevant. 
FACT-ES, Functional Assessment of Cancer Therapy – Endocrine Symptoms; HR-QOL; health-related quality 
of life; SD, standard deviation 

Side-effects before and after dose reduction 
Adverse events before and after dose reduction are shown in Table 4. The majority 
of side-effects decreased after tamoxifen dose reduction. However, the incidence 
of muscle cramp and weight gain stayed the same and fatigue, anxiety, increased 
appetite and vaginal discharge all occurred in one additional patient despite dose 
reduction. Two patients had a  CTCAE 2 and a CTCAE 3 thromboembolic event after 
tamoxifen was started but before tamoxifen dose was reduced and this was also partly 
the reason to decrease their tamoxifen dose.

Patients were asked to score the improvement of side-effects 3 months after dose 
reduction on a 10-point Likert scale. Twelve patients (71%) graded their improvement as 
sufficient whereof seven patients scored a 6-7 and five patients scored an 8 or higher.
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Table 3. Within-group differences after dose reduction or between 3 and 6 months of tamoxifen treatment 

Before and after dose 
reduction (N=17)

Mean before 
dose reduction

Mean 3 months 
after dose 
reduction

Difference before and 
after dose reduction  

(95% CI)

P value 
(two-sided)

Health-related QOL 74.3 82.5 8.2 (0.9 – 15.4) 0.03

Endocrine subscale 19 49.3 55.0 5.7 (-0.5 – 11.5) 0.053

Endocrine subscale 23 58.9 66.0 NA* 0.053

3 and 6 months of 20 
mg tamoxifen use 
(N=60)

Mean 3 months Mean 6 months ∆ 6 months vs  
3 months 
(95% CI)

P value
(two-sided)

Health-related QOL 82.6 81.9 -0.6 (-2.8 – 1.5) 0.55

Endocrine subscale 19 56.2 56.7 0.5 (-1.4 – 2.4) 0.61

Endocrine subscale 23 68.0 68.5 0.5 (-1.9 – 2.8) 0.71

*Wilcoxon signed rank test 

Finally, the effect of dose reduction on separate items of the ES23 was analysed 
descriptively. In contrast to the CTCAEv5 grading, the improvement was most 
frequently seen in the lack of energy item (n = 10; 59%). Other frequently improved 
items were hot flashes and cold sweats (n = 9; 53%) and night sweats, insomnia, 
bloated feeling, mood swings and lightheaded feeling (n = 8; 47%). 
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Figure 1. Effect of dose reduction on endoxifen concentrations, endocrine symptoms and quality of life
A. Median, IQR, minimum and maximum endoxifen concentrations before and after 3 months of dose reduction 
(n=18) 
B. Median, IQR, minimum and maximum ES19 scores and HR-QOL scores before and after 3 months of 
dose reduction (n=17) 
ES19, endocrine subscale of in total 19 items; FACT-ES, Functional Assessment of Cancer Therapy – Endocrine 
Symptoms; HR-QOL, health-related quality of life; IQR, interquartile range 

177686_Buijs_BNW.indd   66177686_Buijs_BNW.indd   66 22/01/2025   14:0622/01/2025   14:06



67

Endoxifen-guided tamoxifen dose reductions 

3

Effect of dose-reduction on tamoxifen and endoxifen plasma levels 
The median tamoxifen level of the patients at 20 mg daily who underwent a reduction 
in tamoxifen dose was 397 nM (IQR 343.7–478.8 nM) and the median endoxifen level 
was 43.2 nM (IQR 37.1-49.0 nM) before dose reduction. One patient quit tamoxifen 
treatment before 3 months of tamoxifen 10 mg were completed and was therefore 
not assessable for pharmacokinetic analysis. Endoxifen levels of 15 out of 19 patients 
(79%) remained above the supposed threshold of 16 nM after 3 months of tamoxifen 
10 mg. One patient had already an endoxifen level below 16 nM (12.8 nM) after 26 
days of dose reduction. Three patients had endoxifen levels ranging from 15.5 to 
15.9 nM after 3 months of tamoxifen 10 mg use. All four patients whose endoxifen 
levels fell below 16 nM after the 50% dose reduction had baseline endoxifen levels 
just above the accepted lower boundary of 32 nM (endoxifen levels ranging from 35 
to 37.7 nM). The median tamoxifen level in the 18 patients measured 3 months after 
10 mg tamoxifen was 216.5 nM (IQR 163.3–285.3 nM) and the median endoxifen level 
was 19.7 nM (IQR 16.5–23.4 nM). A visual illustration of the effect of dose reduction 
on endoxifen levels and FACT-ES scores is shown in Figure 1. 

Correlation between endoxifen levels and the effect of dose 
reduction on side-effects 
There was a significant moderately negative correlation between change in ES19 
scores after dose reduction and endoxifen levels after 3 months of tamoxifen 10 mg (r 
= -0.68, P = 0.003, n = 17) meaning that more improvement after dose reduction was 
seen in patients who attained lower endoxifen levels after dose reduction. Change in 
HR-QOL even showed a significant highly negative correlation with endoxifen levels 
after 3 months of tamoxifen 10 mg (r = -0.72, P = 0.001, n = 17). 
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Table 4. CTCAEv5 toxicity before and after dose reduction

  Before dose reduction at steady-
state tamoxifen 20 mg (N=17)

3 months after dose reduction 
to tamoxifen 10 mg (N=17)

 Side-effect CTCAE 1 CTCAE 2 CTCAE 1

Hot flashes 13 (76%) 2 (12%) 12 (71%)

Insomnia 10 (59%) 1 (6%) 7 (41%)

Mood alterations 10 (59%) 0 4 (24%)

Arthralgia 7 (41%) 3 (18%) 8 (47%)

Muscle cramp 4 (24%) 0 4 (24%)

Nausea 2 (12%) 1 (6%) 1 (6%)

Headache 3 (18%) 0 1 (6%)

Vaginal dryness 3 (18%) 0 1 (6%)

Fatigue 2 (12%) 0 3 (18%)

Dizziness 2 (12%) 0 1 (6%)

Weight gain 2 (12%) 0 2 (12%)

Chills 1 (6%) 0 0

Bloated feeling 1 (6%) 0 0

Obstipation 1 (6%) 0 1 (6%)

Alopecia 1 (6%) 0 1 (6%)

Dry mouth 1 (6%) 0 0

Anorexia 1 (6%) 0 0

Decreased libido 1 (6%) 0 0

Amnesia 1 (6%) 0 0

Increased appetite 0 0 1 (6%)

Anxiety 0 0 1 (6%)

Vaginal discharge 0 0 1 (6%)

CTCAEv5, Common Terminology Criteria for Adverse Events version 5 

DISCUSSION 
To the best of our knowledge, this is the first study describing the effects of adjuvant 
endoxifen-guided tamoxifen dose reductions on a broad selection of therapy-related 
side-effects based on a validated questionnaire. We demonstrated that reducing the 
tamoxifen dose improves endocrine symptoms in almost half of patients and strongly 
increases health-related quality of life (even in two-third of patients). This improvement 
does not occur over time in patients with side-effects who remained on tamoxifen 
20 mg. Of the patients who underwent a dose reduction, 79% retained endoxifen 
levels well above the conservative threshold of 16 nM, while 16% had endoxifen 
levels just below 16 nM (15.5 – 15.9 nM). Only one patient dropped ~20% below 

177686_Buijs_BNW.indd   68177686_Buijs_BNW.indd   68 22/01/2025   14:0622/01/2025   14:06



69

Endoxifen-guided tamoxifen dose reductions 

3

the most conservative threshold of 16 nM. Thus, endoxifen-guided dose reduction 
of tamoxifen, with the aim of alleviating symptoms, lead to significant and clinically 
relevant conditions in a significant proportion of women. 

In this study we chose to only carry out dose reductions in patients with endoxifen 
levels >32 nM. Since tamoxifen has linear pharmacokinetics, we tried to retain almost 
all patients above the 16 nM threshold. Considering the (low) intra-patient endoxifen 
variability of ~10%-20%, it is not surprising that some patients’ endoxifen plasma 
levels still dropped slightly below 16 nM after halving the tamoxifen dose.18,22 Indeed, 
all four patients whose endoxifen levels fell below 16 nM had baseline endoxifen levels 
only slightly above the accepted lower boundary of 32 nM. As mentioned before, 
the threshold of 16 nM is a conservative one and other threshold values have been 
mentioned before in studies as well. 12-14  However, since this is a curative setting, it is 
extremely important to maintain effective endoxifen levels. Therefore, if patients drop 
below 16 nM after dose reduction, a slight increase of the mean dose of tamoxifen to, 
for example, 15 mg daily should be considered. 

Unfortunately, this study does not offer a solution for patients with endoxifen levels <32 
nM in case they suffer from tamoxifen-related side-effects. But, if we take the intra-
patient variability into account, dose reduction in case of severe side-effects could 
eventually also be tried when patients have endoxifen levels within 26 – 32 nM (20% 
range) and endoxifen levels could then possibly still remain above or around 16 nM. 
Another option might be to try dose reduction from 20 mg to 15 mg in patients with 
severe side-effects and endoxifen levels ranging between 21 and 32 nM. Consequently, 
2-3 months after dose reduction, endoxifen levels should be measured again and the 
effect of dose reduction on side-effects should be assessed. If endoxifen levels with 
tamoxifen 20 mg are already far below 32 nM, endoxifen levels after dose reduction 
drop far below the conservative level of 16 nM or if patients do not benefit from 
tamoxifen dose-reduction, another strategy, like switching to aromatase inhibitors, 
should be considered. 

The improvement in endocrine symptoms seen in this study was, although clinically 
relevant and significant, less than hypothesized in advance. Any improvement in ES19 
was seen in 12 out of 17 (71%) of dose-reduced patients while a clinically relevant 
improvement (>6 points) was seen in 41% of patients. A possible explanation for 
this lower than hypothesized improvement is the use of OFS next to tamoxifen in 
part of premenopausal women. OFS has quite similar side-effects as tamoxifen and 
when tamoxifen dose is reduced this clearly does not affect side-effects due to OFS. 
Two patients used OFS and both did not achieve clinically relevant improvements 
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in ES19 and ES23 scores after dose reduction. Secondly, patients could have other 
side-effect-inducing events during tamoxifen dose reduction. For instance, one patient 
used amoxicillin/clavulanic acid for 2 weeks because of an undefined infection during 
the third month of tamoxifen dose reduction and showed a decrease in ES19, ES23 
and HR-QOL scores. 

Most remarkably, we found a correlation between endoxifen levels after 3 months of 
10 mg tamoxifen and change in HR-QOL and ES19 scores with more improvement in 
FACT-ES scores when endoxifen levels after 3 months of 10 mg were lower and less 
improvement in FACT-ES scores when endoxifen levels still remained relatively high. 
Possibly, patients whose endoxifen level remains relatively high after dose reduction 
could benefit from even further tamoxifen dose de-escalation. 

In some patients the endocrine side-effects did not improve in a clinical relevant 
way while HR-QOL did improve. This is most likely the result of an improvement 
in HR-QOL resulting from causes other than the reduction of endocrine therapy-
related symptoms, such as recovery from breast surgery and possibly chemotherapy. 
However, this improvement in HR-QOL was not seen in the group of patients who 
remained on standard dose of tamoxifen. An alternative explanation would be that a 
very small improvement of side-effects can significantly improve quality of life during 
long adjuvant treatment of tamoxifen. 

In an earlier study from our group, the feasibility of therapeutic drug monitoring of 
tamoxifen was shown.18 Here, tamoxifen dose escalation in patients with endoxifen levels 
<16 nM nearly halved the percentage of patients with endoxifen levels below threshold. 
Our current study complements nicely to this preceding research, offering a solution for 
patients on the other side of the spectrum (i.e. patients having high levels of endoxifen 
with sometimes severe side-effects). Our study highlights once again how important 
it is to know the ‘true’ threshold of endoxifen to implement this in therapeutic drug 
monitoring of tamoxifen in clinical practice. However, in order to confirm an endoxifen 
exposure-response relationship prospectively, large trials of over 3000 patients would be 
needed, making this kind of prove for an endoxifen threshold infeasible.23,24 Until further 
evidence is attained, for example, from neo-adjuvant window-of-opportunity trials, the 
conservative endoxifen threshold of 16 nM could be used pragmatically for tamoxifen 
dose escalation in patients with endoxifen levels <16 nM and for dose de-escalating 
(dose reduction) in patients with severe side-effects. 
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Of course, our study has some limitations. Firstly, a placebo effect of lowering the 
tamoxifen dose cannot be ruled out as the dose adjustment was not blinded. Secondly, 
this was not a randomized study. Dose reduction was offered to all patients with 
bothersome side-effects and endoxifen levels >32 nM and patients were free in making 
a choice for dose reduction or remaining on 20-mg dose. This led to different time 
points of dose reduction and it could be possible that patients who had more belief 
in improvement from this intervention were more likely to choose for dose reduction, 
introducing potential bias. However, the different time points of dose reduction also 
account for more robustness of the study and make it more convertible to daily practice. 
In this study, a relatively limited number of dose-reduced cases are discussed. This 
might lead to less generalizability, although of course the linear pharmacokinetics of 
tamoxifen is the same for every patient. Another limitation is the duration of the study. 
Because we only evaluated side-effects after 3 months, this study does not provide 
information about durability of the improvement. Probably, side-effects could improve 
further over time making the impact of tamoxifen dose reduction even bigger. Last, we 
chose to only investigate dose reductions from 20 mg  to 10 mg. Therefore, we lack 
interesting information about side-effects after dose adjustments to tamoxifen 15 mg. 

Conclusions 
In conclusion, we demonstrated that endoxifen-guided dose reduction in case of 
bothersome tamoxifen-related side-effects can improve endocrine symptoms in almost 
half of patients and strongly increase HR-QOL in two-third of these patients while 
keeping endoxifen levels mainly above or around the threshold. Therefore, it could be 
an effective strategy for patients who would otherwise quit their endocrine therapy or 
who are highly suffering from tamoxifen-related side-effects. 
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SUPPLEMENTARY MATERIAL 

FACT-ES items ES19 and ES23 

Endocrine subscale items FACT-ES

ES19 items Not at all A little bit Some-what Quite a bit Very much

I have hot flashes 0 1 2 3 4

I have cold sweats 0 1 2 3 4

I have night sweats 0 1 2 3 4

I have vaginal discharge 0 1 2 3 4

I have vaginal itching/irritation 0 1 2 3 4

I have vaginal bleeding or spotting 0 1 2 3 4

I have vaginal dryness 0 1 2 3 4

I have pain or discomfort with 
intercourse

0 1 2 3 4

I have lost interest in sex 0 1 2 3 4

I have gained weight 0 1 2 3 4

I feel lightheaded/dizzy 0 1 2 3 4

I have been vomiting 0 1 2 3 4

I have diarrhea 0 1 2 3 4

I get headaches 0 1 2 3 4

I feel bloated 0 1 2 3 4

I have breast sensitivity/tenderness 0 1 2 3 4

I have mood swings 0 1 2 3 4

I am irritable 0 1 2 3 4

I have pain in my joints 0 1 2 3 4

ES23 items (ES19 + four items below) 0 1 2 3 4

I have a lack of energy 0 1 2 3 4

I have nausea 0 1 2 3 4

I feel nervous 0 1 2 3 4

I am sleeping well 0 1 2 3 4

Legend. The FACT-ES has a 5 point Likert-type response scale and measures four domains of health-
related quality of life: physical, social, emotional and functional well-being (i.e. FACT-General). The additional 
endocrine-subscale specifically measures hormone therapy related side effects with 19 (ES19, i.e. the standard 
version) or 23 (ES23, i.e. the extended version) items. Some items were negatively framed and were therefore 
reversed for analysis.
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Flowchart patient selection for dose reduction 
Legend. From all patients undergoing therapeutic drug monitoring according to the TOTAM-study, 125 
patients experienced tamoxifen-related side-effects. From this group 37 patients had endoxifen levels >32 nM 
and were eligible for dose reduction at baseline. Eighteen patients did not find their side-effects bothersome 
enough for dose reduction and remained on 20 mg, 1 patient quit tamoxifen shortly after start of study and 
two patients who at the first endoxifen measurement at baseline did not have endoxifen levels >32 nM were 
reduced later in the study when endoxifen levels became >32 nM. Eventually, 20 out 150 patients (13%) were 
reduced in tamoxifen dose. From these patients 1 was lost to follow-up for side-effect assessment, 1 quit 
tamoxifen 2 months after tamoxifen dose was reduced and in 1 patient the endoxifen level was already below 
16 nM 26 days after the dose reduction and thus tamoxifen was increased to 15 mg.
The 88 patients with side-effects but endoxifen levels <32 nM and the 18 patients with endoxifen levels >32 
nM but who refused dose reduction were used as a control group if they remained on a tamoxifen dose of 20 
mg from 3 to 6 months of tamoxifen use. From these 106 patients, 34 patients were increased in tamoxifen 
dose due to endoxifen levels <16 nM and 12 patients did not complete all questionnaires or quit the study 
early. Therefore, 60 patients with side-effects who remained on 20 mg tamoxifen for at least 3 months after 
inclusion could be used as a group to check for a potential time-effect. 
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ABSTRACT
Tamoxifen may lead to bothersome side effects contributing to non-compliance 
and decreased quality of life. Patients searching for relief are increasingly turning 
to cannabinoids such as CBD-oil. However, CBD-oil might affect tamoxifen 
pharmacokinetics (PK) through CYP2D6 inhibition. The aims of this open-label, 
single-arm study were 1) to determine the PK profile of tamoxifen when using CBD-
oil, and 2) to subsequently investigate whether CBD-oil has a beneficial influence on 
side effects. Study patients had to have steady-state endoxifen concentrations >16 
nM (conservative threshold). PK sampling and side effect assessment was done at 
initiation of CBD-oil and 28 days thereafter. Bio-equivalence could be concluded if the 
90% confidence interval (CI) for the difference in endoxifen AUC fell within the [-20%; 
+25%] interval. The effect of CBD-oil on side effects was evaluated using the FACT-
ES questionnaire. Endoxifen AUC decreased after CBD-oil by 12.6% (n = 15, 90% CI 
-18.7%, -6.1%) but remained within bio-equivalence boundaries. The endocrine sub-
scale of the FACT-ES improved clinically relevant with 6.7 points (n = 26, p < 0.001) 
and health-related quality of life improved with 4.7 points after using CBD (95% CI +1.8, 
+7.6). We conclude that CBD-oil, if of good quality and with a dosage below 50 mg, 
does not have to be discouraged in patients using it for tamoxifen-related side effects.  
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INTRODUCTION
Tamoxifen is effective in the treatment of estrogen-receptor positive breast cancer1,2 
and is recommended for two to three years for postmenopausal patients and up to ten 
years for premenopausal patients.3 Unfortunately, tamoxifen can lead to bothersome 
side effects such as hot flashes, arthralgia, insomnia and mood alterations. Forty percent 
of patients eventually discontinue tamoxifen therapy early, mainly due to side effects.4-6

Breast cancer patients searching for relief from side effects are increasingly turning 
to cannabinoids (CBs). CBs are a group of compounds found in the Cannabis sativa 
plant but interestingly, the human body also produces endocannabinoids.7 One of the 
most active phytocannabinoids produced by Cannabis sativa is the non-psychoactive 
substance cannabidiol (CBD).8,9 CBD acts as a negative allosteric modulator of the 
cannabinoid receptor 1 (CB1), mostly present in the central nervous system, and as 
an inverse agonist of the cannabinoid receptor 2 (CB2), mostly present in the immune 
system. CBD can also modulate other receptors such as: opioid, dopamine, melatonin, 
serotonin and acetylcholine receptors.7,10 In the United States, more than 20% of 
breast cancer patients used CBs during their endocrine therapy hoping to reduce side 
effects.11 A recent meta-analysis suggested a small improvement in pain and quality of 
sleep after CBD use.12 Most recently, a RCT did not find any symptom relief after CBD 
compared to placebo in an advanced cancer population.13 Whether CBD improves 
tamoxifen-related side effects in breast cancer patients has never been investigated. 

Tamoxifen is a prodrug metabolised mostly by the cytochrome P450 (CYP) enzyme 
CYP2D6 in its main and most active metabolite endoxifen.14 Several retrospective 
studies have shown an exposure-response relationship of endoxifen, which led to 
the suggestion of efficacy thresholds varying from 9-16 nM.15-18 Due to the complex 
metabolism, tamoxifen is prone to drug-drug or drug-herb interactions.19,20 CBD might 
also affect tamoxifen pharmacokinetics since it is known to be a potential inhibitor of 
CYP2D6.21,22 Recently, a case report about a woman treated with tamoxifen for primary 
breast cancer showed lower endoxifen levels when tamoxifen was combined with 
CBD compared to tamoxifen monotherapy.23 However, the bioavailability of sublingual 
CBD in the highest over-the-counter dosage should theoretically not be sufficient for 
significant CYP2D6 inhibition.24

If CBD can diminish tamoxifen-related side effects without negative impact on 
tamoxifen pharmacokinetics, this could be a solution for the high frequency of 
tamoxifen discontinuation. Therefore, the aims of our study were 1) to determine the 
pharmacokinetic interaction between CBD-oil and endoxifen and 2) to investigate 
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whether there is a beneficial effect of CBD-oil on tamoxifen-related side effects and 
health-related quality of life (HR-QOL) in primary breast cancer patients.

METHODS
This pharmacokinetic open-label single-arm, one-way cross-over study was performed 
at the Erasmus MC Cancer Institute in Rotterdam, The Netherlands, between November 
2020 and September 2022. The study protocol was written conform the Declaration of 
Helsinki, approved by the Erasmus MC Medical Ethics Committee and registered at 
the International Clinical Trial Registry Platform (NL8786; https://www.who.int/clinical-
trials-registry-platform).  

Patients
We included patients who were treated with adjuvant tamoxifen for at least three 
months. Steady-state endoxifen plasma concentrations had to be >16 nM. Furthermore, 
patients had to experience at least one of the following tamoxifen related side effects, 
scored using US National Cancer Institute’s Common Terminology Criteria for 
Adverse Events version 5 (CTCAEv5): hot flashes grade >2, arthralgia grade >2, mood 
alterations grade >2 or insomnia grade >1. Patients were excluded if they had used 
CBs within three months before inclusion or if they used strong CYP3A4, CYP2D6, 
UDP-glucuronosyltransferase or P-glycoprotein inhibitors or inducers. All included 
patients gave written informed consent. 

Study design	
The study started with continuation of tamoxifen monotherapy for 7 days. Patients 
were ordered to take their tamoxifen at 9 AM. Patients were then hospitalized for 24-h 
pharmacokinetic blood sampling of tamoxifen and endoxifen. Afterwards, patients started 
with 5 drops 10% CBD-oil sublingually three times daily for four weeks (i.e., ≈50 mg CBD 
per day, the highest over-the-counter dose) concomitantly to their tamoxifen treatment. 
The pharmaceutical grade CBD-oil was manufactured by a Dutch Pharmacy (Clinical 
Cannabis Care, Breukelen, the Netherlands, article number 16779517). After four weeks 
of concomitant CBD and tamoxifen, patients were again hospitalized for pharmacokinetic 
blood sampling of tamoxifen and endoxifen. Also, before and after start of CBD side 
effects were assessed and laboratory analysis (blood count, kidney- and liver function) 
was performed. Patients were asked to fill in a patient diary to verify patients’ compliance. 

After the intended 15 patients completed the study protocol, the study was amended 
to include 11 more patients. With this amendment we were able to investigate whether 
CBD-oil could have a beneficial effect on tamoxifen-related side effects. Hospitalization 
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for pharmacokinetic blood sampling was not required for these patients. A single 
endoxifen trough concentration (Cmin) was measured after four weeks of CBD-oil. 
Other design aspects of the extension part were identical to the main study. 

Pharmacokinetic and pharmacogenetic analysis	
Blood samples for determination of tamoxifen and endoxifen pharmacokinetics were 
obtained at 13 predefined time points (t=0 (before tamoxifen intake); and 0.5h; 1h; 1.5h; 
2h; 2.5h; 3h; 3.5h; 4h; 6h; 8h; 10h and 24h after tamoxifen intake). Single measurements 
of plasma concentrations were performed on a validated liquid chromatography with 
a tandem mass spectrometry method (UP-LC-MS/MS).25 Using Phoenix WinNonLin 
version 8.3 the following pharmacokinetic parameters were determined or calculated: 
area under the plasma concentration time curves (AUC), Cmin and maximum observed 
plasma concentration (Cmax) of tamoxifen and endoxifen. 

CYP2D6 genotyping was performed on germline DNA using the Infiniti test 
(Autogenomics; Carlsblad, CA, USA) and the Quantstudio test (ThermoFisher Scientific; 
Waltham, MA, USA). Blood samples were assayed on the follow genetic variants: *2-10, 
*12, *13, *14, *17, *29, and *41.

Quality of life and side effect	
Side effects of tamoxifen and CBD-oil were assessed using CTCAEv5. To evaluate 
the effect of CBD-oil on tamoxifen-related side effects and HR-QOL in more detail, 
patients were asked to fill in the Functional Assessment of Cancer Therapy – Endocrine 
Symptoms (FACT-ES) questionnaire before and four weeks after start of CBD.26 The 
FACT-ES is a validated questionnaire of in total 46 questions and consists of physical, 
social, emotional and functional wellbeing subscales (together measuring the health-
related quality of life) and an additional endocrine subscale measuring side effects 
of endocrine treatments given in breast cancer patients. The different endocrine 
subscale items and additional information about the questionnaire can be found in 
Supplementary Table 2.

Statistical analysis 	
The primary endpoint of the study was the AUC of endoxifen. Bio-equivalence of 
tamoxifen with and without CBD-oil could be concluded according to Food and Drug 
Administration (FDA) guidelines, which suggest that the 90% confidence interval (CI) 
of the ratio of geometric means of the AUC should be within 0.80-1.25.27 Given a two-
sided α of 5%, 80% power, assuming a standard deviation of the difference of 20% and 
a  true ratio of AUC geometric means of 1.0 a sample size of 15 patients was required. 
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The AUC of endoxifen as well as all other pharmacokinetic endpoints were analysed 
by means of a paired t-test on log-transformed data.

As a secondary endpoint, the ES scores of the FACT-ES questionnaire before start of 
CBD-oil and four weeks after start of CBD-oil were compared. Change scores of more 
than 0.5 of the baseline SD are considered a clinically relevant change and seen as 
more than a moderate effect size.28 Hence, we hypothesized that the ES score would 
improve with at least 0.5 of baseline SD after four weeks of CBD-oil, estimated at four 
points based on earlier research.26 To test this hypothesis with a paired sample t-test 
a sample size of 26 patients was required (one-sided α 5%, 80% power, estimated 
within-patient correlation 0.7). Also, differences in HR-QOL before and after CBD-oil 
use were determined and tested with a paired sample t-test or Wilcoxon signed rank 
test in case the scores were not normally distributed. Differences before and after 
CBD in specific side effects measured with the endocrine subscale of the FACT-ES 
were analysed descriptively. The item ‘I am sleeping well’ is not part of the endocrine 
subscale but it is an item in the HR-QOL part. Because insomnia was frequently 
mentioned as a side effect of tamoxifen and CBD is known to potentially improve this, 
we also checked for changes in this item. 

In an exploratory way, the difference in endoxifen AUC was analysed for each CYP2D6 
phenotype separately. If a difference between CYP2D6 phenotypes was found, the 
endoxifen Cmin would be analysed for different CYP2D6 phenotypes as well in all 26 
patients.   

RESULTS

Patient characteristics	
In total, 35 patients were enrolled in the study. Four patients were excluded before 
start of study due to voluntary withdrawal (n = 2), disease progression (n = 1) and an 
endoxifen level <16 nM despite dose escalation (n = 1). Five other patients were 
excluded during the study due to protocol violation (n = 3), personal circumstances 
(n = 1) and poor venous access for blood withdrawal (n = 1). There were 26 evaluable 
patients whereof 15 for the primary pharmacokinetic endpoint. Patient characteristics 
can be found in Table 1. 

Pharmacokinetics 
Table 2 shows the main pharmacokinetic parameters of tamoxifen and endoxifen 
during tamoxifen monotherapy as compared to tamoxifen combined with CBD-oil. 
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For endoxifen, the AUC0-24h significantly decreased by 12.6% (90% CI -18.7%, -6.1%) 
when CBD-oil was used in addition to tamoxifen. However, the 90% CI was within the 
limits of bio-equivalence. Also, the Cmin and Cmax of endoxifen decreased significantly 
when using CBD-oil next to tamoxifen. There were no significant differences in 
tamoxifen AUC0-24h, Cmin and Cmax between tamoxifen monotherapy or tamoxifen 
combined with CBD-oil. Moreover, the 90% CIs of all parameters were within bio-
equivalence boundaries. 

Table 1. Baseline characteristics  

n = 26 n (%) or median [IQR]

Age 49.5 [46.8 - 54]

BMI (kg/m2) 26.1 [23.8 – 30.9]

Biochemistry
        ALT (U/L)
        Creatinine (µmol/L)
        Hemoglobin (mmol/L)
        Leucocytes (x109/L)
        Thrombocytes (x109/L)

18.5
69
8.0
5.8

236.5 

[14.0 – 24.5] 
[64.8 – 75]
[7.8 – 8.4]
[4.9 – 7.0] 

[193.0 – 294.5]

Duration of adjuvant tamoxifen use (months) 13 [5 - 24] 

WHO Performance Score
        0
        1

16
10

61.5%
38.5%

Local treatment 
        Lumpectomy + radiotherapy
        Mastectomy only
        Mastectomy + radiotherapy

13 
4
9 

50%
15.4%
34.6%

(Neo)adjuvant chemotherapy
        Yes
        No

20 
6

76.9%
23.1%

(Neo)adjuvant anti-Her2Neu therapy
        Yes
        No 

1 
25

3.8%
96.2%

Tamoxifen dose
        20 mg
        30 mg
        40 mg 

18
4
4

69.2%
15.4%
15.4%

CYP2D6 phenotype
        Intermediate metabolizer (IM)
        Extensive metabolizer (EM)
        Ultrarapid metabolizer (UM)

13
12
1

50%
46.2%
3.8%

n number; IQR interquartile range
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Table 2. Tamoxifen pharmacokinetics with or without CBD  

Pharmacokinetic 
parameters (n = 15)

Tamoxifen 
monotherapya

Tamoxifen + CBDa Relative difference (%) with 
vs without CBD (90% CI)

Tamoxifen

AUC0-24h (nmol ∙ h ∙ L-1) 7100 (669) 6900 (622) -2.8% (-7.7, +2.4%)

Cmin 272 (67) 252 (64) -7.2% (-14.1, +0.4%)

Cmax 397(69) 392 (61) -1.2% (-8.2, +6.4%)

Endoxifen

AUC0-24h (nmol ∙ h ∙ L-1) 621 (22) 542 (18) -12.6% (-18.7, -6.1%)

Cmin 28 (22) 23 (20) -18.2% (-23.4, -12.7%)

Cmax 33 (20) 27  (17) -16.3% (-20.7, -11.7%)

AUC: area under the curve, Cmin: minimum plasma concentration, Cmax: maximum plasma concentration
ageometric mean (coefficient of variation %)

The AUCs of tamoxifen and endoxifen were also analyzed for the intermediate (IM) 
and extensive (EM) CYP2D6 phenotype patients separately (see Supplementary Table 
1). In patients with an IM CYP2D6 phenotype, the AUC of tamoxifen and endoxifen 
decreased significantly when using CBD-oil, while in patients with an EM CYP2D6 
metabolism, the AUC of both tamoxifen and endoxifen remained comparable with the 
90% CIs within the bio-equivalence boundaries. There was a significant difference 
between ∆AUCPK2-PK1 of endoxifen in IM metabolizers compared with EM metabolizers 
(p = 0.004, independent samples t-test). To further study this difference, the Cmin 
of tamoxifen and endoxifen was determined for IM and EM CYP2D6 phenotypes 
separately in the total study group (n = 25, one patient missing due to logistic reasons). 
Tamoxifen Cmin was comparable in both IM and EM CYP2D6 phenotypes. Endoxifen 
Cmin decreased in a comparable range in both groups and there was no statistical 
difference between ∆CminPK2-PK1 of endoxifen in IM metabolizers compared with EM 
metabolizers (p = 0.48, independent samples t-test). 

FACT-ES scores	  
In Figure 1 a visual representation of the effect of CBD-oil on ES and HR-QOL is 
shown. There was a clinical relevant (>5 points i.e., >0.5 of SD of ES on baseline) 
and significant improvement in ES after four weeks of using CBD next to tamoxifen. 
The HR-QOL showed a significant improvement as well, but this change was not 
clinical relevant (<8 points i.e. <0.5 of SD of HR-QOL on baseline). Means, confidence 
intervals an p-values can be found in Table 3. 
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To rule out the effect of the (slight) decrease in endoxifen levels on tamoxifen-related 
side effects instead of the effect of using CBD-oil, a Spearman correlation test was 
performed between the difference in endoxifen Cmin and the improvement in ES score. 
No significant correlation was found (r = 0.19, p = 0.37, n = 25).

Joint pain improved most frequently of all separate items of the endocrine subscale of 
the FACT-ES (n = 16; 62%). Also, hot flashes, cold sweats, night sweats and insomnia 
(n = 15; 58%) and bloated feeling (n = 13; 50%) were items that improved frequently (i.e. 
in at least half of the patients). Percentage of improvement of all side effects assessed 
with the FACT-ES questionnaire can be found in Table 4. Improvement is seen as at 
least one point improvement on the 5-point Likert scale after four weeks of CBD. 

CTCAE-toxicity
Side effects with tamoxifen monotherapy and after four weeks of tamoxifen and CBD-
oil concomitantly can be found in Table 5.  Hot flashes and arthralgia improved with 
at least one grade in six out of 25 patients (24%) and insomnia improved with one 
grade in 11 out of 26 patients (42%). This is in line with the trend seen in improvement 
in separate endocrine subscale items. 

Ten out of 26 patients (38%) experienced some kind of CBD-oil-related toxicity. Most 
frequented mentioned side effects were fatigue (n = 3, 12%) and dry mouth (n = 3, 12%). 
All side effects were grade 1. None of the patients quit CBD-oil because of side effects. 
Sixty-nine percent of patients wished to continue CBD-oil after the study was finished. 
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Figure 1. FACT-ES scores with tamoxifen monotherapy and after 4 weeks of CBD use 
ES; endocrine symptoms (0-76), HR-QOL; health-related quality of life (0-108) * significant ** significant and 
clinical relevant *one-sided paired sample t-test **one-sided wilcoxon signed rank test. TAM mono: ES median: 
49.5, IQR: 39-56, min-max: 23-61. HR-QOL median: 75.5, IQR: 65-73, min-max: 39-102. TAM + CBD: ES 
median: 52.0, IQR: 47-63, min-max: 34-73. HR-QOL median: 80.5, IQR: 68-90, min-max: 43-105
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Table 3. FACT-ES scores with tamoxifen monotherapy and after 4 weeks of CBD use 

FACT-ES scores 
(n = 26)

Mean 
without CBD

Mean after 4 
weeks of CBD

Difference before and after 
CBD (95% CI)

P value 
(1-sided)

Health-related QOL 74.3 79.0 +4.7a (+1.8, +7.6) 0.001b

Endocrine symptoms  47.1 53.8 +6.7a (NA) <0.001c

aClinically relevant improvement when >0.5 of baseline SD, HR-QOL baseline SD 15.8, ES baseline SD 10.4 
bPaired samples t-test cWilcoxon signed rank test 

Table 4. Side effects assessed with FACT-ES questionnaire 

Side effect Patients with 
side effect on 
baseline (n)

Patients 
in which 

side effect 
improved (n)

% improved 
(from total 

patient group  
n = 26)

% improved 
(from patients 

with side 
effect) 

Hot flashes 26 15 58% 58%

Joint pain 25 16 62% 64%

Insomnia 25 15 58% 60%

Cold sweats 24 15 58% 63%

Night sweats 23 15 58% 65%

Mood swings 21 10 38% 48%

Irritable feeling 21 10 38% 48%

Vaginal discharge 19 7 27% 37%

Vaginal dryness 19 8 31% 42%

Lost interest in sexa 18 5 19% 28%

Weight gain 18 7 27% 39%

Bloated feeling 18 13 50% 72%

Headache 17 8 31% 47%

Lightheaded/dizziness 16 9 35% 56%

Pain/discomfort with 
intercoursea

15 6 23% 40%

Breast sensitivity/
tendernessa

13 9 34% 69%

Vaginal itching/irritationa 9 4 15% 44%

Diarrhea 6 4 15% 67%

Vomiting 3 3 12% 100%

Vaginal bleeding or spotting 2 1 4% 50%

aFor this item some patients were missing, vaginal itching n = 1, pain/discomfort with intercourse n = 5, lost 
interest in sex n = 1, breast sensitivity/tenderness n = 2 
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Table 5. CTCAE toxicity of tamoxifen with and without concomitant CBD

  Tamoxifen-related side with 
tamoxifen only (n = 26)

Tamoxifen-related side effects with 
tamoxifen and CBD (n = 26)

n (%) Grade 1 Grade 2 Grade 1 Grade 2

Insomnia 16 (62%) 10 (38%) 19 (73%) 3 (12%)

Hot flashes 20 (77%) 5 (19%) 22 (85%) 1 (4%)

Arthralgia 15 (58%) 10 (38%) 21 (81%) 3 (12%)

Mood alterations 19 (73%) 1 (4%) 17 (65%) 1 (4%)

Muscle cramp 7 (27%) 1 (4%) 8 (31%) -

Fatigue 3 (12%) 3 (12%) 8  (31%) 1 (4%)

Headache 4 (15%) - 4 (15%) -

Vaginal dryness 2 (8%) 1 (4%) 1 (4%) -

Amnesia 4 (15%) - 2 (8%) -

Weight gain 2 (8%) - 1 (4%) -

Dry mouth - - 3 (12%)

Nausea 2 (8%)

Toxicity is shown when it occurred in more than one patient 

DISCUSSION
Although the combination of CBD-oil and tamoxifen lead to a significant decrease 
in endoxifen plasma concentrations, the decrease remained within bio-equivalence 
boundaries and is not considered clinically relevant. Furthermore, CBD-oil seems 
to improve tamoxifen-related side effects as measured by an endocrine symptoms 
quality-of-life questionnaire (FACT-ES) while CBD-oil itself has only mild side effects. 
Thus, in case of bothersome tamoxifen-related side effects CBD addition may reduce 
side effects and hopefully lower the high tamoxifen discontinuation rate. However, since 
this was an open-label, single arm study, it is not known how much of the improvement 
is due to a placebo effect. HR-QOL improved significantly but this improvement was 
too little to be clinically relevant. Since CBD-oil was used for only four weeks this may 
have been too short to achieve a clinical relevant improvement in HR-QOL. 

In patients with an IM CYP2D6 phenotype the decrease in endoxifen AUC seemed 
more pronounced than in patients with an EM CYP2D6 phenotype. Because of the 
additional patients recruited for side effect analysis extra information about Cmin 
concentrations could be obtained. With regard to Cmin endoxifen concentrations, 
there was no significant difference between IM and EM subgroups. Although Cmin is 
known to be a less robust pharmacokinetic parameter than AUC, this analysis, done 
with a much larger subgroup, makes a difference in CBD effects between CYP2D6 
phenotypes less probable.
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In our study mean scores of ES and HR-QOL were 47 and 74 points, respectively. 
ES scores were much lower than found in previous studies where ES were assessed 
in large groups of unselected patients using adjuvant tamoxifen (ES: 59-62 points; 
HR-QOL 79-83 points).29-31 This is as expected, since, in contrast to our study, these 
populations were not selected for tamoxifen-related complaints. After four weeks of 
CBD, HR-QOL scores improved to an average of 79 points. While the improvement of 
ES scores was clinically relevant they remained below population average (54 points). 
Possibly, a longer period of CBD treatment can further improve ES scores. 

Earlier studies suggested effects of CBD-oil on sleep and pain which was confirmed 
in our study.32 Insomnia improved the most (i.e., in 42% of patients) and also, hot 
flashes and arthralgia improved in 24% of patients. But, a placebo effect cannot be 
ruled out. The most compelling study to date that placebo effect may play an important 
role in symptom relief from CBD-oil comes from the recently published study by 
Hardy et al. In a randomized study they showed beneficial effect of two weeks CBD 
use for symptom relief in an advanced cancer population.13 However, this effect was 
not statistically significantly better than placebo, suggesting an important role for a 
placebo effect.13 Although a placebo-controlled randomized study is the ultimate form 
of ruling out a placebo effect, some nuance should be made here. The questionnaire 
used had a large overlap with the well-known complaints associated with CBD use. 
Symptoms that were assessed in this study were pain, tiredness, drowsiness, nausea, 
lack of appetite, shortness of breath, depression, anxiety and wellbeing. Almost half of 
these symptoms (tiredness, drowsiness, nausea and lack of appetite) are known side 
effects of CBD.33,34 Besides, this assessment scale is hardly overlapping with any of 
the endocrine side effects of tamoxifen. This, in combination with the very high dose of 
CDB used (eight-times higher than in our study), makes it difficult to make a definitive 
statement about the effect of CBD-oil in case of tamoxifen-related side effects. Overall, 
our findings of CBD use for reducing tamoxifen-related side effects in a well-defined 
breast cancer patient population are promising, but certainly need further investigation 
in a placebo-controlled study to demonstrate the real added value of CBD-oil. 

Although it is known that CBD can interact with several G-protein coupled receptors 
such as CB1-, CB2-, opioid-, melatonin-, acetylcholine-, serotonin- and dopamine-
receptors, it is not understood how this interplay of agonism and antagonism of 
receptors might lead to, for example, alleviation of pain or improvement of sleep.7 
However, CB1 is highly expressed in areas in the brain related to, among others, pain, 
anxiety, sensory and visceral perception, motor coordination and endocrine functions.10 
We hypothesize that this might be one of the reasons that CB1 receptor activation by 
CBD could lead to less hot flashes and a decrease in arthralgia. Also, it is presumable 
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that activation of other receptors as opioid- and melatonin-receptors could lead to a 
decrease in pain and an improvement in sleep, subsequently. This is most probably 
a separate mechanism not related to tamoxifen but which can coincidentally improve 
side effects that occur with tamoxifen. However, it is not ruled out that an interaction 
between the estrogen receptor and receptors where CBD engages occurs, for example 
in the brain where both are present. 

Our study has several strengths. It is the first study investigating the pharmacokinetic 
interaction between tamoxifen and CBD-oil leading to highly requested knowledge for 
many breast cancer patients. Pharmaceutical grade CBD-oil without THC (i.e., THC 
<0.05%) was used next to tamoxifen for four weeks in the highest over-the-counter 
dose (i.e. ≈50 mg), also securing the safety of lower CBD-oil doses. Because patients 
were their own control and AUCs of tamoxifen and endoxifen were measured, this led 
to a robust answer to this pharmacokinetic question. However, it remains unclear if 
higher doses of CBD, non-pharmaceutical grade CBD or other formulations of CBD 
are equally safe. Also, this is the first study investigating the effect of CBD-oil on 
tamoxifen-related side effects using the validated and reliable FACT-ES questionnaire 
next to CTCAE toxicity grading. A limitation of the study is the lack of a control arm 
when it comes to the research question about the effect of CBD use on side effects 
reduction. However, this is no issue for our primary, pharmacological research 
question. Finally, if subsequent studies confirm our results, CBD use will unfortunately 
not be applicable worldwide. CBD-oil is seen as a supplement in the Netherlands and 
many other European countries, but is on the list of prohibited narcotics in several 
other countries. 	

In conclusion, endoxifen levels remained within bio-equivalence boundaries when 
CBD-oil was used in combination with tamoxifen. Therefore, sublingual CBD-oil, if of 
good quality and not higher than the highest over-the-counter dose (<50 mg per day), 
does not have to be discouraged in patients using it as complementary medication. 
In addition, the use of CBD-oil in this single arm study resulted in a promising 
improvement in endocrine symptoms and quality of life, but the real effect of CBD-oil 
has yet to be proven in a placebo-controlled study that is currently being set up.
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SUPPLEMENTARY MATERIAL
Supplementary table 1. Tamoxifen pharmacokinetics with or without CBD per CYP2D6 phenotype   

Pharmacokinetic 
parameters 

Tamoxifen 
monotherapy1

Tamoxifen + CBD1 Relative difference (%) 
with vs without CBD (90% CI)

Intermediate metabolizers (IM)

Tamoxifen AUC0-24h (N=8)2 8130(59) 7570 (64) -6.9% (-13.2, -0.2%)

Tamoxifen Cmin (N=13)3 321 (55) 309 (58) -3.7% (-10.1, +3.1%)

Endoxifen AUC0-24h (N=8)2 623 (28) 494 (18) -20.8% (-26.4, -14.8%)

Endoxifen Cmin (N=13)3 26 (29) 22 (28) -17.7% (-23.3, -11.7%)

Extensive metabolizers (EM)

Tamoxifen AUC0-24h (N=7)2 6090 (76) 6210 (57) +2.0% (-6.1, +10.8%)

Tamoxifen Cmin (N=11)3 268 (59) 245 (51)  -8.5% (-18.6, +3.0%)

Endoxifen AUC0-24h (N=7)2 618 (15) 604 (13) -2.2% (-11.1, +7.6%)

Endoxifen Cmin (N=11)3 31 (46) 27 (34) -13.7% (-21.9, -4.6%)

1geometric mean (coefficient of variation %) 2all patients with IM and EM metabolism where AUC was 
determined 3patients with IM and EM metabolism where AUC was determined AND all other patients with IM 
and EM metabolism where only Cmin was determined 
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Supplementary table 2. FACT-ES items Endocrine subscale

Endocrine subscale items FACT-ES

ES items Not at all A little 
bit

Some-
what

Quite a 
bit

Very 
much

I have hot flashes 0 1 2 3 4

I have cold sweats 0 1 2 3 4

I have night sweats 0 1 2 3 4

I have vaginal discharge 0 1 2 3 4

I have vaginal itching/irritation 0 1 2 3 4

I have vaginal bleeding or spotting 0 1 2 3 4

I have vaginal dryness 0 1 2 3 4

I have pain or discomfort with intercourse 0 1 2 3 4

I have lost interest in sex 0 1 2 3 4

I have gained weight 0 1 2 3 4

I feel lightheaded/dizzy 0 1 2 3 4

I have been vomiting 0 1 2 3 4

I have diarrhea 0 1 2 3 4

I get headaches 0 1 2 3 4

I feel bloated 0 1 2 3 4

I have breast sensitivity/tenderness 0 1 2 3 4

I have mood swings 0 1 2 3 4

I am irritable 0 1 2 3 4

I have pain in my joints 0 1 2 3 4

Legend. The FACT-ES has a 5 point liker-type response scale and  contains 46 questions in total. It measures 
four domains of health-related quality of life: physical, social, emotional and functional well-being in 27 items. 
Also, it is a measure of side effects of endocrine treatments given in breast cancer patients (ES, 19 items, 
see above). Some items were negatively framed and were therefore reversed for analysis. High scores of the 
FACT-ES equate with good quality of life and/or experiencing few side effects while lower scores indicate 
poorer quality of life and/or experiencing many/severe side effects.
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ABSTRACT 

Background 
Tamoxifen is an effective treatment for primary breast cancer but increases the risk 
for venous thromboembolism. Tamoxifen decreases anticoagulant proteins, including 
antithrombin (AT), protein C (PC) and tissue factor (TF) pathway inhibitor, and enhances 
thrombin generation (TG). However, the relation between plasma concentrations of 
both tamoxifen and its active metabolite endoxifen and coagulation remains unknown. 

Methods 
Tamoxifen and endoxifen were measured in 141 patients from the prospective open-
label intervention TOTAM-study after 3 months (m) and 6 m of tamoxifen treatment. 
Levels of AT and PC, the procoagulant TF, and TG parameters were determined at both 
timepoints if samples were available (n = 53-135 per analysis). Levels of coagulation 
proteins and TG parameters were correlated and compared between: 1) quartiles of 
tamoxifen and endoxifen levels, and 2) 3 m and 6 m of treatment.

Results 
At 3 m, levels of AT, PC, TF and TG parameters were not associated with tamoxifen 
nor endoxifen levels. At 6 m, median TF levels were lower in patients in the 3rd (56.6 
[33] pg/mL), and 4th (50.1 [19] pg/mL) endoxifen quartiles compared to the 1st (lowest) 
quartile (76 [69] pg/mL) (p =  0.027 and p = 0.018, respectively), but no differences in 
anticoagulant proteins or TG parameters were observed. An increase in TF levels (3m: 
46.0 [15], 6m: 54.4 [39] pg/mL, p < 0.001) and TG parameters was observed at the 6 
m treatment period, while AT and PC levels remained stable.

Conclusions 
Our results indicate that higher tamoxifen and endoxifen levels are not correlated 
with an increased procoagulant state, suggesting tamoxifen dose escalation does not 
further promote hypercoagulability. 

177686_Buijs_BNW.indd   96177686_Buijs_BNW.indd   96 22/01/2025   14:0622/01/2025   14:06



97

Tamoxifen plasma concentrations and coagulation parameters 

5

INTRODUCTION
Tamoxifen is indicated for the adjuvant treatment of estrogen-receptor (ER) positive 
breast cancer, effectively reducing the annual breast cancer death rate with almost one-
third.1 Tamoxifen and its metabolites act as selective ER modulators (SERM) and have 
antagonistic effects on the ER in breast cancer cells, yielding anti-tumor effects by 
prevention of estrogen-mediated tumor cell growth.2 However, tamoxifen can act as an 
ER agonist in other tissues.2 These tissue-specific ER agonistic or antagonistic effects 
of tamoxifen are determined by several factors including tissue-specific expression of 
the two ER subtypes (ERα and ERβ) and availability of intracellular coactivators and 
corepressors for ER-dependent target genes.3

Tamoxifen treatment is associated with various side effects, of which hot flashes, 
joint pain, vaginal dryness and insomnia are most commonly reported.4 These side 
effects are caused by the ER agonistic or antagonistic effects of tamoxifen and 
its metabolites in tissues other than breast cancer cells. For example, tamoxifen 
treatment can stimulate endometrial cell growth by agonistic effects on endometrial 
tissue, whereas it can cause hot flashes by its antagonistic effects in the central 
nervous system. An alarming observation is that tamoxifen increases the risk of venous 
thromboembolism (VTE): tamoxifen-treated patients have a 2-3.5 fold increased risk 
of developing a VTE compared to breast cancer patients without adjuvant tamoxifen 
treatment. The reported VTE incidence is 1-3% during tamoxifen therapy and most 
events occur within the first 2 years of treatment.5,6 Next to being potentially life-
threatening in severe cases, VTE can lead to significant morbidity, a lower quality of 
life and psychological stress.7,8 Moreover, anticoagulant therapy for treatment and 
secondary prevention of VTE can increase the risk of bleeding. Therefore, a better 
understanding of tamoxifen-associated VTE is essential to optimize patient treatment.

Currently, the mechanisms underlying the prothrombotic properties of tamoxifen 
treatment remain largely unclear. Some studies have shown that tamoxifen treatment 
is associated with a reduction in plasma levels of various anticoagulant proteins, 
including protein C, antithrombin and tissue factor pathway inhibitor (TFPI), and an 
increase in thrombin generation potential, suggestive of a procoagulant state.9-11 
Although there is currently no direct evidence for a dose-dependent effect of tamoxifen 
on VTE risk, one study found higher levels of the anticoagulant antithrombin in patients 
who received low daily tamoxifen doses (1 mg or 5 mg) compared with the standard of 
20 mg.12 While a higher tamoxifen dose is not associated with an increase in patient-
reported side effects such as hot flashes and vaginal dryness13-15, it is essential to 
determine if higher levels of tamoxifen and its metabolites are linked to an increased 
procoagulant state, which could possibly further increase VTE risk. 
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Tamoxifen itself has relatively low affinity for the ER and is converted into 
4-hydroxytamoxifen or n-desmethyltamoxifen and subsequently to endoxifen by 
various hepatic cytochrome P450 (CYP) enzymes, mainly CYP2D6 and CYP3A4.16 
Endoxifen is considered the most important metabolite for treatment efficacy.17 
Endoxifen has a much higher affinity for the ER than n-desmethyltamoxifen17,18 and a 
similar affinity as 4-hydroxytamoxifen, but endoxifen plasma concentrations are up 
to 14-fold higher than the latter.17,19 Since low endoxifen plasma levels are associated 
with increased breast cancer recurrence rates20, an efficacy threshold of minimally 
16 nM endoxifen is generally accepted for tamoxifen precision dosing.21,22 Given that 
one out of five patients do not reach this threshold on the standard daily dose of 20 
mg tamoxifen, therapeutic drug monitoring (TDM) of tamoxifen and endoxifen plasma 
levels could be useful to select patients who require an increase in tamoxifen dose.13 
Particularly tamoxifen plasma levels often become significantly higher than population 
average upon tamoxifen dose escalation14 and both tamoxifen and endoxifen levels 
have a high interpatient variability regardless of dose.23 Therefore, it is essential to 
determine the possible implications of higher concentrations of both tamoxifen and 
its primary metabolite endoxifen on VTE risk. 

Here we investigated whether higher plasma levels of tamoxifen and endoxifen are 
associated with a procoagulant state of the coagulation system. For this, we assessed 
if tamoxifen and endoxifen plasma levels correlated with 1) levels of various pro- 
and anti-coagulant proteins which were previously demonstrated to be affected by 
tamoxifen9-11, and 2) thrombin generation parameters in patients undergoing TDM of 
adjuvant tamoxifen treatment for primary breast cancer. In addition, we investigated 
the time-dependent effects of tamoxifen on coagulation parameters. 

MATERIAL AND METHODS 
The current study was a secondary analysis from the TOTAM (Therapeutic drug 
monitoring Of TAMoxifen) study: a prospective intervention study on the feasibility 
of TDM of tamoxifen coordinated by the Erasmus MC Cancer Institute in Rotterdam, 
the Netherlands.13 This study was approved by the local Medical Ethics Committee in 
January 2018 (MEC 2017-548) and registered in the International Clinical Trial Registry 
Platform (ICTRP; https://trialsearch.who.int; NL6918). Patients were included in this 
specific part from the study between November 2020 and November 2021. Informed 
consent was obtained from all participants. 
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Study design 
As described in the original study, female patients who used adjuvant tamoxifen 20 
mg daily for primary breast cancer were included after 3 months (3 m) of therapy.13,24,25 
Steady-state tamoxifen and endoxifen levels were measured at study inclusion. 
If endoxifen levels were below the treatment threshold of 16 nM, tamoxifen dose was 
increased to 30 mg or 40 mg daily. If endoxifen levels were above or equal to 32 nM 
and patients reported bothersome side effects, tamoxifen dose could be reduced 
to 10 mg daily. Tamoxifen and endoxifen levels were measured again after 6 months 
(6 m) of tamoxifen therapy. At both the 3m and 6m timepoints, coagulation analyses 
were performed. Patients who were diagnosed with recurrence of breast cancer or a 
new primary cancer within 1 year after start of tamoxifen were excluded to eliminate 
the effect of a (new) active malignancy on coagulation protein measurements. Also, 
measurements were excluded from analyses if patients were using anticoagulant 
therapy (direct oral anticoagulants, vitamin K antagonist or low molecular weight 
heparins) at the time of sampling. VTE events within 1 year of tamoxifen therapy 
initiation were identified by manual chart review of the electronic medical record and 
all VTE events were diagnosed using radiologic imaging. 

Pharmacokinetic analysis 
Tamoxifen and endoxifen trough (Cmin) plasma concentrations were measured in blood 
samples after 3 m and 6 m of tamoxifen therapy, using a validated ultra-performance 
liquid chromatography with a tandem mass spectrometry method (UP-LCMS/MS).26

Coagulation analyses 
In all available blood samples, protein C, antithrombin, tissue factor and thrombin 
generation parameters were determined after 3 m and 6 m of tamoxifen therapy. 
For protein C, antithrombin and thrombin generation analyses blood was collected 
in citrate tubes, while for tissue factor determination blood was sampled in lithium 
heparin tubes. Plasma levels of protein C and antithrombin were determined using a 
chromogenic assay (respectively Berichrom® Protein C and INNOVANCE® Antithrombin) 
on a Sysmex CS5100 (Siemens Healthineers). Circulating tissue factor was assessed 
using an enzyme-linked immunosorbent assay (ELISA) (Human Coagulation Factor III/
Tissue factor Quantikine ELISA; R&D systems). Thrombin generation was adapted from 
protocols using low plasma volumes as previously described.27,28 Thrombin generation 
curves were obtained from reactions of patient plasma supplemented with either PPPlow 
reagent (Stago) containing tissue factor and phospholipids (i.e. with exogenous tissue 
factor) or with phospholipids only (phospholipid-TGT, Rossix; final concentration 4 μM; 
i.e. without exogenous tissue factor). Thrombin formation was initiated by the addition of 
substrate buffer (FluCa, Stago). The final reaction volume was 60 μL, of which 40 μL was 
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plasma. Thrombin formation was determined every 15 seconds for 90-120 minutes and 
corrected for the calibrator using Thrombinoscope software. The thrombin generation 
parameters determined were: endogenous thrombin potential (ETP or area under the 
curve), thrombin peak, lag time, time to peak, and velocity index.29 The ETP represents 
the total amount of thrombin generated over time; the thrombin peak is the maximum 
concentration of thrombin generated; the lag time is defined as the time between the 
addition of the trigger until the initiation of thrombin generation; the time to peak is 
the time required to reach the peak of thrombin generation, and the velocity index is a 
composite index defined as [peak height / (time to peak – lag time)]. 

Statistical analysis
Normal distribution of the data was assessed using the Shapiro Wilk test. Patients were 
stratified to quartiles (Q1-Q4) based on their tamoxifen and endoxifen plasma levels at 
the 3 m and 6 m timepoints separately. Subsequently, levels of coagulation proteins 
and thrombin generation were compared between quartiles, with the lowest quartile 
(Q1) serving as the reference group, using ANOVA with Dunnett’s test or Kruskall-Wallis 
with a Bonferroni correction approach (p-value times 3, i.e. the number of comparisons) 
to reduce the risk of type-1 error associated with multiple comparisons. Correlations 
between coagulation proteins and absolute tamoxifen and endoxifen concentrations 
were determined using Spearman’s rank correlation. To assess the time-effect of 
tamoxifen treatment, levels of coagulation proteins and thrombin generation were 
compared between 3 m and 6 m with the paired sample t-test or Wilcoxon signed rank 
test. Also, coagulation parameters were compared between patients who received 
chemotherapy and patient who did not receive chemotherapy with unpaired samples 
t-test or Mann-Whitney U test. If data was missing for specific measurements patients 
were excluded from these analyses. Data were analysed using SPSS Statistics (IBM 
version 28.0.1.0) and p values < 0.05 were considered statistically significant. 

RESULTS 
From the total cohort of 144 patients, three patients were excluded because of the 
development of a second malignancy (n = 2) or metastatic breast cancer (n = 1) within 
one year after initiation of tamoxifen treatment. In total, 141 patients were eligible for 
this study. Patient characteristics are summarized in Table 1. Median age was 58 
[IQR 49-67] and most patients had stage 1 or 2 disease with the no special type as 
the most common subtype (78%). The majority of patients had received both breast 
conserving surgery and radiotherapy prior to the start of tamoxifen treatment (60%), 
almost half received (neo)adjuvant chemotherapy (45%) and approximately 10% of 
patients received adjuvant anti-HER2 therapy. 
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Table 1. Baseline characteristics of the study participants

Baseline characteristics (n = 141) Median [IQR] or n (%)

Age 58 [49-67]

BMI 26.4 [23.7-30.2]

Tumor stage 

T1 70 (49.6)

T2 57 (40.4)

T3 12 (8.5)

T4 2 (1.4)

Nodal stage  

N0 80 (56.7)

N1 45 (31.9)

N2 13 (9.2)

N3 3 (2.1)

Tumor pathology 

NST 110 (78.0)

Lobular 25 (17.7)

Other 6 (4.3)

Histological grade (BR)

I 14 (9.9)

II 101 (71.6)

III 26 (18.4)

Local treatment 

BCS only 2 (1.4)

BCS + RTx 85 (60.3)

Mastectomy only 28 (19.9)

Mastectomy + RTx 26 (18.4)

(Neo)adjuvant chemotherapy 

Yes 63 (44.7)

No 78 (55.3)

(Neo)adjuvant anti-HER2 therapy 

Yes 13 (9.2)

No 128 (90.8)

Smoking status 

Current smoker 13 (9.2)

Former smoker 46 (32.6)

Never smoker 79 (56.0)

Unknown 3 (2.1)

History of VTE 3 (2.1)

Age and BMI were determined at the time of first blood sampling (after 3 months of tamoxifen therapy). 
Abbreviations: BMI body mass index, BCS breast conserving surgery, IQR interquartile range, NST no special 
type, RTx radiotherapy, VTE venous thromboembolism 
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VTE occurrence 
VTE occurred in 7 (5.0%) of the included patients within one year after start of tamoxifen 
treatment. These VTE consisted of: deep venous thrombosis (n = 3), superficial 
thrombophlebitis (n = 3) and pulmonary embolism (n = 1). The characteristics of these 
VTE events are specified in Supplementary Table A. All three patients with a medical 
history of VTE in our cohort experienced a VTE event again. None of the patients used 
anticoagulation during tamoxifen therapy given that these previous events of VTE had 
occurred more than 5 years prior to initiation of tamoxifen treatment. 

Correlation between tamoxifen or endoxifen levels and 
coagulation parameters   
Coagulation parameters were available of 53-135 patients, depending on the specific 
parameter assessed and duration of tamoxifen treatment. The levels of coagulation 
parameters and tamoxifen and endoxifen plasma levels for the total study population 
can be found in Supplementary table B. The plasma tamoxifen levels ranged from 
91 to 962 nM and correlated weakly with protein C at 3 m of treatment (r = 0.180, p = 
0.039, Figure 1A), but not at 6 m of therapy (r = 0.090, p = 0.364, Figure 1B). When 
stratifying to tamoxifen plasma levels, no significant difference was observed when 
comparing protein C levels in the higher quartiles with those of the lowest quartile of 
patients at 3 m or 6 m of treatment (Table 2). No correlation was observed between 
the tamoxifen plasma levels and those of antithrombin or tissue factor (Figures 1C-F), 
and no significant difference was observed for the latter when comparing these based 
on quartiles of tamoxifen plasma levels (Table 2). In addition, tamoxifen levels did not 
correlate with parameters of thrombin generation triggered with either exogenously 
added or endogenously present tissue factor (Table 3). Overall, these data indicate that 
higher tamoxifen levels are weakly associated with higher levels of the anticoagulant 
protein C after 3 m of treatment, while no correlation indicative of a procoagulant state 
was observed. 

The plasma endoxifen levels at 3 months ranged from 4 to 70 nM. For both 3 m and 
6 m of tamoxifen therapy, no correlation was observed between plasma endoxifen 
levels and protein C or antithrombin levels (Figure 2A-D), neither when comparing 
these factors based on quartiles of endoxifen plasma levels (Table 4). In contrast, 
endoxifen levels correlated negatively with tissue factor at 6 m of treatment (r = -0.290, 
p = 0.004, Figure 2F). When stratified to quartiles of endoxifen levels, patients with 
higher endoxifen concentrations had lower tissue factor levels at 6 m of therapy (Q3: 
56.6 [33] pg/ml and Q4: 50.1 [19] pg/mL versus Q1: 75.6 [69] pg/mL, adjusted p values 
of 0.027 and 0.018, respectively) (Table 4). No correlation with tissue factor levels 
was observed at 3 m of tamoxifen treatment. Thrombin generation parameters did 
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not correlate with endoxifen levels at any timepoint (Table 5). These data indicate that 
higher endoxifen levels are associated with lower circulating levels of the procoagulant 
tissue factor, which is not associated with a procoagulant state. 

Figure 1. Correlation of tamoxifen plasma levels after 3 months and 6 months of tamoxifen treatment with 
A+B, protein C (n = 133 and n = 104, respectively), C+D antithrombin (n = 135 and n = 104, respectively), and 
E+F tissue factor (n = 100 and n = 95, respectively).

177686_Buijs_BNW.indd   103177686_Buijs_BNW.indd   103 22/01/2025   14:0622/01/2025   14:06



104

CHAPTER 5 

Table 2. Levels of coagulation factors by quartiles of tamoxifen plasma levels 

3 months of tamoxifen 

Q1 Q2 Q3 Q4

Tamoxifen (nM) 91-246
n = 34

246-325
n = 35

325-432
n = 33

432-676
n = 33

Protein C (U/mL) 1.122 (0.21)
n = 34

1.169 (0.21)
n = 34

1.153 (0.25)
n = 33

1.233 (0.25)
n = 32

Antithrombin (U/mL) 0.955 (0.12)
n = 34

0.950 (0.08)
n = 35

0.965 (0.11)
n = 33

0.963 (0.09)
n = 33

Tissue factor (pg/mL) 44.1 [14]
n = 26

46.0 [21]
n = 25

50.1 [13]
n = 29

44.6 [20]
n = 20

6 months of tamoxifen 

Q1 Q2 Q3 Q4

Tamoxifen (nM) 94-238
n = 26

238-331
n = 27

331-469
n = 27

469-962
n = 26

Protein C (U/mL) 1.067 (0.19)
n = 26

1.162 (0.20)
n = 27

1.177 (0.24)
n = 26

1.125 (0.20)
n = 25

Antithrombin (U/mL) 0.947 (0.09)
n = 26

0.953 (0.10)
n = 27

0.938 (0.08)
n = 26

0.974 (0.11)
n = 25

Tissue factor (pg/mL) 66.6 [45]
n = 24

53.5 [40]
n = 25

52.0 [45]
n = 24

55.6 [40]
n = 22

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
All comparisons were non-significant. 

177686_Buijs_BNW.indd   104177686_Buijs_BNW.indd   104 22/01/2025   14:0622/01/2025   14:06



105

Tamoxifen plasma concentrations and coagulation parameters 

5

Table 3. Thrombin generation parameters by quartiles of tamoxifen plasma levels

3 months of tamoxifen 

Q1 Q2 Q3 Q4

Tamoxifen (nM) 91-246
n = 34

246-325
n = 35

325-432
n = 33

432-676
n = 33

      With exogenous tissue factor

ETP (nM*min) 2238 (1070) 2139 (357) 2178 (388) 2040 (279)

Thrombin peak (nM) 236 (59) 267 (60) 260 (59) 238 (51)

Lag time (min) 7.2 (1.6) 6.6 (1.3) 7.1 (1.6) 7.3 (1.4)

Time to peak (min) 11.6 [3] 10.5 [2] 11.5 [3] 11.8 [3]

Velocity index (nM/min) 53.0 (19) 66.5 (23) 61.5 (21) 59.5 (21)

     Without exogenous tissue factor

ETP (nM*min) 1083 (563) 1170 (361) 1260 (343) 1118 (435)

Thrombin peak (nM) 41.4 (39) 67.5 (36) 73.7 (43) 58.2 (35)

Lag time (min) 37.2 [63] 37.4 [23] 35.0 [39] 36.8 [48]

Time to peak (min) 58.5 [50] 44.0 [21] 43.1 [29] 44.9 [29]

Velocity index (nM/min) 4.0 [9] 9.8 [10] 9.9 [18] 11.3 [15]

6 months of tamoxifen 

Q1 Q2 Q3 Q4

Tamoxifen (nM) 94-238
n = 26

238-331
n = 27

331-469
n = 27

469-962
n = 26

     With exogenous tissue factor

ETP (nM*min) 2160 (450) 2128 (379) 2118 (504) 2028 (312)

Thrombin peak (nM) 248 (67) 257 (66) 253 (78) 248 (58)

Lag time (min) 6.1 [2] 6.0 [2] 6.8 [5] 6.1 [5]

Time to peak (min) 10.5 [2] 10.5 [2] 11.0 [3] 10.0 [2]

Velocity index (nM/min) 56 (20) 60 (23) 59 (26) 59 (22)

     Without exogenous tissue factor

ETP (nM*min) 1301 (442) 945 (467) 1433 (391) 1095 (550)

Thrombin peak (nM) 69 [69] 68 [62] 79 [110] 68 [127]

Lag time (min) 32.0 (13) 31.6 (13) 26.0 (14) 31.3 (19)

Time to peak (min) 43 [18] 39 [11] 33 [17] 40 [23]

Velocity index (nM/min) 12.8 [13] 10.4 [15] 15.1 [28] 11.7 [39]

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
All comparisons were non-significant. Abbreviations: ETP endogenous thrombin potential. 
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Table 4. Levels of coagulation factors by quartiles of endoxifen

3 months of tamoxifen 

Q1 Q2 Q3 Q4

Endoxifen (nM) 4-17
n = 34

17-26
n = 35

26-37
n = 33

37-70
n = 33

Protein C (U/mL) 1.155 (0.22)
n = 34

1.162 (0.21)
n = 34

1.155 (0.23)
n = 32

1.202 (0.28)
n = 33

Antithrombin (U/mL) 0.967 (0.09)
n = 34

0.944 (0.12)
n = 35

0.959 (0.08)
n = 33

0.960 (0.11)
n = 33

Tissue factor (pg/mL) 44.7 [16]
n = 27

43.0 [10]
n = 20

52.2 [19]
n = 27

46.5 [19]
n = 26

6 months of tamoxifen

Q1 Q2 Q3 Q4

Endoxifen (nM) 11-20
n = 26

20-25
n = 27

25-34
n = 27

34-70
n = 26

Protein C (U/mL) 1.144 (0.18)
n = 25

1.137 (0.17)
n = 27

1.032 (0.21)
n = 27

1.230 (0.23)
n = 25

Antithrombin (U/mL) 0.941 (0.09)
n = 25

0.979 (0.08)
n = 27

0.935 (0.09)
n = 27

0.955 (0.10)
n = 25

Tissue factor (pg/mL) 75.6 [69]
n = 23

65.7 [46]
n = 26

56.6 [33]*
n = 25

50.1 [19]*
n = 21

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
*p-value <0.05 versus Q1, all other comparisons were non-significant. Abbreviations: ETP endogenous 
thrombin potential 
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Figure 2. Correlation of endoxifen plasma levels after 3 months and 6 months of tamoxifen treatment with 
A+B, protein C (n = 133 and n = 104, respectively), C+D antithrombin (n = 135 and n = 104, respectively), and 
E+F tissue factor (n = 100 and n = 95, respectively).
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Time-dependent effect of tamoxifen treatment on coagulation 
The time-dependent effect of tamoxifen treatment on coagulation was determined 
in patients who remained on 20 mg tamoxifen daily (n = 80) during the study period 
(Table 6). Compared to the 3 m timepoint, median tissue factor levels were significantly 
higher after 6 m of therapy (46.0 vs. 54.4 pg/mL, respectively, p < 0.001). In line 
with this, thrombin generation initiated by endogenous tissue factor was enhanced 
at 6 m relative to 3 m of therapy, reflected by a significant increase in thrombin 
peak and velocity index, and shortened lag time and time to peak. Parameters of 
thrombin generation triggered by exogenous tissue factor and levels of protein C and 
antithrombin were similar between 3 m and 6 m of therapy. This significant increase 
in circulating tissue factor levels after 6 m of treatment was also observed in patients 
who received a tamoxifen dose increase to 30 or 40 mg daily (Supplementary Table 
C) as well as in patients in whom the tamoxifen dose was decreased to 10 mg daily 
(Supplementary Table D). This coincided with a significant increase in thrombin 
peak in endogenously triggered thrombin generation for patients who switched to 
10 mg tamoxifen (Supplementary Table D). The levels of protein C and antithrombin 
remained similar in both patient groups. 

Coagulation parameters in chemotherapy-treated patients 
versus patients who did not receive chemotherapy 
All coagulation parameters were separately analysed in the group of patients that 
received (neo-)adjuvant chemotherapy for their breast cancer and in patients who 
did not receive chemotherapy (Supplementary table E + F). Patients who received 
chemotherapy did not demonstrate an increase in procoagulant parameters or 
decrease in anticoagulant parameters, except for a slightly shorter lag time after 6 m 
of treatment only.  
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Table 5. Thrombin generation parameters by quartiles of endoxifen 

3 months of tamoxifen 

Q1 Q2 Q3 Q4

Endoxifen (nM) 4-17
n = 34

17-26
n = 35

26-37
n = 33

37-70
n = 33

    With exogenous tissue factor 

ETP (nM*min) 2133 (369) 2292 (1177) 2057 (282) 2206 (442)

Thrombin peak (nM) 261 (59) 245 (65) 244 (51) 255 (65)

Lag time (min) 7.0 (1.5) 7.3 (1.8) 6.8 (1.4) 7.0 (1.2)

Time to peak (min) 10.9 [2.0] 11.6 [3.7] 10.9 [2.3] 12.1 [2.4]

Velocity index (U/mL) 66 (25) 56 (21) 56 (18) 59 (20)

    Without exogenous tissue factor 

ETP (nM*min) 1304 (339) 1351 (431) 977 (399) 1122 (387)

Thrombin peak (nM) 75 (45) 77 (47) 48 (32) 48 (26)

Lag time (min) 31 [44] 34 [21] 37 [36] 50 [28]

Time to peak (min) 45 [21] 43 [22] 48 [32] 62 [22]

Velocity index (U/mL) 11.3 [17] 14.5 [13] 5.5 [5.8] 6.3 [8.2]

6 months of tamoxifen 

Q1 Q2 Q3 Q4

Endoxifen level (nM) 11-20
n = 26

20-25
n = 27

25-34
n = 27

34-70
n = 26

    With exogenous tissue factor 

ETP (nM*min) 2156 (463) 1975 (396) 2109 (325) 2271 (436)

Thrombin peak (nM) 270 (84) 235 (65) 236 (49) 271 (52)

Lag time (min) 6.0 [6] 6.1 [3] 6.1 [2] 7.0 [6]

Time to peak (min) 9.9 [1] 10.9 [3] 10.9 [2] 10.8 [2]

Velocity index 67 (30) 54 (20) 50 (16) 62 (15)

    Without exogenous tissue factor 

ETP (nM*min) 1252 (534) 996 (383) 1083 (478) 1463 (499)

Thrombin peak (nM) 87 [146] 51 [24] 79 [68] 80 [147]

Lag time (min) 26.8 (18) 34.9 (14) 32.3 (8.5) 26.7 (14)

Time to peak (min) 36 [21] 41 [10] 36 [17] 33 [24]

Velocity index (U/mL) 16.3 [42] 9.0 [7] 15.1 [15] 15.1 [34]

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
All comparisons were non-significant. Abbreviations: ETP endogenous thrombin potential. 
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Table 6. Time-dependent effect of tamoxifen treatment on coagulation parameters in patients who 
remained on 20 mg tamoxifen daily during the study

3 months 6 months

Protein C (U/mL) n = 66 1.19 (0.25) 1.16 (0.22)

Antithrombin (U/mL) n = 67 0.95 (0.08) 0.94 (0.09)

Tissue factor (pg/mL) n = 55 46.0 [15.4] 54.4 [38.8]***

Thrombin generation parameters

    With exogenous tissue factor 

ETP (nM*min) n = 40 2080 (369) 2170 (387)

Thrombin peak (nM) n = 40 245 (58) 256 (65)

Lag time (min) n = 40 6.9 (1.4) 9.0 (7.9)

Time to peak (min) n = 40 11.3 [2.8] 10.5 [2.0]

Velocity index (nM/min) n = 40 56.3 (21) 59.12 (19)

    Without exogenous tissue factor 

ETP (nM*min) n = 29 1137 (414) 1276 (463)

Thrombin peak (nM) n = 30 59.5 (35) 97.0 (66)***

Lag time (min) n = 30 38.7 [20] 29.7 [19]***

Time to peak (min) n = 30 44.0 [21] 38.8 [18]**

Velocity index (nM/min) n = 30 9.10 [9.4] 12.9 [23]**

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
Abbreviations: ETP: endogenous thrombin potential. P value indicates results of paired t-test or Wilcoxon 
signed rank test. **p value <0.01, ***p value <0.001, all other comparisons were non-significant. 

DISCUSSION 
This study is the first to assess if the procoagulant effects of tamoxifen are associated 
with plasma levels of tamoxifen and its primary active metabolite endoxifen in 
a representative cohort of patients with primary breast cancer receiving adjuvant 
tamoxifen. By measurement of both various coagulation proteins previously shown 
to be affected by tamoxifen9,10 and thrombin generation parameters, we demonstrate 
that higher plasma levels of tamoxifen and endoxifen are not associated with 
higher procoagulant or lower anticoagulant parameters. These findings provide a 
first indication that higher tamoxifen or endoxifen levels do not have an additional 
procoagulant effect and therefore might not lead to an further increased risk of 
tamoxifen-related VTE. 

Levels of antithrombin and protein C were previously demonstrated to decrease 
during tamoxifen therapy, but these studies did not measure tamoxifen and endoxifen 
plasma levels.9,10 Our study shows that endoxifen levels do not correlate with these 
anticoagulant factors. Protein C correlated positively with tamoxifen levels after 3 
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months of therapy. Despite this weak correlation, this observation points to a possible 
anticoagulant effect that did not persist at 6 months of treatment. Normal levels of 
protein C range from approximately 0.70 to 1.40 IU/mL and levels approximately 
below are associated with a significant increase in VTE risk.30 Most protein C levels 
observed in our cohort fall within this normal range and are therefore not considered 
specifically low.31 Although antithrombin levels in our cohort were slightly lower than 
earlier described in healthy controls [median 1.04 IU/mL], most still fell within the 
normal range of 0.80-1.20 IU/mL and were above the lower limit earlier associated 
with an increased VTE risk.30,32 In addition, antithrombin did not have any association 
with higher concentrations of tamoxifen nor endoxifen. 

To the best of our knowledge, the procoagulant protein tissue factor has not been directly 
measured in the context of tamoxifen therapy before. It has been shown that levels of the 
anticoagulant protein TFPI decrease during treatment with tamoxifen.11 Given that this 
factor inhibits the activity of the tissue factor FVIIa complex in a FXa-dependent manner, 
this tamoxifen-induced TFPI decrease potentially leads to a hypercoagulable state.33 
Here we found that the endoxifen levels are negatively, albeit modestly, correlated with 
circulating tissue factor levels after 6 months of tamoxifen treatment. Thus, if tissue factor 
has any correlation with plasma levels during tamoxifen therapy at all, this is most likely 
in the direction of anti-coagulation. Importantly, the effect of tamoxifen and endoxifen 
levels on TFPI has not been studied yet, and the eventual net outcome on tissue factor 
/ TFPI signalling remains therefore currently unclear. 

To gain a better understanding of the possible effect of tamoxifen and endoxifen 
levels on a procoagulant state during tamoxifen, we performed thrombin generation 
assays which provide a more comprehensive evaluation of coagulation relative to 
the prothrombin time (PT) and activated partial thromboplastin time (APTT) clotting 
assays.29 Given that the parameters of thrombin generation were similar between all 
patients stratified for tamoxifen and endoxifen plasma concentrations, this further 
indicates that an increase in plasma levels of tamoxifen and endoxifen plasma 
concentrations does not coincide with a procoagulant potential. Interestingly, we found 
increased thrombin generation after 6 months compared to 3 months of treatment, 
independent from any tamoxifen dose adjustments. This was only observed in the 
condition without exogenous addition of tissue factor suggesting that this enhanced 
thrombin generation is tissue factor-mediated. Indeed, tissue factor increased after 6 
months compared to 3 months of treatment. Although our observed number of VTE 
events was small, the majority of patients (4 out of 7 patients) experienced an event 
between approximately 3 and 6 months after start of tamoxifen therapy. This could 
indicate that patients, within the first year of tamoxifen treatment, experience the 
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highest thrombotic risk during this time period. Of note, all patients with a previous 
history of VTE developed a VTE again during tamoxifen therapy. Although the small 
number of events has to be taken into account, this observation might suggest that 
patients with a history of VTE have the highest prothrombotic risk during tamoxifen 
treatment. Further studies on the effects of tamoxifen on tissue factor and tissue factor 
signalling at different timepoints would be interesting to gain a better insight in the 
general prothrombotic effects of tamoxifen and to study if tamoxifen increases VTE 
risk in a time-dependent manner. Moreover, in patients with a previous history of VTE, 
the possible extra risk of developing a VTE during tamoxifen therapy requires further 
study and warrants cautiousness in clinical practice. 

In patients with breast cancer treated with adjuvant tamoxifen, there are other factors 
that can determine the prothrombotic risk. For example, chemotherapy, radiotherapy 
and surgery are all independent risk factors for VTE.34-36 Since most patients had 
completed their chemotherapy and radiotherapy treatments before the start of 
tamoxifen, the influence of these treatments on VTE risk was probably minimal and 
even further diminished over time. Although these other treatments might directly affect 
various coagulation factors including a possible increase in the procoagulant tissue 
factor as well, we found an increase rather than a decrease in tissue factor levels over 
time (i.e. longer after completion of the of the other treatments). This makes it more 
likely that tamoxifen is directly responsible for the observed increase in tissue factor in 
this study. Also, no consistent trend towards an increase in procoagulant or a decrease 
in antiocoagulant factors was observed in patients who received chemotherapy 
compared to patients who did not receive chemotherapy. Lastly, although the presence 
of (recurrent) cancer is an independent risk factor for VTE,37 the recurrence rate for 
ER-positive breast cancer is generally low, especially in the first year.1 Also, patients 
who developed clinical breast cancer recurrence (n = 1) or a new primary cancer (n = 
2) within one year after start of tamoxifen therapy were excluded from our analyses. 
Therefore, it is very unlikely that any of the included patients had (recurrent) cancer 
at time of measurements and status of cancer did thus probably not influence the 
observed time-dependent effect of tamoxifen treatment on tissue factor and thrombin 
generation levels.

Given that treatment with aromatase inhibitors, another adjuvant endocrine treatment 
for ER-positive breast cancer, does not predispose to VTE38, we hypothesized that the 
pro-thrombotic effects of tamoxifen are predominately mediated via the ER, rather than 
estrogenic effects specifically. Endoxifen and 4-hydroxytamoxifen are the metabolites 
with the highest affinity for the ER.17 However, tamoxifen and endoxifen reach up to 
respectively 14- and 40-fold higher plasma concentrations than 4-hydroxytamoxifen.10,18 
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Although n-desmethyltamoxifen reaches slightly higher plasma concentrations than 
tamoxifen, its affinity for the ER is 100 times lower and this metabolite is therefore 
considered to be of minor importance.18 Hence, the inclusion of both tamoxifen 
and its primary metabolite endoxifen was a strength of the current study. Although 
more research is needed to definitely rule out a role for the other metabolites in the 
increased VTE risk, tamoxifen has linear pharmacokinetics, indicating that higher 
levels of tamoxifen and endoxifen were most likely paralleled by higher levels of 
4-hydroxytamoxifen and n-desmethyltamoxifen as well. Unfortunately, our study was 
underpowered to investigate if higher tamoxifen or endoxifen levels predispose to 
VTE since the number of events was limited. However, our observations provide a first 
indication that levels of tamoxifen and endoxifen are not associated with increased VTE 
risk. Also, tamoxifen and endoxifen levels from patients who experienced a VTE did not 
differ substantially from the median tamoxifen and endoxifen levels in our total study 
population. In fact, in three out of five patients tamoxifen and endoxifen levels before 
the occurrence of the VTE belonged to the lowest quartiles. A previous phase I study 
in which endoxifen was administered as a drug itself (rather than tamoxifen) found that 
only one out of the 38 included patients with metastatic breast cancer developed a 
VTE (2.6%).39 This low VTE incidence despite endoxifen plasma levels 10-100 times 
higher (360-5200 nM) than in our current study39 and the fact that included patients had 
metastatic breast cancer, which is an independent VTE risk factor40, further suggest 
that higher endoxifen levels do not predispose to higher VTE risk. 

The current study has some limitations. First, samples before start of tamoxifen therapy 
were not available. Therefore, the direct relationship between the included coagulation 
proteins and tamoxifen treatment could not be validated. However, we focused on the 
relationship between tamoxifen and endoxifen concentrations and coagulation system 
activation. In addition, we performed intra-patient comparisons. Therefore, baseline 
samples were not essential to answer our primary research questions. Secondly, although 
we carefully selected the measured coagulation parameters based on previous studies 
and additionally performed thrombin generation assays, a selection of surrogate markers 
for a procoagulant state was used. In future studies, the direct correlation between 
tamoxifen and endoxifen plasma levels and VTE should be investigated. Thirdly, samples 
were missing for some measurements which could limit statistical power. Fourthly, no 
definite conclusions can be drawn for substantially higher or lower tamoxifen levels than 
observed in our study. As the standard dose of 20 mg daily is most frequently prescribed 
and is thus representative for the current clinical practice, the number of patients using 
higher or lower tamoxifen doses was limited here. Therefore, more research in patients 
using non-standard tamoxifen doses is required. 
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In conclusion, our study indicates that higher tamoxifen and endoxifen levels are not 
correlated with an increased procoagulant state. Although adequate monitoring of 
VTE remains important, this provides a first indication that a TDM-directed tamoxifen 
dose escalation does not additionally increase VTE risk.
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Supplementary table B. Levels of tamoxifen and endoxifen and coagulation factors and in the total study 
cohort

At 3 months At 6 months

Tamoxifen and endoxifen plasma levels

Tamoxifen (nmol/L) n = 135 325 [186] n = 106 331 [231]

Endoxifen (nmol/L) n = 135 26.2 [20] n = 106 25.2 [15]

Coagulation factors 

Protein C (U/mL) n = 133 1.19 (0.23) n = 104 1.13 (0.21)

Antithrombin (U/mL) n = 135 0.96 (0.10) n = 104 0.95 (0.09)

Tissue factor (pg/mL) n = 100 46.0 [17.2] n = 95 54.4 [38.8]

Thrombin generation parameters

    With exogenous tissue factor

ETP (nM*min) n = 72 2160 (630) n = 65 2115 (410)

Thrombin peak (nM) n = 72 251 (58.7) n = 65 252 (66.2)

Lag time (min) n = 72 7.00 (1.48) n = 65 9.28 (9.07)

Time to peak (min) n = 72 11.3 [2.69] n = 65 10.5 [2.20]

Velocity index (nM/min) n = 72 58.0 [29.5] n = 65 57.2 [35.9]

    Without exogenous tissue factor 

ETP (nM*min) n = 53 1169 (411) n = 63 1172 (492)

Thrombin peak (nM) n = 55 55.5 [46.2] n = 63 70.1 [60.6]

Lag time (min) n = 55 39.2 [21.2] n = 63 31.0 [17.8]

Time to peak (min) n = 55 46.9 [24.4] n = 63 39.6 [17.6]

Velocity index (nM/min) n = 55 9.13 [10.2] n = 63 11.7 [14.2]

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
Abbreviations: ETP endogenous thrombin potential. 
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Supplementary Table C. Time-dependent effect of tamoxifen treatment on coagulation parameters in 
patients in whom tamoxifen dose was increased to 30-40 mg daily during the study, n = 30)

3 months 6 months

Protein C (U/mL) n = 23 1.09 (0.21) 1.10 (0.19)

Antithrombin (U/mL) n = 23 0.96 (0.08) 0.97 (0.02)

Tissue factor (pg/mL) n = 18 48.5 [16] 60.6 [38]**

Thrombin generation parameters

    With exogenous tissue factor 

ETP (nM*min) n = 11 2117 (349) 2067 (520)

Thrombin peak (nM) n = 11 248 (64) 246 (81)

Lag time (min) n = 11 6.80 (1.4) 7.59 (4.1)

Time to peak (min) n = 11 10.5 [3] 10.6 [2]

Velocity index (nM/min) n = 11 59.2 (25) 56.5 (25)

    Without exogenous tissue factor 

ETP (nM*min) n = 8 1236 (382) 1095 (600)

Thrombin peak (nM) n = 8 71.5 (42) 113 (72)

Lag time (min) n = 8 37.9 [20] 23.7 [21]

Time to peak (min) n = 8 46.1 [21] 29.8 [22]

Velocity index (nM/min) n = 8 9.80 [16] 21.6 [36]

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
p value indicates results of paired t-test or Wilcoxon signed rank test. **p value <0.01, all other comparisons 
were non-significant. Abbreviations: ETP endogenous thrombin potential. 

177686_Buijs_BNW.indd   119177686_Buijs_BNW.indd   119 22/01/2025   14:0622/01/2025   14:06



120

CHAPTER 5 

Supplementary Table D. Time-dependent effect of tamoxifen treatment on coagulation parameters 
amongst patients in whom tamoxifen dose was decreased to 10 mg daily during the study, n = 16)

3 months 6 months

Protein C (U/mL) n = 10 1.15 (0.14) 1.15 (0.18)

Antithrombin (U/mL) n = 10 0.98 (0.11) 0.96 (0.09)

Tissue factor (pg/mL) n = 10 42.4 [18] 68.7 [46]*

Thrombin generation parameters

    With exogenous tissue factor 

ETP (nM*min) n = 5 2247 (453) 2176 (393)

Thrombin peak (nM) n = 5 256 (72) 248 (61)

Lag time (min) n = 5 6.47 (1.2) 11.5 (13)

Time to peak (min) n = 5 11.5 [3] 11.5 [2]

Velocity index (nM/min) n = 5 59.7 (23) 53.7 (20)

    Without exogenous tissue factor 

ETP (nM*min) n = 3 1116 (523) 1369 (358)

Thrombin peak (nM) n = 3 68.4 (67) 109 (81)*

Lag time (min) n = 3 55.3 [NA] Range: 31.1 21.3 [NA] Range: 26

Time to peak (min) n = 3 63.9 [NA] Range: 36.6 37.1 [NA] Range: 14.0

Velocity index (nM/min) n = 3 5.49 [NA] Range: 30.4 14.5 [NA] Range: 40

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
p value indicates results of paired t-test or Wilcoxon signed rank test. *p value <0.05, all other comparisons 
were non-significant. Abbreviations: ETP endogenous thrombin potential. 
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Supplementary Table E. Coagulation parameters in patients who received (neo-)adjuvant chemotherapy 
versus patients who did not receive chemotherapy at 3 months of tamoxifen therapy

No chemotherapy Chemotherapy

Protein C (U/mL) n = 77 1.17 (0.24) n = 56 1.17 (0.22)

Antithrombin (U/mL) n = 78 0.96 [0.12] n = 57 0.95 [0.13]

Tissue factor (pg/mL) n = 59 46.8 [15] n = 41 44.8 [15]

Thrombin generation parameters

    With exogenous tissue factor 

ETP (nM*min) n = 40 2152 [668] n = 32 1975 [514]*

Thrombin peak (nM) n = 40 261.3 (61.9) n = 32 238.7 (52.9)

Lag time (min) n = 40 6.82 [2.3] n = 32 6.63 [1.9]

Time to peak (min) n = 40 11.8 (1.9) n = 32 11.0 (1.6)

Velocity index (nM/min) n = 40 61.6 (22.1) n = 32 56.8 (19.7)

    Without exogenous tissue factor 

ETP (nM*min) n = 31 1382 [522] n = 22 1002 [536]

Thrombin peak (nM) n = 32 60.0 [52.0] n = 23 52.4 [51.7]

Lag time (min) n = 32 41.1 [20.4] n = 23 38.5 [26.1]

Time to peak (min) n = 32 47.7 [21.4] n = 23 43.8 [28.3]

Velocity index (nM/min) n = 32 9.5 [9.1] n = 23 [10.5]

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
p value indicates results of independent samples t-test or Mann Whitney-U test. *p value <0.05, all other 
comparisons were non-significant. Abbreviations: ETP endogenous thrombin potential. 
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Supplementary table F. Coagulation parameters in patients who received (neo-)adjuvant chemotherapy 
versus patients who did not receive chemotherapy at 6 months of tamoxifen therapy

No chemotherapy Chemotherapy

Protein C (U/mL) n = 54 1.12 (0.20) n = 50 1.15 (0.20) 

Antithrombin (U/mL) n = 54 0.94 (0.09) n = 50 0.97 (0.09)

Tissue factor (pg/mL) n = 49 54.8 [29.8] n = 46 51.3 [50.2]

Thrombin generation parameters

    With exogenous tissue factor 

ETP (nM*min) n = 30 2205 (359) n = 35 2037 (440)

Thrombin peak (nM) n = 30 267.7 (54.8) n = 35 238.2 (72.5)

Lag time (min) n = 30 8.3 [2] n = 35 6.1 [2]*

Time to peak (min) n = 30 9.9 [2] n = 35 10.9 [2]*

Velocity index (nM/min) n = 30 63.2 (20.1) n = 35 54.2 (23.4)

    Without exogenous tissue factor 

ETP (nM*min) n = 29 1309 (515) n = 34 1056 (446)

Thrombin peak (nM) n = 29 72.3 [121] n = 34 67.3 [57]

Lag time (min) n = 29 29.6 (15.0) n = 34 31.3 (13.8)

Time to peak (min) n = 29 35 [21] n = 34 40 [14]

Velocity index (nM/min) n = 29 11.7 [33] n = 34 11.7 [13]

Data are displayed as mean (SD) or median [IQR]. Data were missing for some participants in some subgroups. 
P value indicates results of independent samples t-test or Mann Whitney-U test. *p value <0.05, all other 
comparisons were non-significant. Abbreviations: ETP endogenous thrombin potential. 
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ABSTRACT 

Introduction 
Tamoxifen may adversely affect cognitive function by interfering with estrogen action in 
the brain. Despite growing evidence for a relationship between tamoxifen and cognitive 
problems, findings remain inconclusive. While some tamoxifen-related side effects 
seem exposure-dependent with concentrations of tamoxifen or its main metabolite, 
endoxifen, this has never been investigated for cognitive function. We investigated 
cognitive function after two years of tamoxifen and its association with tamoxifen and 
endoxifen exposure 

Methods 
135 women with breast cancer completed the Amsterdam Cognition Scan (ACS), 
an online neuropsychological test battery, after two years of tamoxifen. Test scores 
were converted to standardized Z-scores based on a matched ‘no-cancer’ control 
group. Tamoxifen and endoxifen concentrations and tamoxifen dose were regressed 
separately on cognitive functioning. 

Results 
Patients reported mild cognitive complaints and had worse verbal learning, processing 
speed, executive functioning, and motor functioning compared to matched controls. 
After correcting for age, mean tamoxifen and endoxifen levels, as well as tamoxifen 
dose, were associated with worse performance on several cognitive domains. 

Conclusion 
Tamoxifen is adversely associated with objective as well as self-reported cognitive 
function, which may depend on the level of exposure to tamoxifen and endoxifen. 
Further research is warranted to confirm this hypothesis. 
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INTRODUCTION 
Breast cancer is the most commonly diagnosed cancer among women worldwide, 
accounting for approximately 25% of all cancer cases.1 The standard of care for 
hormone-receptor positive breast cancer is often adjuvant endocrine therapy, such 
as tamoxifen. Especially for premenopausal patients, tamoxifen is the primary drug 
of choice, prescribed for a minimum duration of five years. For postmenopausal 
patients, tamoxifen is frequently prescribed for two to three years before switching 
to an aromatase-inhibitor.2 However, tamoxifen can cause a variety of side effects, 
including hot flashes, arthralgia, vaginal discharge, and mood alterations,3 and may 
also cause cognitive problems. 

Tamoxifen is a selective estrogen receptor (ER) modulator, that acts as an agonist or 
antagonist depending on the specific tissue that it binds to.4 Since ER are present in 
various other tissues in the female body, the binding of tamoxifen and its metabolites to 
these ER probably serves as the mechanism behind (most) side effects of tamoxifen.4,5 
In the brain, ERα and ERβ are distributed in varying ratios depending on the specific 
brain area. Through these receptors, estrogens play an important role in normal cognitive 
functioning.6-11 Tamoxifen, able to pass the blood-brain barrier and bind to the ER, can 
interfere with the action of estrogen6,12-14, potentially affecting cognitive function. 

Cognitive problems are commonly observed during or after cancer treatment.15  
A recent meta-analysis of chemotherapy-treated patients with breast cancer revealed 
that a significant number of patients (44%) reported cognitive complaints, while a 
smaller but still notable percentage (21 to 34%) exhibited objective neuropsychological 
test-derived impairment.16 Whereas the adverse effects of chemotherapy on cognitive 
function have been well-established in the past decades, knowledge about the 
potential adverse effects of endocrine therapies such as tamoxifen remains limited. 
Given the importance of cognitive functions for daily functioning and quality of life15, 
research into the cognitive side effects of tamoxifen is highly relevant.

A growing number of studies supports the concerns regarding cognitive side effects 
of tamoxifen. In the TEAM-trial (n = 80) for example, postmenopausal breast cancer 
patients undergoing tamoxifen treatment performed significantly worse on verbal 
memory and executive functioning compared to no-cancer controls.17 Even after 
transitioning to the aromatase inhibitor exemestane, a carryover effect of tamoxifen 
persisted.18 A smaller study (n = 31) in postmenopausal patients on tamoxifen 
reported similar effects of tamoxifen on verbal memory and executive functioning.19 
A large meta-analysis of small cohort studies indicated decreased verbal learning 
and memory, executive functioning, and processing speed in patients treated with 
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tamoxifen or aromatase inhibitors.20 In contrast, a study of van Dyk et al. (n = 58) did not 
find significant changes between baseline up to one year of tamoxifen treatment on 
standardized neuropsychological tests.21 This warrants further research to elucidate 
the exact effect of tamoxifen on cognitive function. 

It has never been investigated whether the potential effects of tamoxifen on cognitive 
function could depend on the level of exposure to tamoxifen or its metabolites. 
Tamoxifen is metabolized in the liver into endoxifen, 4-hydroxy-tamoxifen and 
n-desmethyl-tamoxifen primarily by cytochrome P450 (CYP) enzymes CYP2D6 and 
CYP3A4.22 Endoxifen is considered the most important metabolite for tamoxifen 
efficacy.23 Results from retrospective studies indeed indicated an exposure-response 
relation for endoxifen.24-28 Therapeutic drug monitoring (TDM), in which plasma 
concentrations are measured and doses are adapted by the measured concentration 
in order to reach a therapeutic threshold, can increase the percentage of patients on 
tamoxifen with endoxifen concentrations above the supposed efficacy threshold of 
16 nM.29,30 However, up till now findings regarding the relationship between tamoxifen 
and metabolite concentrations and the occurrence of side effects remain conflicting. 

In this study we aimed to evaluate the effect of two years of tamoxifen treatment on 
objective and subjective cognitive function in a large cohort of women with breast 
cancer. In addition, we investigated the association between tamoxifen and endoxifen 
plasma concentrations and objective and subjective cognitive function, as well as the 
association with tamoxifen dose. 

MATERIAL AND METHODS 

Study design 
The current study was part of the TOTAM (Therapeutic drug monitoring Of TAMoxifen) 
trial; a large intervention study coordinated by the Erasmus MC Cancer Institute in 
Rotterdam, the Netherlands, which aimed to investigate the feasibility of TDM of 
tamoxifen. As a secondary endpoint, we examined the effect of tamoxifen on cognitive 
function. The study was approved by the local Medical Ethics Committee and registered 
in the International Clinical Trial Registry Platform (ICTRP; https://trialsearch.who.int: 
NL6918). All participants provided written informed consent. 

The study’s methodology, including eligibility criteria and primary findings, has 
been thoroughly documented elsewhere.29,31 Briefly, female patients diagnosed with 
hormone-receptor positive primary breast cancer who were treated with the standard 
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daily dose of 20 mg tamoxifen for a period of 3 months were included in the TOTAM 
study. They were followed for the first two years of their tamoxifen treatment, during 
which they were seen six times at the out-patient clinic. Each visit, tamoxifen and 
endoxifen plasma concentrations were determined and side effects were assessed. 
If patients had endoxifen levels <16 nM, the daily tamoxifen dose was increased to 
30 or 40 mg, if possible. Also, for patients with bothersome side effects and relatively 
high endoxifen levels, tamoxifen dose could be decreased to 10 mg daily. After the 
sixth and last visit (i.e., after two years of tamoxifen treatment) patients underwent an 
online neuropsychological assessment. Patients who preliminary went off study due 
to toxicity were also invited to complete the neuropsychological assessment. 

Pharmacokinetics 
Tamoxifen and endoxifen trough concentrations (Cmin) were obtained during each 
study visit over two years of tamoxifen treatment. Plasma concentrations were 
measured using a validated ultra-performance liquid chromatography with a tandem 
mass spectrometry method (UP-LCMS/MS).32 Because patients could use different 
tamoxifen doses for various durations during the study, their tamoxifen and endoxifen 
concentrations could be different at each study visit. To estimate the mean tamoxifen 
and endoxifen plasma levels over the two years of tamoxifen treatment as accurate 
as possible, an average Cmin level per patient was simulated using Nonlinear Mixed 
Effects Modelling (NONMEM).33 In addition, the mean dose over the two years interval 
was calculated by multiplying the tamoxifen dose (in mg) with the number of days 
per dose and then dividing the total dose exposure by the total number of days of 
tamoxifen treatment. 

Neuropsychological assessment 
Objective cognitive functioning was assessed using the Amsterdam Cognition Scan 
(ACS; www.cognitionscan.org)34; a validated online neuropsychological test battery 
which patients can complete on their own computer at home without supervision.34,35 
The ACS consists of 7 online cognitive tests covering a wide range of cognitive domains 
and takes approximately 1 hour to complete. An overview of the cognitive tests and 
corresponding cognitive domains can be found in Table 1. The ACS also contains 3 
questionnaires: The MD Anderson Symptom Inventory for multiple myeloma (MDASI-
MM) is a validated questionnaire on subjective cognitive function, that measures self-
reported severity of memory and concentration problems and their interference with 
daily activities during the past 24 hours (classified as 0: none, 1–4: mild, 5–6: moderate, 
7–10: severe).36 These questions are not disease-specific and are applicable for various 
forms of cancer. The Hospital Anxiety and Depression Scale (HADS) measures the 
severity of anxiety and depression during the past four weeks, with higher scores 

177686_Buijs_BNW.indd   129177686_Buijs_BNW.indd   129 22/01/2025   14:0622/01/2025   14:06



130

CHAPTER 6 

reflecting more severe symptoms.37 The Multidimensional Fatigue Inventory (MFI-
20) measures fatigue on five dimensions (general fatigue, physical fatigue, mental 
fatigue, reduced activity, and reduced motivation), with higher scores indicating 
more fatigue.38 The ‘no-cancer’ control group that was included in the cognitive side-
study of the SONIA trial39 also served as the ACS norm group for the current study. 
These were female relatives or friends of participants of the SONIA study who also 
completed the ACS, including the HADS and MFI questionnaire. The MDASI-MM was 
not administered.

Additionally, tamoxifen side effects were evaluated using the Functional Assessment 
of Cancer Therapy-Endocrine Subscale (FACT-ES); a validated questionnaire for the 
assessment of endocrine treatment in patients with breast cancer.40 It includes 27 
health-related quality of life items (HR-QOL) covering physical, social, emotional, and 
functional well-being, with a 19-item endocrine subscale (ES19). Higher FACT-ES 
scores indicate better HR-QOL and fewer side effects. 

Table 1. Cognitive tests of the Amsterdam Cognition Scan 

Cognitive domain ACS test Main outcome measure

Learning and memory Wordlist learning
Wordlist recall

Wordlist recognition

Total number of correct words (learning: 
trial 1 to 5)

Attention & working memory Box tapping
Digit sequences I
Digit sequences II

Total number of correctly repeated 
sequences

Processing speed Reaction speed
Connect the dots I

Average reaction time (ms)
Completion time in seconds

Executive functioning Connect the dots II
Place the beads

Completion time in seconds
Total number of extra moves

Motor functioning Fill the grid Completion time in seconds

Statistical analysis 
A power calculation indicated that with an effect size of 0.30 based on a previous 
study18, alpha set at 0.05, a power of .80, and taking into account a potential dropout 
rate of 30%, at least 117 patients should be included. 

Using nearest-neighbour propensity score matching, an equally-sized group of no-
cancer controls was selected, matched on age, educational level, and computer usage. 
After matching, independent t-tests and a chi-square test were performed to check 
for remaining differences in age, computer usage, and educational level. Outliers and 
invalid ACS test scores were identified and excluded from analysis, as described 
by Feenstra et al. (using age groups ≤50, >50 and ≤65, and >65 years).35 Scores on 
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wordlist recall were considered invalid and excluded if the retention interval exceeded 
45 minutes. Raw test scores were converted to standardized Z-scores based on the 
matched control group. Z-scores (normally distributed with a mean of zero and a 
standard deviation of one) indicate to what extent a score deviates from the normative 
mean, with negative scores indicating worse performance while positive scores indicate 
better performance than expected.41 Patients’ average cognitive performance was 
visualized and considered significantly deviant if 0 fell outside of the 95% confidence 
interval. In addition, the prevalence of cognitive impairment was determined for both 
patients and no-cancer controls using the International Cognition and Cancer Task 
Force (ICCTF) criterion: two or more test scores at or below –1.5 SDs or a single test 
score at or below –2.0 SDs from the normative mean, or both.42 This was compared 
to the family-wise error rate using a binomial test, which reflects the probability of a 
finding at least one deviating test score given the number of tests administered.43 The 
above steps were repeated for the subgroups of patients treated only with tamoxifen 
and patients who also received chemotherapy prior to inclusion, to rule out that any 
observed effect would be driven solely by previously received chemotherapy. 

Anxiety, depression, and fatigue were compared between patients and controls using 
Mann-Whitney U tests. The relation of these self-reported outcomes and endocrine 
symptoms to the ACS Z-scores for objective cognitive function and MDASI-MM 
severity and interference subscales for subjective cognitive function was determined 
through correlational analysis. To investigate the association between cognitive 
function and tamoxifen and endoxifen exposure, mean tamoxifen or endoxifen plasma 
levels were regressed on the ACS Z-scores or the MDASI-MM subscales in linear 
regression analyses. Age was included as a covariate, as both cognitive function44 and 
tamoxifen and endoxifen concentrations33,45-47 tend to vary with age. These regression 
analyses were repeated with mean tamoxifen dose to also investigate the association 
of tamoxifen dose and cognitive function. All analyses were performed in R Studio. 
P-values were considered significant at α=0.05. 

RESULTS 

Inclusion and participant characteristics 
In total, 177 (89%) out of the 200 approached patients consented to undergo a 
neuropsychological assessment, of which 139 (78%) completed the ACS. Four patients 
only partly completed the ACS and were excluded due to missing demographic data. 
Reasons for not completing the ACS were: no computer(experience) (n = 11); no time 
(n = 12); no response (n = 11). As only three out of the 139 patients withdrew from the 
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study early (i.e., before completing two years of tamoxifen) due to toxicity, and one 
patient turned out to be non-compliant to the treatment, these patients were excluded 
from analysis, resulting in an evaluable sample of 135 patients. Matching resulted 
in a group of 135 no-cancer controls, with no significant differences in age (t(266) 
= -0.44, p = 0.66), educational level (X2(1) = 0.95, p = 0.33), and computer usage (t(268) 
= -0.45, p = 0.66) after matching. Demographic and clinical characteristics of patients 
and matched controls can be found in Table 2. At the time of cognitive assessment 
(i.e., after two years of tamoxifen) the majority of patients was postmenopausal. Nine 
(60%) of the 15 premenopausal patients (7% of all patients) were treated with ovarian 
function suppression. 

Pharmacokinetics 
Median trough levels of tamoxifen and endoxifen over two years of tamoxifen treatment 
were 331.1 nM (IQR = 264.5-424.2) and 26.1 nM (IQR = 21.5-32.4), respectively. 
Tamoxifen levels showed a weak correlation with age (rs(133) = 0.17, p = 0.04), with 
older individuals having higher tamoxifen levels. No correlation with age was found 
for endoxifen levels (rs(133) = 0.09, p = 0.32). Mean tamoxifen dose over two years 
was 22.7 mg (SD = 7.1). 

Cognitive function 
Average ACS Z-scores of the patients standardized based on the matched control 
group are visualized in Figure 1. The subtest Wordlist Recognition was not analysed 
because the variance in test scores was limited due to a ceiling effect. Patients 
performed worse than the matched controls on tests measuring verbal learning, 
processing speed, executive functioning, and motor functioning. In total, 47% of 
the patients were classified as cognitively impaired based on the ICCTF criterion, 
significantly higher than the 28% in the matched control group (p = 0.002) and the 
family-wise error rate of 23% (p <0.001). The prevalence in the control group was not 
different from the family-wise error rate (p = 0.10). 
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Table 2. Demographic & clinical characteristics 

Patients (n = 135) Matched HCs (n = 135)

Participant characteristics

Age, M ±SD [range]
median [IQR]

58 ±11 [27-84]
58 [45-68]

57 ±10 [25-81]

Educational level, N (%)
 Low
 Middle
 High

3 (2)
64 (47)
68 (50)

0
58 (43)
77 (57)

Computer usage, M ±SD [range] 16 ±13 [0-50] 17 ±13 [1-42]

BMI, median [IQR] 26.6 [23.1-31.6]

Menopausal status
 Premenopausal
 Postmenopausal
 Perimenopausal
 Unknown

15 (11)
109 (81)
10 (7)
1 (1)

Tumor and treatment characteristics

Tumour stage, N (%)
 T1
 T2
 T3
 T4
 Tx

60 (44)
55 (41)
16 (12
3 (2)
1 (1)

Nodal stage, N (%)
 N0
 N1
 N2
 N3
 Nx

68 (50)
47 (35)
14 (10)
5 (4)
1 (1)

Metastatic stage, N (%)
 M0
 M1
 Mx

35 (26)
3 (2)

97 (72)

Her2neu receptor, N (%)
 Positive
 Negative

16 (12)
119 (88)

Local treatment, N (%)
 Lumpectomy alone
 Lumpectomy + radiotherapy
 Mastectomy alone
 Mastectomy + radiotherapy

2 (1)
84 (62)
28 (21)
21 (16)

(Neo)adjuvant chemotherapy, N (%)
 Yes
 No
Tamoxifen dose, N (%)
    10 mg
    15 mg
    20 mg
    30 mg
    40 mg

72 (53)
63 (47)

11 (8)
2 (1)

93 (69)
8 (6)

21 (16)

Abbreviations. BR: Bloom Richardson 
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To evaluate whether the effect on cognitive function in this study is tamoxifen-specific or 
could be explained by (neo)-adjuvant chemotherapy, subgroup analysis was performed 
in patients treated with and without chemotherapy. Patients who did not receive 
chemotherapy (n = 63, Mage = 61) showed a similar pattern of test scores as found in 
the whole sample, with worse verbal learning, processing speed, executive functioning, 
and motor functioning. Patients who received (neo-)adjuvant chemotherapy prior to 
the study (n = 72, Mage = 56) only showed worse processing speed compared to the 
no-cancer control group. 52% of patients who did not receive chemotherapy were 
classified as cognitively impaired compared to 41% of the patients who were also 
treated with chemotherapy. Notably, patients who received chemotherapy were on 
average five years younger than those who did not.

Patient-reported outcomes 
In Table 3, results from the self-report questionnaires on cognitive function, anxiety, 
depression, fatigue, and endocrine therapy side effects are reported. Patients reported 
cognitive complaints of mild severity and mild interference with daily activities. 
No significant differences in self-reported anxiety or depression were found between 
patients and controls (anxiety: W = 9187, p = 0.91; depression: W = 9233, p = 0.85). 
However, patients reported significantly higher levels of fatigue on all five domains (total 
fatigue: W = 6474, p <0.001; general fatigue: W = 6496, p <0.001; physical fatigue: W 
= 6811, p <0.001; mental fatigue: W = 6623, p <0.001; reduced activity: W = 7581, p 
= 0.02; reduced motivation: W = 7594, p = 0.02). For endocrine side effects, a mean 
score of 57 points for FACT-ES19 was found. This coincides with scores from earlier 
studies in patients treated with tamoxifen (59-62 points).48-50 

Anxiety, depression, fatigue, and endocrine side effects were all correlated with self-
reported cognitive function. More severe symptomatology was consistently associated 
with more severe self-reported cognitive complaints and greater interference of these 
complaints with daily functioning. In contrast, no associations were found between 
objective cognitive function and anxiety, depression, physical and mental fatigue, 
and endocrine symptoms. Only reduced activity and reduced motivation were weakly 
associated with two of the ten ACS outcomes. A correlogram visualizing the association 
between objective and subjective cognitive function and the self-reported outcome 
measures can be found in Supplementary A. 
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Figure 1. Cognitive test performance     
Visualized are patients’ average ACS Z-scores, standardized based on the matched control group. The shaded 
area indicates the 95% confidence interval. * indicates significant deviation from 0. 
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Table 3. Patient-reported outcomes 

Patients (n = 135) Matched HCs (n = 135)

Subjective cognitive functioning (MDASI-MM)

Severity 
 Memory problems
 Concentration problems
Interference
 General activity
 Mood
 Work
 Relationships
 Walking
 Enjoying life

4.4 ±2.3
4.4 ±2.3
4.4 ±2.4
4.8 ±1.9
2.9 ±2.1
2.9 ±2.2
3.3 ±2.5
2.3 ±2.1
3.0 ±2.7
2.4 ±2.0

Mood (HADS)

Anxiety 
Depression 

5.5 ±4.1
3.5 ±2.9

5.3 ±3.2
3.4 ±2.6

Fatigue (MFI-20)

Total fatigue
 General fatigue
 Physical fatigue
 Mental fatigue
 Reduced activity
 Reduced motivation

49.6 ±17.3
11.5 ±4.6
10.2 ±4.7
11.0 ±4.8
8.8 ±3.8
8.0 ±3.6

40.9 ±14.2
9.2 ±4.2
8.2 ±3.8
8.7 ±3.7
7.7 ±3.4
7.1 ±3.3

Tamoxifen side effects (FACT-ES)

ES19 57 ±11

Abbreviations. MDASI-MM: MD Anderson Symptom Inventory for Multiple Myeloma. HADS: Hospital Anxiety 
and Depression Scale. MFI-20: Multidimensional Fatigue Inventory. FACT-ES: Functional Assessment of 
Cancer Therapy-Endocrine Subscale. 
All outcomes are reported as mean ±SD. 

Tamoxifen exposure and cognitive function 
In Figure 2, results of the linear regression analyses of tamoxifen and endoxifen plasma 
levels and tamoxifen dose on objective and subjective cognitive function are illustrated 
in a forest plot (see Supplementary B-D for detailed regression models). Tamoxifen 
plasma levels were negatively associated with cognitive test performance on 5 out of 
the 10 ACS outcomes (i.e., Connect the dots I&II, Wordlist learning, Box tapping, and Fill 
the grid). After including age as a covariate, the associations remained significant for 2 
ACS outcomes (i.e., Box tapping and Fill the grid). A difference of 100 nM in tamoxifen 
plasma levels corresponded to a difference of Z = 0.14 in visuospatial working memory 
and a difference of Z = 0.24 in motor functioning. Self-reported cognitive function was 
associated with tamoxifen levels as well. Higher exposure was associated with less self-
reported cognitive complaints on the MDASI-MM severity and interference scale. After 
including age as a covariate, the association between tamoxifen levels and self-reported 
severity of memory and attention complaints disappeared. 
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Endoxifen plasma levels were negatively associated with performance on 3 ACS 
outcomes (i.e., Wordlist learning, Box tapping, and Fill the grid). After including age, the 
association remained significant on 2 ACS outcomes (i.e., Box tapping and Fill the grid). 
A difference of 10 nM in endoxifen plasma levels corresponded to a difference of Z = 
0.24 in visuospatial working memory and a difference of Z = 0.38 in motor functioning. 
Endoxifen plasma levels were not associated with self-reported cognitive function. 

Tamoxifen dose was negatively associated with performance on 2 ACS outcomes (i.e., 
Wordlist recall and Fill the grid). Including age as a covariate did not alter the results. 
Specifically, a difference in tamoxifen dose of 10 mg corresponded to a difference of 
Z = 0.24 in memory recall and a difference of Z = 0.48 in motor functioning. Tamoxifen 
dose was associated with self-reported cognitive function. Again, higher dose was 
associated with less severe cognitive complaints on the MDASI-MM severity scale. 
However, after including age, this association disappeared. 

To further explore the effect of age on cognitive function and the association with 
tamoxifen exposure, a median-split was performed based on age (median = 57 years). 
Z-scores were recalculated based on no-cancer controls from the same age group 
and the regressions were repeated. Patients aged 57 years or older showed relatively 
poorer cognitive function compared with controls of the same age than the group 
below 57 years, with worse performance on tests of verbal learning, processing 
speed, executive functioning, and motor functioning, whereas the younger group only 
showed slower reaction speed (Supplementary E). In the patients with an age below 
57 years, the negative associations between cognitive function and tamoxifen and 
endoxifen levels remained or reached significance for other ACS outcomes as well (i.e., 
Connect the dots I, Wordlist learning, Reaction speed, and Place the beads), but the 
associations with tamoxifen dose disappeared. In patients aged 57 years or older the 
associations with tamoxifen and endoxifen levels disappeared, while the associations 
with tamoxifen dose remained (Supplementary F). 
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DISCUSSION 
In the largest study conducted thus far, we investigated the effect of tamoxifen on self-
reported and objectively measured cognitive function. After two years of tamoxifen 
treatment, women with breast cancer report mild cognitive complaints and perform 
worse than matched no-cancer controls on the cognitive domains of verbal learning, 
processing speed, executive functioning, and motor functioning. Moreover, this study 
was the first to investigate a potential exposure-dependent association and found 
that performance was associated with tamoxifen and endoxifen plasma levels and 
tamoxifen dose on several cognitive domains. 

Older women appear particularly vulnerable for cognitive problems across multiple 
cognitive domains. It is well known that cognitive function tends to decline with healthy 
aging.44 However, our study indicates that tamoxifen affects cognitive function to a 
greater extent in older women (>57 years of age), compared to women without cancer 
of the same age, than in younger women (below 57 years). These findings align with 
results from the TEAM trial, where effects of tamoxifen on verbal memory and executive 
functioning were most evident in older women.17 Consequently, extra attention for this 
serious side effect is required especially in the older population.

Interestingly, the exposure-dependent association found in this study was more 
prominent in younger women, whereas it mostly disappeared in older women. This 
may seem counterintuitive at first but may be explained by the vulnerability at older 
age. Older women perform relatively poor already at lower exposure levels. Younger 
women, on the other hand, may be able to maintain their cognitive function at low 
exposure but decline after exposure to higher levels of tamoxifen, in line with theories 
about cognitive reserve.51 Menopausal status might also explain why younger and older 
women are differently affected. It could be possible that tamoxifen’s effect is different 
in women with different hormonal backgrounds. Estrogen is known to affect cognition 
during the menstrual cycle and menopause in healthy women.52 Alterations in estrogen 
level that occur during the menopause could underlie the increased vulnerability to 
cognitive effects at older age. How exactly tamoxifen and endoxifen affect the brain 
and what the precise role of menopause is remains yet to be understood. 

Tamoxifen seems to have the potential to influence performance in all cognitive 
domains assessed, depending on age and level of exposure. This may be explained 
by the widespread distribution of estrogen receptors throughout the brain. While most 
domains coincide with those found in the literature previously described17,19,20, we also 
found exposure-dependent effects of tamoxifen on tests of visuospatial memory and 
motor functioning, which have not been reported before. As mentioned previously, 
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brain areas vary in the ratio of their expression of ERα and ERβ. Ratios of ERβ, 
hypothesized to underlie tamoxifen’s potential effects on cognition, are highest in the 
hippocampus and temporal cortex, important for verbal and visuospatial memory.53 
ERβ are also found in the prefrontal cortex, sensorimotor, and cerebellum54, involved 
amongst others in executive function55 and motor coordination.56 This could explain 
why certain domains seem more sensitive to varying levels of exposure to tamoxifen. 

Neuroimaging could help us to better understand how tamoxifen influences cognitive 
function. Although widely used in imaging of chemotherapy-induced brain changes57, 
only a handful of studies have applied imaging to examine the effects of endocrine 
therapy in breast cancer patients. These studies are often limited by small samples of 
patients who received mixed treatment of both endocrine therapy and chemotherapy, 
making it difficult to disentangle individual treatment effect. Nevertheless, the results 
of these studies are suggestive of structural and functional changes associated with 
endocrine therapy.58,59 Future research should employ neuroimaging methods to 
further improve knowledge about the biological mechanism through which tamoxifen 
affects the brain. 

The discovered exposure-dependent association of tamoxifen demands caution but 
also offers possibilities in the field of therapeutic drug monitoring. Our findings suggest 
that alterations in a patient’s administered tamoxifen dose and consequent changes in 
their tamoxifen and endoxifen plasma level may have small --yet potentially impactful-- 
effects on their cognitive function. For clinical practice, this implies that in case of dose-
escalation, possible adverse effects on cognition should be taken into account. Likewise, 
dose reduction could potentially also be considered in patients who suffer from cognitive 
impairment, in particular in younger women with high tamoxifen and endoxifen plasma 
levels.31 Although the current study design only allowed for cross-sectional comparison, 
our hypothesis-generating findings warrant further investigation of the effects of dose-
escalation, reduction, or discontinuation of tamoxifen on cognition.

Tamoxifen might also affect cognition indirectly through other tamoxifen-related side 
effects including fatigue, insomnia, and mood disturbances.60 In this study, we indeed 
found that endocrine side effects, anxiety, depression, and fatigue were strongly 
associated with self-reported cognitive functioning. However, these factors could not 
explain the effect of tamoxifen on objective cognitive function. Objectively-measured 
and subjective cognitive function are conceptually different constructs.61 Self-report 
questionnaires on subjective cognitive function measure perceived difficulties in 
daily life and are known to be strongly associated with psychological factors,61 as 
also evident in our study. Standardized neuropsychological tests are less sensitive 
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to these psychological factors. As such, self-reported complaints may rather reflect 
psychological distress instead of cognitive impairment. This may also explain why the 
exposure-dependent association was found for objective cognitive function but not 
for self-reported complaints.

This study offers several clinical implications. Clinicians must be aware of the high prev-
alence of cognitive problems among tamoxifen users. Patients should be adequately 
informed regarding cognitive changes that may occur when starting tamoxifen therapy. 
When a patient presents with cognitive complaints, it is important to assess what un-
derlies these complaints to refer to appropriate care, in collaboration with neuropsy-
chologists or rehabilitation specialists. Patients with cognitive complaints but without 
objectifiable cognitive impairments may benefit most from interventions targeting under-
lying psychological factors to alleviate their distress. In case of cognitive impairments, 
patients may benefit more from compensatory strategies to cope with them. Our findings 
underscore the need for further research and personalized clinical approaches to opti-
mize tamoxifen therapy outcomes while mitigating cognitive side effects. 

Our study has several limitations. First, no correction for multiple comparisons was 
performed, resulting in an increased risk of type I errors. Although this was partly 
taken into account by comparing the incidence of cognitive impairment to the family-
wise error rate, and the exposure-response analyses were primarily hypothesis-
generating, our results should be interpreted with caution. Second, only patients 
who tolerated tamoxifen well enough, and maintained tamoxifen therapy for two 
years, were evaluated. Those who discontinued tamoxifen prematurely due to severe 
tamoxifen-related side-effects were not evaluated, potentially limiting our findings and 
underestimating tamoxifen’s effects, as these patients could also be (most) affected 
cognitively. However, objective cognitive function did not seem to be associated 
with the severity of endocrine side-effects in our study. Moreover, a previous study 
found no difference in cognition based on a cognitive screener between women 
who discontinued endocrine therapy within two years and those who continued.62 
Third, the hypothesized role of menopausal status could unfortunately not be further 
investigated. Due to the small number of premenopausal patients in our study, we were 
unable to compare the effects of tamoxifen on cognitive functioning between pre- and 
postmenopausal patients. Finally, as cognitive function was assessed only once and 
we lacked a baseline measurement in our study, no conclusions about cognitive decline 
over time could be drawn. Currently, a follow-up study is ongoing in which cognitive 
function is assessed longitudinally, with assessments at the start and after two years 
of tamoxifen (clinicaltrials.gov; NCT05525481). 
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CONCLUSIONS 
In the largest study thus far, we assessed cognitive function using a validated, online 
neuropsychological test battery after two years of tamoxifen treatment for breast 
cancer, and found mild cognitive complaints and worse cognitive function across 
several domains, especially in older women. Moreover, we are the first to study 
and suggest a potential exposure-dependent effect. Further research is needed to 
investigate the effects of dose-escalation, dose-reduction, or cessation of therapy on 
cognitive function. 
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Supplementary A. Cognitive function and self-reported outcomes
Correlogram of the pairwise correlations between objective and subjective cognitive function and other self-
reported outcomes. Only significant Pearson’s correlation coefficients are visualized. 
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ABSTRACT 

Background 
Tamoxifen is important in the adjuvant treatment of breast cancer. A plasma 
concentration of the active metabolite endoxifen of >16 nM is associated with a lower 
risk of breast cancer-recurrence. Since inter-individual variability is high and >20% 
of patients do not reach endoxifen levels >16 nM with the standard dose tamoxifen, 
therapeutic drug monitoring is advised. However, ideally, the correct tamoxifen 
dose should be known prior to start of therapy. Our aim is to develop a population 
pharmacokinetic (POP-PK) model incorporating a continuous CYP2D6 activity scale 
to support model informed precision dosing (MIPD) of tamoxifen to determine the 
optimal tamoxifen starting dose. 

Methods 
Data from eight different clinical studies were pooled (539 patients, 3661 samples) 
and used to develop a POP-PK model. In this model, CYP2D6 activity per allele 
was estimated on a continuous scale. After inclusion of covariates, the model 
was subsequently validated using an independent external dataset (378 patients). 
Thereafter, dosing cut-off values for MIPD were determined. 

Results 
A joint tamoxifen/endoxifen POP-PK model was developed describing the endoxifen 
formation rate. Using a continuous CYP2D6 activity scale, variability in predicting 
endoxifen levels was decreased by 37% compared to using standard CYP2D6 genotype 
predicted phenotyping. After external validation and determination of dosing cut-off 
points, MIPD could reduce the proportion of patients with subtherapeutic endoxifen 
levels from 22.1% toward 4.8%. 

Conclusion 
Implementing MIPD from the start of tamoxifen treatment with this POP-PK model can 
reduce the proportion of patients with subtherapeutic endoxifen levels at steady-state 
to less than 5%. 
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INTRODUCTION 
Tamoxifen is being used for decades to prevent disease recurrence and mortality in 
patients suffering from estrogen receptor-positive breast cancer. In prior research, 
five years of adjuvant tamoxifen therapy reduced breast cancer recurrence with 42% 
and breast cancer specific death by 22%.1 However, despite this effective treatment, 
breast cancer still recurred in 30% of patients within 15 years of follow-up.2,3

Tamoxifen is a prodrug which is metabolized by CYP2D6 and CYP3A4 into 
4-hydroxytamoxifen, N-desmethyl-tamoxifen (NDM-tamoxifen) and is subsequently 
metabolized into its most clinically relevant metabolite; endoxifen.4 Endoxifen 
competes with estrogen for the estrogen receptor and thereby inhibits the stimulating 
effect of estrogen on breast cancer cells.5 An exposure – response relationship of 
endoxifen was found in a large retrospective cohort and an activity threshold of 16 
nM endoxifen plasma concentration was reported.6 Patients with endoxifen levels 
below this threshold showed 26% higher breast cancer recurrence rates compared 
to patients with endoxifen levels above the 16 nM threshold. The endoxifen exposure 
– response relation has been validated in a different study showing that patients 
with endoxifen concentrations <14 nM had an almost two-fold higher risk of distant 
recurrence.7 Therefore, it is hypothesized that applying therapeutic drug monitoring 
(TDM) of tamoxifen to verify that patients are above the 16 nM endoxifen threshold 
could further decrease disease recurrence. 

A large cohort study showed that approximately 21% of patients did not reach sufficient 
steady-state endoxifen levels (<16 nM), using the standard dose of 20 mg tamoxifen 
once daily. When TDM was applied, the proportion of patients below the threshold was 
reduced to 11%.8 However, as endoxifen reaches steady-state after three months, six 
months was needed to assign the correct personalized dose to each patient. Ideally, 
the appropriate dose to reach the endoxifen threshold concentration should be known 
prior to starting tamoxifen treatment. If the appropriate dose is not known, patients 
could be exposed to insufficient endoxifen levels and thus, suboptimal treatment. 
Selecting the optimal dose, from the start of treatment, using model-informed precision 
dosing (MIPD) may solve these problems.

To date, six population pharmacokinetic (pop-PK) models have been developed to 
describe both tamoxifen and endoxifen PK.9-14 These models found that inter-individual 
variation (IIV) on the rate of endoxifen formation was best explained by CYP2D6 
phenotype or CYP2D6 activity score with scores of 0, 0.5 or 1 per allele. However, 
recent findings showed that CYP2D6 activity could also be described on a more 
sensitive continuous scale.15 In this study we use a continuous CYP2D6 activity scale 

177686_Buijs_BNW.indd   155177686_Buijs_BNW.indd   155 22/01/2025   14:0622/01/2025   14:06



156

CHAPTER 7 

to develop a more sensitive pop-PK model. This model may, in turn, be used in MIPD 
to treat the patient with the correct tamoxifen dose when starting tamoxifen treatment.

MATERIALS AND METHODS 

Clinical database 
Data was pooled from multiple datasets originating from eight different clinical 
studies conducted in the Erasmus Medical Center Cancer Institute. Both, sparse data 
describing tamoxifen/endoxifen PK over multiple years and dense data describing 
PK during a single-dose interval were available. Sparse PK data was provided by 
the TOTAM study, a prospective open-label intervention study.8 Female patients 
treated with adjuvant tamoxifen for breast cancer were eligible for participation. In this 
study, blood samples were obtained from patients at 3, 4.5, 6, 12, 18 and 24 months 
after starting tamoxifen treatment. Dense PK data was available from seven studies 
which were studying possible interacting agents (i.e. rifampicin, curcumin, green 
tea, probenecid, and cannabidiols)16-20, the effect of circadian rhythm on tamoxifen 
PK21, or using dextromethorphan as phenotyping test to predict endoxifen plasma 
concentrations.22 All PK samples which were taken during co-administration with a 
potent interacting agent were excluded to ensure model and covariate stability. In total, 
37 participants of the mentioned dense sampling studies also participated in the 
TOTAM study. All patients provided written informed consent prior to participation and 
all studies were conducted according to the declaration of Helsinki. 

 All PK samples in the clinical database were analyzed in the laboratory of translational 
pharmacology at the Erasmus MC Cancer Institute using a validated LC-MS/MS 
method.23 CYP2D6 and CYP3A4 genotyping analyses were performed using both the 
Quantstudio (ThermoFisher Scientific; Waltham, MA) and the Infiniti (Autogenomics; 
Carlsbad, CA) machines.

Population PK model 
All PK data was converted into molar values and subsequently logarithmically 
transformed prior to modelling. Initially, tamoxifen PK data was modelled to a 
one-compartmental model with first order absorption and first order elimination. 
Thereafter, multi-compartmental models, different absorption models (lag-time, transit 
compartments, Weibull absorption, and zero-order absorption), different elimination 
models (zero-order, nonlinear clearance) and introduction of exponentially modelled 
IIV, on different parameters were tested. Subsequently, the available NDM-tamoxifen 
and 4-hydroxytamoxifen samples were added to the model. Thereafter, endoxifen was 
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included in the model using a first-order metabolic rate with IIV. Residual error in plasma 
concentrations was estimated with a proportional error model. As two types of data were 
available, the residual error was separately estimated for each data type (i.e. dense, 
sparse) and each compound. In addition, for the dense data, inter-occasional variability 
(IOV) was introduced to account for differences between dense sampling occasions.

The effect of CYP2D6 genotype on the endoxifen formation rate was incorporated as a 
continuous scale into the model. When an allele was present in less than two patients, 
the activity score was fixed to the categorical activity score of Pharmvar (activity of 
0, 0.5 or 1).24 If the CYP2D6 genotype was unknown, the genotype was assigned to a 
distinct variable for unknown CYP2D6 activity so that known alleles were not affected 
by this group. The allele showing the lowest activity expressed by at least five patients 
was fixed to 0 (no activity) and the *1 genotype was fixed to 1 (full activity). An additional 
parameter estimated the relative amount of the formation rate to be dependent of 
CYP2D6 genotype activity. All patients in the model development dataset were tested 
for CYP2D6 *1 - *7, *9, *10, *17, *29, *31, *41 and duplications.

To further explain variability in the endoxifen formation rate, weight, height, age, body 
mass index (BMI), lean body mass (LBM), and body surface area (BSA) were tested 
as continuous covariates. These were centered on the median and tested as power 
models. Missing values were replaced by the carry-forward method or if no data was 
known the median value was imputed. CYP3A4*22 genotype and radiation therapy 
were tested as categorical covariates. Covariates models were included using a 
stepwise forward inclusion (p < 0.05) with backward elimination (p < 0.01) procedure. 

Model validation 
The final model was internally evaluated using visual predictive checks (VPCs). 
External validation was performed using data from the Margarete Fischer-Bosch-
Institute of Clinical Pharmacology in Stuttgart, Germany.25 Patient characteristics 
of this population are depicted in the Supplementary Table S1. In contrast to the 
model-development dataset, patients were not screened for harboring CYP2D6 *2 
(normal activity), *17 (decreased activity), *29 (decreased activity) or *31 (no activity) 
alleles, whereas patients in the validation set were screened for the *35 allele (normal 
activity), which was not present in the model development dataset. These patients 
were excluded from the validation. Using the final model the median prediction error 
(MDPE) (<20%), the median absolute prediction error (MAPE) (<30%), and the fraction 
within 30% (F30%) (>50%) and 20% (F20%) (>35%) were calculated to test the accuracy 
and precision of the final model.26,27
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MIPD simulations 
Cut-off values for each dosing interval (20, 30 or 40 mg) were determined using 
receiver operating characteristic (ROC) curves. The population prediction was used 
as a predictor whereas the first measured endoxifen trough concentration at steady-
state was used as true value. The optimal cut-off point was determined, as proposed 
by Perkins and Schisterman, using the prevalence of subtherapeutic endoxifen 
concentrations in the dataset and a cost which was set to 0.35 in consultation with 
clinicians.28 After determining the cut-off points, this dosing strategy was implemented 
on both the development dataset as well as the validation dataset. 

RESULTS 

Clinical database 
The model-development dataset constituted of 539 patients and 3613 plasma samples 
in which both endoxifen and tamoxifen were quantified. Almost half of these samples 
were steady-state trough levels (n = 1655), whereas the other half (n = 1958) constituted 
of dense PK data from one of 165 24 h-cycles on steady-state. In total, data from 
25 patients and 11 additional samples were excluded due to concomitant CYP2D6 
inhibitor use (12 patients), missing dosing information (seven patients), tamoxifen non-
adherence (six patients and three additional samples) or samples that were accidentally 
taken after discontinuation of tamoxifen therapy (six samples), two samples were 
excluded as both the tamoxifen and endoxifen concentrations from a patient raised by 
50% after hospitalization for allopurinol induced drug induced rash with eosinophilia 
and systemic symptoms. The endoxifen and tamoxifen concentrations thereafter 
returned to normal steady-state concentrations. Patient characteristics are depicted 
in Table 1. All patients were treated in the adjuvant setting for primary breast cancer 
(stage I to stage III breast cancer). Patient characteristics per study population and 
the validation dataset are shown in Supplementary Table S1 .

Population PK model 
The final model is schematically presented in Figure 1. A two-compartmental model 
with an additive error model best described simultaneous tamoxifen and endoxifen 
plasma concentrations. As NDM-tamoxifen and 4-hydroxytamoxifen were quantified 
in only 37% of all samples, inclusion of these samples introduced significant instability 
and high shrinkage to the model and were therefore excluded. In the base model, 
IIV was modelled on tamoxifen clearance and the transformation rate of tamoxifen 
to endoxifen. Endoxifen distribution volume was fixed to 400 L as reported earlier in 
literature and also used in previous models describing tamoxifen/endoxifen PK.10,29 
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Absorption was best described by a combined absorption lag time followed by first 
order absorption. The addition of a peripheral tamoxifen compartment introduced 
model instability and was hence discarded. For endoxifen, the additional compartment 
did not lead to a significantly improved model. The clearance of both endoxifen and 
tamoxifen was best described by a first-order rate. Introduction of IOV on tamoxifen 
clearance or endoxifen formation rate between different 24-hour cycles introduced a 
shrinkage >30% and was therefore not incorporated into the final structural model. 

Dose Tamoxifen Endoxifen
Ka 

tlag 

Clmet

Cltam

CYP2D6*
BMI
 

Age 
Body length

 

Vdtam Vdend

Clend

Figure 1. Schematic representation of the final population PK model structure and the incorporated covariate 
relationships represented in the blue boxes. * The influence of CYP2D6 on the endoxifen formation rate was 
modelled as seen in Eq. 1. Ka absorption rate, tlag lag time, Vdtam apparent distribution volume of tamoxifen, 
Cltam apparent clearance of tamoxifen, Clmet apparent endoxifen formation rate, BMI body mass index, Vdend 
apparent distribution volume of endoxifen, Clend apparent clearance of endoxifen.

The influence of CYP2D6 genotype on endoxifen formation rate was modelled on 
a continuous scale and multiplied by a parameter estimating the percentage of the 
endoxifen formation rate to be CYP2D6 dependent. Duplicate fully active (*1 and *2) 
alleles were pooled as the CYP2D6 activity score predictions were similar. Inclusion 
of CYP2D6 phenotypes decreased the inter-individual variability (IIV) of the endoxifen 
formation rate from 59.0% to 42.8%. Inclusion of known CYP2D6 activity score 
subgroups instead of phenotypes decreased the IIV from 59.0% to 33.4% and a model-
predicted continuous CYP2D6 activity scale decreased the IIV further to 26.8%. After 
careful evaluation of the residual unexplained IIV a power term was added to the 
equation ensuring a good fit over all values of CYP2D6 activity, which decreased 
unexplained IIV by 0.6% (Eq. 1) (Supplementary Figure S1). 

177686_Buijs_BNW.indd   159177686_Buijs_BNW.indd   159 22/01/2025   14:0622/01/2025   14:06



160

CHAPTER 7 

Table 1. Patient characteristics of the model-development cohort

Patient characteristic Median IQR

    Age (years) 56 47 – 65

    Height (cm) 168 164 – 173

    Weight (kg) 74 66 – 84

    BMI (kg/m2) 26.1 23.0 – 29.9

    BSA (m2) 1.87 1.75 – 1.99

    LBM (kg) 45.3 41.9 – 49.1

Data type

    Dense 134 24.4%

    Sparse 415 75.6%

No. %

CYP2D6 alleles

    *1/*2 83 15.1%

    *1/*4 76 13.8%

    *1/*1 72 13.1%

    *1/*41 36 6.6%

    *2/*2 33 6.0%

    *2/*41 30 5.5%

    *2/*4 28 5.1%

    *4/*4 22 4.0%

    *1/*9 15 2.7%

    *1/*5 11 2.0%

    *4/*41 10 1.8%

    *4/*5 8 1.5%

    *2/*5 8 1.5%

    *2/*3 8 1.5%

    *2/*9 7 1.3%

    *1/*10 7 1.3%

    *4/*10 6 1.1%

    Unknown 10 1.8%

    Other 123 13.5%

CYP3A4 alleles

    *1/*1 366 66.7%

    *1/*22 16 2.9%

    *22/*22 4 0.7%

    Unknown 163 29.7%

BMI body mass index, BSA body surface area, IQR inter-quartile range, LBM lean body mass 
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CYP D activity Allele Allele2 6 = + 2
θ

1 2 (1)

In this equation, Allele1 and Allele2 represent the activity of each allele. θ is the 
exponent which was estimated by NONMEM (Table 2). Model-predicted CYP2D6 
activity scores of the most common allele combinations are depicted in Table 2. 
A visual comparison of the categorical phenotyping scale, the gene activity score30, 
and the model-estimated activity scale, of CYP2D6 is shown in Figure 2.

Figure 2. Comparison of conventional and the model-predicted CYP2D6 activity scales. The observed 
endoxifen concentration was stratified on conventional CYP2D6 predicted phenotype (A), gene activity score (B) 
and the model-predicted CYP2D6 activity score (C). Data comprised of the first endoxifen trough observations 
at steady-state. The horizontal line represents the 16nM effectivity threshold. The colors represent the predicted 
phenotype where red dots represent poor metabolizers, blue represents the intermediate metabolizers, green 
represents the extensive metabolizers and purple dots represent ultrarapid metabolizers. PM poor metabolizer, 
IM intermediate metabolizer, EM extensive metabolizer, UM ultrarapid metabolizer.

In addition to CYP2D6 genotype, patients’ BMI significantly influenced the endoxifen 
formation rate. Including these covariates in the model, diminished unexplained 
variability in the endoxifen formation rate from 26.8% to 25.1%. Tamoxifen clearance 
was influenced by both age and patient height. Inclusion of these covariates reduced 
IIV on this parameter from 34.7% to 32.1%. CYP3A4*22 genotype, radiation therapy, 
LBM, BSA and weight did not affect endoxifen or tamoxifen PK to a significant extent. 
The effect of each covariate on the steady-state endoxifen concentrations is shown in 
Figure 3. All parameter estimates and their corresponding 95% confidence intervals 
and shrinkages are depicted in Table 2. 

177686_Buijs_BNW.indd   161177686_Buijs_BNW.indd   161 22/01/2025   14:0622/01/2025   14:06



162

CHAPTER 7 

Model validation 
Six patients were excluded from the external validation dataset as these patients 
harboured a CYP2D6 allele which was not present in the model-development dataset. 
As patient height was missing in 61% of cases, it was imputed in the validation dataset 
when missing, using a reference dataset from the Dutch central bureau for statistics 
which contained the estimated height for each age group depending on their birth 
year.31 External model validation showed that the model adequately described the 
data by meeting the criteria mentioned in the methods section (MDPE, -1.53%; MAPE, 
34.25%; F20, 39.06%; F30, 55.21%).

Figure 3. Effect of incorporated covariates on the predicted steady-state endoxifen concentration. 
For every situation, 1000 simulations were run. For CYP2D6, different genotypes were depicted based on 
prevalence and activity score. In the CYP2D6 simulations, other covariates were set to the median. In the other 
simulations, the *1/*1 genotype was used. CYP2D6 phenotypes are represented by colours where red is poor 
metabolizer, blue is intermediate metabolizer, and green represents normal/extensive metabolizer. The 16 nM 
threshold is shown as a dashed-line. The dotted line represents the median of a person with median age (56 
years), patient height (168 cm), BMI (26.03 kg/m2) and a *1/*1 genotype. BMI body mass index
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Table 2. Final model parameter estimates 

Parameter Estimate 95% CI Shrinkage

    Ka (h) 1.45 1.13 – 1.77

    tlag (h) 0.44 0.37 – 0.50

    Vdtam/F (L) 880 729 - 1031

    Cltam/F (L/h) 7.38 7.18 – 7.58

    Clmet/F (L/h) 0.155 0.113 – 0.197

    Vdend/F (L) 400 FIX

    Clend/F (L/h) 1.23 0.91 – 1.56

CYP2D6 alleles

    *1 1.000 FIX

    *2 0.560 0.476 – 0.644

    *3 0.066 0.024 – 0.108

    *4 0.047 0.018 – 0.076

    *5 0.040 0.007 – 0.073

    *6 0.000 FIX

    *7 0.000 FIX

    *9 0.378 0.267 – 0.489

    *10 0.103 0.028 – 0.178

    *17 0.156 0.064 – 0.248

    *29 0.490 0.278 – 0.702

    *31 0.000 FIX

    *41 0.110 0.052 – 0.168

    duplicate *1/*2 1.400 0.806 – 1.994

    Unknown 0.589 0.369 – 0.809

    Exponent (eq.1) 0.606 0.466 – 0.746

    % CYP2D6 mediated* 0.946 0.892 – 1.000

Covariates

    Age (Cltam)† -0.414 -0.535 - -0.293

    Patient height (Cltam)† 1.460 0.670 – 2.250

    BMI (Clmet) † -0.394 -0.511 - -0.277

Additive error model

    Dense data

      Tamoxifen 0.153 0.143 – 0.161 3.1%

      Endoxifen 0.161 0.151 – 0.171 3.1%

    Sparse data

      Tamoxifen 0.188 0.178 – 0.198 11.0%

      Endoxifen 0.186 0.177 – 0.195 11.4%
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Parameter Estimate 95% CI Shrinkage

Residual IIV

    IIV Cltam 32.0% 3.7%

    IIV Clmet 25.3% 11.0%

* This parameter estimated the percentage of the endoxifen formation rate to be CYP2D6 dependent. † Power 
model. ‡ Proportional model. Ka absorption rate, tlag lag time, Vdtam apparent distribution volume of tamoxifen, 
Cltam apparent clearance of tamoxifen, Clmet apparent endoxifen formation rate, BMI body mass index, Vdend 
apparent distribution volume of endoxifen, Clend, apparent clearance of endoxifen, FIX parameter was not 
estimated but set to this value.

MIPD simulations 
Dosing cut-off points were determined using ROC curves (Supplementary Figure 
S2). The optimal cut-off point was determined with prevalence set to 23% and cost 
set to 0.35. The cut-off point for receiving 40 mg tamoxifen was a model-predicted 
steady-state level of 11.40 nM endoxifen when treated with 20 mg tamoxifen. When the 
model predicted that a patient will not reach 20.23 nM endoxifen at steady-state when 
using 20 mg tamoxifen, this patient should be given 30 mg. Patients with a predicted 
endoxifen concentration above 20.23 nM will be treated with the standard dose of 20 
mg. Simulations showed that instead of 22.1% not reaching sufficient endoxifen levels, 
using these model-informed dosing recommendations could diminish this proportion 
to 9.9%. When also switching patients that were identified to be at risk for not being 
capable of reaching endoxifen thresholds even at the maximum registered dose of 
40 mg (steady state endoxifen <8.56 nM), to aromatase inhibitors, the proportion 
of patients that does not reach 16 nM endoxifen decreases further toward 4.8%. 
The results of imposing this dosing strategy on the first endoxifen samples in the 
model development dataset is visualized in Figure 4A. Out of all patients with a 
simulated dose-increase, 19.7% showed endoxifen plasma concentrations >32 nM 
and could have been treated with a lower dose. In addition, from all patients which 
were recommended to be switched, 30.0% could manage to obtain endoxifen plasma 
levels >16 nM with 40 mg.

When imposing these dosing cut-off points on the external validation set, a similar 
reduction in patients with endoxifen plasma concentrations <16 nM is seen. Whereas 
with a one-dose-fits-all dosing regimen 17.9% of patients do not reach endoxifen levels 
>16 nM, with MIPD this could be reduced to 9.5% (figure 4B) and further toward 6.5% 
when also switching patients at risk for underexposure on 40 mg to aromatase inhibitors.
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Figure 4. Simulation of model-informed prediction dosing for tamoxifen/endoxifen. 
(A) Data comprised of the first endoxifen trough concentrations at steady-state in patients in the model 
development dataset (n = 443). (B) The MIPD cut-off points simulated in the external dataset (n = 369). The 
horizontal line represents the 16 nM effectivity threshold and the vertical lines represent the 40 mg and the 
30 mg dosing cut-off values. The dotted line is the unity line. 

DISCUSSION 
Using a continuous individual CYP2D6 allele activity score, the model's accuracy to 
predict endoxifen trough concentrations was significantly improved compared to using 
CYP2D6 phenotypes. Therefore using this model for MIPD could reduce the number of 
patients being below the threshold of 16 nM from 22.1% toward 4.8% immediately after 
reaching steady-state. Similar results were seen when simulating the MIPD in an external 
dataset. The addition of MIPD using this model at the start of tamoxifen treatment could 
help to ensure a fast and safe determination of the right tamoxifen dose. 

Continuous-scale CYP2D6 activity assignment has been previously performed in one 
study.15 The assignments of our predicted activity scores per genotype using NONMEM 
are comparable to this study. However, in this previous research, an additive model 
with an addition from a neural network when a patient harboured a single *1 genotype 
was used. As no machine learning was implemented in this research, we described the 
relation between genotypes and CYP2D6 activity using a power model.  

Although most of the IIV was explained, 25% still remains unexplained. This 
could be due to patients harbouring SNPs which were not included in our panel. 
However, the minor allele frequency of these are low (<1%) or, like CYP2D6*35, are 
known to minimally affect CYP2D6 activity compared to a fully functioning variant.24 
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Therefore, we feel this should not significantly affect the results of our activity scale. 
Besides, non-genetic causes such as treatment adherence, which was not quantified in 
every dataset, or unknown interactions are more likely explaining this residual variability.

In addition to the more sensitive CYP2D6 activity scale, age and patient height affected 
tamoxifen clearance, whereas BMI influenced endoxifen formation rate. Although 
age has been described in previous tamoxifen models10, patient height has not been 
described as an influential covariate. However, as IIV was only modelled on tamoxifen 
clearance, patient height may be affecting distribution volume as tamoxifen is mostly 
distributed into organs, which size are affected by patient height.32 The effect of BMI 
or body weight has already been described in previous papers.9,10,33 As BMI is mostly 
affected by body weight instead of height and the covariate analysis was performed 
using forward inclusion, including both in the model is feasible. 

Because the validation cohort was not specifically tailored for this study some covariate 
information was missing. The uncertainty of harbouring the *2, *17, *29 or *31 alleles could 
have influenced the results from the external validation as these alleles were present in 
the development dataset. Patients harbouring these genotypes will be falsely interpreted 
as fully functioning *1 alleles. In addition, although the imputation of patients’ height 
corrected for the influence of age, the approximation still leads to loss of data. Although 
the effect of patient height on the steady-state endoxifen levels is clinically irrelevant, this 
could have affected the validation. However, most importantly, the validation showed 
that the model adequately described the data despite these impediments. 

In addition to developing a model using a more sensitive CYP2D6 activity scale, cut-
off points which can be used for MIPD were identified. Using these cut-off values, 
simulations showed that the proportion of patients not reaching >16 nM endoxifen after 
three months of treatment could be diminished. As endoxifen reaches steady-state 
concentrations after three months of tamoxifen use, using TDM guided dosing could 
take six to nine months to get patients on the ideal dose to reach sufficient endoxifen 
trough levels.8 Using MIPD with a simple knowledge of patients’ age, patient height and 
weight and determining CYP2D6 genotype could decrease the proportion of patients 
with insufficient endoxifen levels to less than 5% when steady-state is first reached. 
Rapid achievement of sufficient endoxifen levels may translate into better outcomes for 
tumor relapse. In addition, patients with a high risk of not reaching sufficient tamoxifen 
steady-state concentrations can be identified before starting therapy and could be 
treated with an aromatase inhibitor and sooner receive adequate treatment. 
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However, in most cases, subsequent TDM at steady-state should still be used to 
identify the small amount patients that do not reach sufficient steady-state endoxifen 
concentrations. As shown in Figure 4, a small proportion of patients in the 20 mg group 
do not reach endoxifen concentrations >16 nM at first TDM. However, in some cases 
TDM does not have to be necessary, an old patient with a *1/*1 genotype or patients 
with a duplicate *1 allele have an approximate 99% chance of reaching adequate 
endoxifen concentrations at 20 mg. In addition, using MIPD, less TDM samples will 
be necessary as more patient will be sufficiently exposed at the first TDM occasion. 
When more research is performed explaining variability in tamoxifen and endoxifen 
pharmacokinetics, over time MIPD might wholly replace TDM.

In conclusion, applying MIPD with the developed model incorporating the influence 
of CYP2D6 activity on a continuous scale could diminish the amount of patients with 
insufficient endoxifen levels to less than 5%. Applying MIPD may therefore improve 
outcomes for women with estrogen-receptor positive breast cancer. Prospective 
implementation of this dosing strategy will further ensure the feasibility of MIPD for 
tamoxifen in clinical practice. 
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ABSTRACT 
Tamoxifen is an estrogen-receptor (ER) antagonist, used as adjuvant treatment 
of ER-positive breast cancer. It is converted by CYP2D6 into endoxifen, its most 
active metabolite. Patients with endoxifen plasma concentrations <16 nM face a 
higher risk of recurrence. The use of a priori model-informed precision dosing (MIPD) 
may lead to faster target attainment and thus potentially improve patient outcomes. 
In total, 106 evaluable patients were prospectively included in this single-arm MIPD-
intervention study. Patients received a model-predicted tamoxifen dose when starting 
tamoxifen-treatment (65.1% of patients received 20mg, 16.0% received 30mg and 
18.9% received 40mg). Seventy-five percent of the 40mg group was predicted to be 
unable to reach the threshold 16 nM despite receiving the highest registered dose. 
After attaining steady-state, 84.0% of patients reached endoxifen levels ≥16 nM, 
which was not significantly higher compared to a historical control cohort (77.9%, p 
= 0.17). The model showed adequate performance and correctly identified patients 
requiring 40mg tamoxifen. Endoxifen samples that were acquired 4 – 6 weeks after 
treatment initiation, are informative of steady-state endoxifen levels and can be used 
to inform MIPD and adjust tamoxifen dosing prior to steady-state attainment. In this 
first MIPD implementation study for patients treated with tamoxifen, MIPD did lead to 
more patients achieving endoxifen levels ≥16 nM as compared to the one-dose-fits-
all strategy, albeit insignificant. This may partly be explained by a larger proportion 
of patients who were recommended to switch to an aromatase inhibitor (AI) in the 
intervention cohort. In conclusion, MIPD seems beneficial compared to one-size-fits-
all-dosing, but TDM still remains an important addition.
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INTRODUCTION 
Tamoxifen is a selective estrogen-receptor (ER) modulator and is important in the 
adjuvant treatment of ER-positive breast cancer where it reduces the breast cancer 
recurrence rate.1,2 Tamoxifen is a prodrug and exerts its effect primarily through its 
active metabolite endoxifen.3,4 Tamoxifen is converted into endoxifen by cytochrome 
P450 (CYP) iso-enzymes, particularly by CYP2D6. Polymorphisms of the CYP2D6 
gene can hamper CYP2D6 activity and lead to lower endoxifen concentrations.5,6 
Madlensky et al. found an association between endoxifen concentrations and breast 
cancer recurrence in a large retrospective analysis of a prospective study.7 Patients 
with endoxifen concentrations <16 nmol/L (5.97 ng/mL) were exposed to a 30% higher 
risk of breast cancer recurrence compared to patients with endoxifen concentrations 
above this threshold.7 

Approximately 20-24% of tamoxifen patients do not reach the 16 nmol/L endoxifen 
threshold while treated with the standard tamoxifen dose of 20 mg.7-10 When 
applying Therapeutic Drug Monitoring (TDM), doses are adapted to measured 
plasma concentrations in order to reach the therapeutic threshold. In past studies, 
implementation of TDM resulted in approximately 90% of patients with endoxifen levels 
above the 16 nM threshold after 6 months of tamoxifen therapy.8,11 One drawback 
of TDM of tamoxifen in its current form, however, is that the dose adjustments can 
only be performed after reaching steady-state plasma concentrations, which for 
tamoxifen is reached after 3 months of therapy.12 Consequently, patients requiring 
a tamoxifen dose adjustment after TDM are potentially undertreated during the first 
3 to 6 months of therapy. Model-informed precision dosing (MIPD) may counter this 
problem by both predicting the adequate tamoxifen dose per patient before the start 
of treatment and identifying patients will not reach the 16 nM threshold using the 
highest registered dose and therefore may profit from a switch toward an aromatase 
inhibitor (AI). Although it is under debate on what falls within the term of MIPD, we 
refer to using a population-pharmacokinetic (popPK) model, capable of describing 
and predicting patient-specific absorption, distribution, metabolism, and elimination 
of a drug based on several patient characteristics, to forecast plasma concentrations 
before treatment.13 However, it has never been prospectively investigated whether 
MIPD leads to an increase in the proportion of patients inside the therapeutic interval 
while avoiding unnecessary dose increases. Therefore, the primary aim of this study 
was to investigate whether implementation of MIPD could increase the proportion of 
patients achieving an endoxifen level >16 nM at steady-state. 
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MATERIALS AND METHODS

Study Type and Population 
The PREDICTAM (PREDICtion of TAMoxifen) trial was conducted as an open-label, single-
arm intervention study at the Erasmus MC Cancer Institute in Rotterdam, the Netherlands. 
It received approval from the institutional review board (MEC-2022-0437) and was 
registered in the U.S. National Library of Medicine (clinicaltrials.gov; NCT05525481). Patient 
were eligible for inclusion when starting adjuvant treatment with tamoxifen for primary 
breast cancer who were able and willing to abstain from moderate and strong CYP2D6 
and CYP3A4 inhibitors. Exclusion criteria were ongoing tamoxifen treatment exceeding 
two weeks prior to the moment of inclusion (i.e. baseline visit), previous quantification of 
endoxifen levels and the male sex. The control arm was a cohort derived from the TOTAM-
study (MEC-2017-548), with which the POP-PK model was developed.14 This cohort was 
followed-up prospectively at the Erasmus MC Cancer Institute using the same catchment 
area and in- and exclusion criteria as the interventional arm. It consisted of 443 patients, 
all treated with the standard dose of 20 mg tamoxifen during the first 3 months, of whom 
345 (77.9%) reached the endoxifen threshold of 16 nM at 3 months of treatment (steady-
state).14 Randomization was not performed in this study as the intervention arm consisted 
of the entire PREDICTAM cohort and the control arm of the entire cohort derived from the 
TOTAM study, which rendered the study an open-label study.

Study design 
This study used a previously described validated popPK model to predict a patient’s 
steady-state endoxifen plasma concentration and determine the appropriate tamoxifen 
dose at baseline.14 Details regarding the prediction model and for which patient each 
dose was predicted can also be found in the Supplementary (Section I). The study 
consisted of three visits: at baseline (before or within 2 weeks after start of tamoxifen), 
after 4-6 weeks of tamoxifen therapy, and after 3 months of tamoxifen therapy or, when 
performed, after a dose-escalation (i.e. steady-state). At baseline, informed consent was 
obtained and all patient covariates needed for dose prediction were collected (CYP2D6 
genotype, body mass index (BMI), age, and body height. Also, patients were asked to 
fill in the Functional Assessment of Cancer Therapy – Endocrine Symptoms (FACT-ES) 
questionnaire regarding endocrine side effects and health-related quality of life (HR-QOL). 
In case patients had already started tamoxifen treatment, an endoxifen plasma sample 
was collected. After determination of the CYP2D6 genotype (Supplementary Section 
II), a model-informed tamoxifen dose of either 20, 30, or 40 mg was determined and 
prescribed. During the second visit, after 4-6 weeks of treatment, another plasma sample 
was taken to investigate whether pre-steady-state endoxifen plasma samples could be 
indicative of steady-state endoxifen levels. As the early plasma samples were analyzed 
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after completion of the trial, this data did not influence the advised dose during the study. 
At the last visit, steady-state endoxifen concentrations (Supplementary Section II) were 
measured and patients filled in the FACT-ES questionnaire for the second time. 

Statistical analysis 
The primary endpoint of this study was the proportion of patients with an endoxifen 
level ≥16 nM at steady-state, i.e. 3 months after start of therapy or dose-escalation 
using MIPD. It was hypothesized that the proportion of patients with endoxifen levels 
>16 nM would be at least 90% and, therefore, higher than the 78% observed in the 
historical cohort. To test this hypothesis, with a two-sided alpha of 5% and a power 
of 80%, at least 106 patients were needed in this new cohort. Comparison between 
the proportions of the historical and new cohorts was conducted using a chi-squared 
test. Also, the proportions of patients with endoxifen levels ≥16 nM in the different 
dosing categories were compared with the historical cohort using a chi-squared test 
or Fisher’s exact test when appropriate. All secondary endpoints and corresponding 
statistical methods can be found in the Supplementary (Section III)  

RESULTS 

Patient selection 
Between November 2022 and September 2023, 117 patients with breast cancer who 
received or were about to receive adjuvant tamoxifen treatment were enrolled in this 
study. Eight participants withdrew their consent before reaching the primary endpoint. 
Five patients withdrew due to experiencing tamoxifen-related side-effects, two patients 
because of other health complications and one patient because of the requested time 
burden. Three participants were excluded from the analysis. One participant was excluded 
due to documented and self-reported poor tamoxifen treatment compliance. Two other 
patients were excluded before analysis, due to a screening failure (i.e. male sex). Finally, 
106 patients were evaluable for the analysis of the primary endpoint (Figure 1).

Baseline characteristics control and intervention cohort 
An overview of the most relevant baseline characteristics of the control and intervention 
cohort is provided in Table 1. Patient height and age differed significantly, although 
not clinically relevant between the intervention and control cohort. For comparison 
purposes, it was retrospectively determined which model-informed doses would have 
been predicted in the control group at baseline. Remarkably, significantly more patients 
in the intervention cohort were predicted in need for an AI, because they would not 
achieve endoxifen levels >16 nM with tamoxifen while treated with a tamoxifen dose 
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of 40 mg, in the intervention cohort compared to the control cohort. Also, a higher 
percentage of patients in the intervention group had CYP2D6 activity scores below 
0.6, although this difference did not meet significance due to small numbers.  

Endoxifen threshold 
Of the 106 patients undergoing MIPD, 89 patients (84%) reached an endoxifen level >16 
nM at steady-state. This was not significantly higher compared with the control group 
(78%, X2 = 1.91; p = 0.167). The distribution of steady-state endoxifen levels is depicted 
in Figure 2. If patients who were predicted to not reach 16 nM, despite receiving 40 mg, 
were actually switched to an AI, 91.5% of the population would have reached endoxifen 
levels ≥ 16 nM. The incidence of endoxifen levels <16 nM was also stratified per dose 
group (Table 2). This showed that the proportion of patients with endoxifen levels <16 nM 
was significantly reduced in the 40 mg and switch to AI groups in the intervention cohort, 
compared to the dose groups in the control group where no MIPD was performed (Table 
2). A list with characteristics of each individual patient with subtherapeutic endoxifen levels 
<16 nM in the intervention cohort, was given in Supplementary Table 1. Notably, in the 20 
mg category, four patients had endoxifen levels <16 nM, despite having favorable CYP2D6 
genotypes (*1/*1, *1/*1, *1/*2 and *1/*9, all corresponding with a CYP2D6 activity > 0.75). 

Model performance 
The model performance is depicted in Figure 2 and Table 2 & 3. Both the relative 
bias and MAPE are beneath the prespecified external evaluation thresholds 
(Supplementary Section III). The model slightly overpredicts the steady-state 
endoxifen concentrations within the intervention cohort. Upon stratification by dose, 
the MAPE remained relatively consistent whereas the relative bias showed variability. 
Especially the 40 mg group was underpredicted by the model, although this group 
comprised of a group of 5 patients.  

When focusing on the therapeutic interval, the model significantly increased the 
proportion of patients inside the therapeutic interval for patients with CYP2D6 activity 
≤0.3 (Table 2).14 Only one patient in this group had a steady-state endoxifen of <16 nM in 
case the patients predicted to need a switch were actually switched. This one patient was 
treated with 30 mg tamoxifen after the model  predicted the patient to reach endoxifen 
levels 0.02nM above the 40 mg threshold. Furthermore, patients with a CYP2D6 activity 
ranging between 0.3 and 0.75 also benefit from a model-informed dose, albeit without 
statistical significance. In patients harboring a more active CYP2D6 genotype (>0.75), 
the model did not perform better compared to the control group as these patients were 
already adequately dosed with the standard 20 mg dose. A more detailed definition and 
explanation of CYP2D6 activity presented in the Supplementary (Section I).
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Figure 1. Flowchart for patient selection

Table 1. Baseline characteristics of the evaluable intervention 

Intervention cohort (n = 106) Control cohort (n = 443) p-valuec

Age, years 60 [50, 68] 57 [48, 66] 0.049

Height, cm 166 [161, 170] 168 [163, 173] 0.001

Weight, kg 74 [68, 84] 75 [66, 84] 0.831

BMI, kg·m-2 27.3 [24.0, 31.3] 26.2 [23.0, 30.0] 0.087

CYP2D6 activity 0.68 [0.48, 0.86] 0.68 [0.51, 0.86] 0.325

Predicted dose

20 mg 69 (65.0%) 326a (74.0%) 0.080

30 mg 17 (16.0%) 59a (13.0%) 0.467

40 mg 5 (4.7%) 24a (5.4%) 0.772

(potential) switch to AIb 15 (14.0%) 34a (7.7%) 0.036

CYP2D6 activity

 0.0 – 0.30 21 (19.8%) 62 (14.0%) 0.133

 0.30 – 0.60 23 (21.6%) 83 (18.7%) 0.488

 0.60 – 0.75 25 (23.6%) 152 (34.3%) 0.034

 0.75 – 0.90 19 (17.9%) 90 (20.3%) 0.579

 0.90 – 1.5 18 (17.0%) 56 (12.6%) 0.240

All values, except for the predicted dose and CYP2D6 activity groups, were given as medians[IQR]. The 
combination of two patient alleles was scored using a continuous CYP2D6 activity scale, with 1.0 being a fully 
active *1/*1 genotype. The predicted dose and CYP2D6 activity groups were given as n(%). aThe predicted 
dose at baseline in the control group was retrospectively determined for comparison purposes. bThis group 
was treated with 40 mg to evaluate the chance of reaching endoxifen 16 nM. 
ct-test for continuous variables and chi-squared test for distributions of categorical variables.
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Table 2. Patients with an endoxifen concentration of <16 nM in the control and intervention cohorts

Patients with endoxifen <16 nM

  Intervention cohort (MIPD) Control cohort (20 mg)

n %/cohorta n %/cohorta p-value

Predicted dose

20 mg 5 (7.2%) 17a (5.2%) 0.504b

30 mg 4 (23.5%) 26a (44.1%) 0.164c

40 mg 0 (0%) 21a (87.5%) <0.001c

(potential) switch to AI 8 (53.3%) 34a (100%) <0.001b

CYP2D6 activity

 0.0 – 0.30 9 (42.9%) 59 (95.2%) <0.001b

 0.30 – 0.60 4 (17.4%) 25 (30.1%) 0.295c

 0.60 – 0.75 0 (0.0%) 10 (6.6%) 0.361c

 0.75 – 0.90 3 (15.8%) 4 (4.4%) 0.100c

 0.90 – 1.5 1 (5.6%) 0 (0.0%) 0.244c

All patients in the control cohort received 20 mg while in the intervention cohort patients received the predicted 
dose.a The proportion represents the percentage of patients with <16 nM at steady state per group. b chi-
squared test. c Fisher’s exact test

Among patients predicted to fall short of adequate endoxifen plasma concentrations, 
a majority indeed failed to attain adequate endoxifen plasma concentrations (>16 nM). 
Those achieving adequate levels showed a median endoxifen level of 18.2 nM and a 
maximum of 20.4 nM. The model-informed doses led to overexposure in six patients, 
which all but one occurred in the group treated with 30 mg tamoxifen. 

Table 3. Metrics evaluating the predictive value of the model predictions

Predictions MAPE (%) Relative bias (%)a RMSE (nM) F80 – 125%

A priori 21.19 2.99 9.72 47.17

20 mg 22.25 6.44 11.01 47.83

30 mg 21.33 11.63 8.21 47.06

40 mg 20.27 -20.27 7.31 40.00

(potential) switch to AI 21.65 -5.41 3.89 46.67

<14 days sampleb 27.46 0.13 10.68 37.21

4-6 weeks samplec 14.97 -10.91 7.36 63.73

Both samples 17.47 -12.16 7.91 53.49

Metrics evaluating the predictive value of the model predictions informed with no PK-information (a priori), 
stratified per dose group, or with either one or both of the samples obtained prior to reaching steady state. 
a negative percentage represents underprediction of the model. b Available in 43 patients. c Available in 102 
patients. MAPE: median absolute prediction error. RMSE: root mean squared error. F80 – 125%: The amount of 
patients inside the 80 – 125% prediction/observation ratio.
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The predictive value of pre-steady-state endoxifen samples is shown in Table 3. 
As the model-development dataset did not contain pre-steady state PK samples, 
these samples could not be used to change dosing. A post-hoc analysis using the 
samples was used to impute the pre-steady state endoxifen levels in the model and 
was further discussed in Supplementary (Section IV).

Figure. 2. Distribution of steady-state endoxifen plasma concentrations in the intervention cohort. 
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Quality of life and tamoxifen-related side effects results were missing for one patient, 
assigned to the 20 mg dose group. No significant or clinically relevant differences 
(>4.4 points for endocrine symptoms and >6.98 points for HR-QOL) between baseline 
and after 3 months in side-effects or quality of life were observed overall or in any 
individual dosing group (Table 4). At patient-level, 25 out of 68 (37%) patients had a 
clinically relevant increase in side-effects in the 20 mg dosing group. This applied to 6 
out of 17 (35%) patients in the 30 mg group and 8 out of 20 (40%) in the 40 mg group. 

Table 4. Difference in side-effects overall and in the different dosing groups.  

Baseline 3 months

Total intervention cohort  (n = 105)

HR-QOL 86.1 87.0

ES19 64.8 61.3

20 mg dose group (n = 68)

HR-QOL 88.6 88.4

ES19 66.7 62.8

30 mg dose group (n = 17)

HR-QOL 79.6 80.8

ES19 59.5 57.0

40 mg dose group (n = 20)

HR-QOL 82.8 87.6

ES19 62.8 59.8

Each group shows the mean score at baseline on the left and mean score after three months on the right. 
bES-19 comprises of 19 questions about specific hormone therapy related side-effects. cHR-QOL includes 
questions from 4 domains about quality-of-life. None of the differences shown were significant or clinically 
relevant. Higher scores equate less side effects or better quality of life. 

DISCUSSION 
This study aimed to implement MIPD for oncology practice. A fundamental study by 
Joerger et al. proved MIPD could play an important role in individualized therapy for 
oncology patients.15  In this study, initial paclitaxel therapy for patients with non-small-
cell lung cancer (NSCLC) in a palliative setting was dosed, adjusted to several patient 
characteristics. Subsequent doses were directed by neutropenia levels and previous-
cycle paclitaxel exposure, therefore combining MIPD and TDM to improve patient 
outcomes, such as treatment side-effects and overall survival (OS).15 The PREDICTAM 
study focused on putting MIPD into practice, by replacing TDM, specifically in adjuvant 
treatment for patients with hormone sensitive breast cancer. In contrast to the 
pharmacodynamic endpoints of the study by Joerger et al., this study mainly centered 
around pharmacokinetic objectives, such as attaining target endoxifen concentrations.  
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Although the difference in patients with endoxifen levels >16 nM in the intervention 
cohort was not significantly different from the control cohort, MIPD did result in less 
undertreatment when separate dose groups were compared. The model adequately 
identified patients who were at risk of being undertreated and identified patients 
who were unable to reach the therapeutic interval. In the intervention cohort, more 
patients than expected had low CYP2D6 activity scores, likely explaining the lower-
than-expected percentage of patients reaching endoxifen levels >16 nM. Notably, a 
significant proportion of these patients belonged to the 'potential' switch AI group. 
More than half of these patients did not reach the therapeutic window and those who 
did, were mostly within the error margin of the model of 18.6%. When excluding these 
patients, 91.5% of the remaining individuals achieved endoxifen levels exceeding 16 nM, 
more accurately showing the potential of MIPD. In a post-hoc analysis early endoxifen 
samples were imputed into the model, informing unexplained inter-individual variability 
in the conversion rate from tamoxifen to endoxifen (Supplementary Section IV).  
If this was used to adjust dosing, the primary endpoint showed a significant 
improvement in the proportion of patients achieving adequate endoxifen exposure.  

MIPD showed promise compared to conventional one-size-fits-all dosing of 20 mg 
tamoxifen. For example, patients for whom a tamoxifen dose of 20 mg was predicted, 
were at a low risk of undertreatment (endoxifen <16 nM in 7% of these patients in our 
study). In cases where non-adherence is not suspected, omitting TDM for this dose-
group may be considered. Also, for patients who were predicted in the ‘potential switch 
to AI’ group more than 50% did not reach endoxifen levels >16 nM despite being treated 
with the highest dose of tamoxifen (40 mg). Especially among postmenopausal patients, 
initiating treatment with an AI may offer a more efficacious alternative in such cases. 
However, for other dose-groups, TDM still remains critical to verify adequate steady-
state endoxifen levels and adjust tamoxifen doses when necessary. Nonetheless, 
giving a model-informed starting dose increased the adequate exposure significantly 
in the 40 mg group when reaching steady-state endoxifen exposure. Overall, this 
tailored approach reduces the need for TDM samples. While this was not an aim of 
our study, this approach increases the efficiency of accurate tamoxifen treatment due 
to fewer hospital visits being needed for TDM in this specific dose group. Additionally, 
this method may also facilitate earlier attainment of on-treatment endoxifen levels for 
all dose groups or prompt consideration for commencing treatment with an AI. 

The mean scores for tamoxifen-related symptoms and HR-QOL in our study were 
61.3 and 87.0 points after 3 months of tamoxifen. These scores were comparable, or 
even slightly better, than in previous studies where tamoxifen toxicity was assessed 
in larger groups of patients (ES19: 59-62 points; HR-QOL 79-83 points).16-18 This may 
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be explained by the short period of tamoxifen treatment in our study. No significant or 
clinically relevant changes in toxicity or quality of life were observed either overall or in 
any individual dosing study group. These results are in contrast with previous tamoxifen 
studies, that commonly reported tamoxifen-related toxicity.19,20 An explanation for this 
could be that our study was performed in patients who recently started tamoxifen 
therapy and were still recovering from other anti-cancer therapies such as surgery, 
radiotherapy and chemotherapy. However, although sample sizes per dose group 
were small, these results also imply that prescribing a dose of 30 or 40 mg tamoxifen 
to selected patients using MIPD, instead of the usual 20 mg dose, does not increase 
the risk of self-reported side-effects in the first three months of treatment. Probably, 
this can be explained by the fact that endoxifen levels of these patients remain within 
normal limits, despite using higher dosages. Although this offers reassurance regarding 
the risk at increased toxicity when using MIPD, caution is still warranted to avoid 
administering higher doses than necessary, particularly considering late and more 
rare side effects such as venous thromboembolism or endometrial abnormalities.21,22

Endoxifen plasma samples obtained prior to steady-state may add to the early detection 
of patients unable to reach adequate endoxifen levels. While samples collected within 
the first 21 days of treatment lack informative value, samples taken after 4 – 6 weeks 
add predictive value to the model. When imputed in the model, more than half of 
patients who could benefit from a dose increase at steady-state are identified. These 
samples were not used to adjust dosing as the model was not developed using 
pharmacokinetic samples prior to reaching steady-state and could therefore lead to 
incorrect dose adjustments. However, in post-hoc analyses the ability of the model to 
use these samples to correctly recommend dose adjustments is shown. Other benefits 
of obtaining a pre-steady-state sample is that it informs the treating physician of 
possible treatment non-adherence. By addressing adherence issues early on, patients 
can be educated about the critical importance of consistent treatment compliance. 
Even though the model-development dataset of the PK model did not incorporate 
samples taken prior to steady state, it adequately estimates empirical Bayes estimates 
(EBE) leading to an adequate prediction of steady-state. The underprediction after 
imputation of the samples in this model might result in more false positive cases of 
patients that might need a dose increase, although this was not the case in our cohort. 
However, although the results obtained show the predictive value of pre-steady-state 
samples, the popPK model should be updated with these samples to allow precise 
prediction of endoxifen concentrations and therefore allowing to change the tamoxifen 
dose prior to achieving steady-state. 
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To date, several tamoxifen population PK models have been developed14, 23-27, yet 
only two of these models have been externally validated, of which one is used in this 
research. Thus far, the model described in this research is the only model that has been 
prospectively validated. In the externally validated model by Klopp-Schulze et al., the 
researchers showed that 92.8 percent of a simulation cohort can reach the therapeutic 
window.26 In this research, we show that implementing MIPD in a prospectively followed 
cohort, 91.5% of patients reach the therapeutic window, when physicians adhere to the 
proposed switch to an AI. The similarity in this proportion indicates that implementing 
other models will probably not lead to a significant increase in patients reaching the 
therapeutic window compared to the presented model. 

 The presented study is not without limitations. Most notably, the differences in CYP2D6 
activity in the intervention and control cohort affected the primary endpoint. Therefore, 
the primary endpoint does not fully reflect the ability of the model to predict an adequate 
dose for each individual patient. Although the number of patients being adequately 
exposed is a clinically relevant endpoint, being the most suitable comparison for TDM, 
it only partly captures the ability of the model to adequately predict endoxifen plasma 
levels and, subsequently, the correct tamoxifen dosage. Especially not when the most 
influential covariate is differently distributed in the intervention cohort compared to the 
control cohort. Nevertheless, numerical model evaluation techniques confirm adequate 
predictive performance, especially with pre-steady-state plasma samples informing 
EBEs. Naturally, evaluating the effect using clinical outcomes such as recurrence 
should be used when feasible. However, considering the relatively low recurrence 
rate of breast cancer, such a study would take multiple years and many more patients 
rendering it unfeasible. Additionally, therapy adherence was not regularly assessed in 
the study. Several patients had lower endoxifen plasma concentrations at steady-state 
compared to the pre-steady-state samples, which indicates that treatment adherence 
may have affected the results of the primary outcome. Lastly, in this study we used the 
endoxifen threshold of 16 nM, a threshold determined in a large retrospective cohort 
study.7 This threshold has not been confirmed prospectively and there are studies that 
found lower efficacy limits for endoxifen efficacy (i.e. 9 and 14 nM).28,29 Moreover, in 
studies with patients with a high risk for breast cancer or a history of breast carcinoma-
in-situ, low doses of tamoxifen (5-10 mg) were proven effective in preventing breast 
cancer.30,31 However, an advantage of MIPD is that it can be applied for endoxifen 
thresholds of whatever desired value. 

This MIPD implantation study is the first in the landscape of solid breast tumors to 
adjust tamoxifen doses before the start of treatment. Implementation of MIPD did not 
result in a significantly higher proportion of patients achieving endoxifen levels ≥16 nM 
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compared to the one-dose-fits-all strategy. This can be explained by a larger proportion 
of patients with impaired CYP2D6 activity in the intervention cohort compared to the 
control cohort. Implementation of MIPD showed promise compared to one-size-fits-all 
dosing 20 mg tamoxifen, especially in a subgroup recommended to be treated with 
40 mg. Particularly when the dose recommendation is informed with a pre-steady-
state sample at 4-6 weeks after treatment start, MIPD may ensure swift attainment 
of adequate steady-state endoxifen plasma levels. Moving forward, refining the early 
sampling strategy and showing its predictive value across diverse patient populations 
will be pivotal in optimizing tamoxifen treatment outcomes. 
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SUPPLEMENTARY MATERIAL 

Supplementary section I 
The development and details of the used popPK model have been presented in a 
previous article.1 In that research several predictors for steady-state endoxifen 
concentrations were identified, including age, body height, body mass index (BMI), 
and most importantly, continuous CYP2D6 activity, based on CYP2D6 genotype (eq.1). 
Individual activity scores for each allele can be found in Table S1 whereas significant 
covariate-PK relations have been presented in previous research.1 Other factors such as 
liver function were not proven to affect tamoxifen PK and were therefore not obtained.

( )Activity =CYP D
Activity Activity

2 6
+
2

0.606
Allele Allele1 2

         .1

The dosing predictions were confined to 20, 30 or 40 mg tamoxifen. The model 
predicted the endoxifen level for each patient under the assumption of using the 
standard tamoxifen dose of 20 mg. Dosing cut-off points for predicted endoxifen 
levels were determined using ROC-curves. Patients with predicted endoxifen levels 
surpassing 20.23 nM were prescribed tamoxifen 20 mg, while those with predicted 
levels between 11.40 nM and 20.23 nM received 30 mg, and those with predicted levels 
between 8.56 nM and 11.40 nM were given 40 mg. Additionally, for patients anticipated 
to have endoxifen levels below 8.56 nM while on 20 mg tamoxifen, it was expected 
that they would not reach the therapeutic threshold of 16 nM when using tamoxifen 40 
mg. These patients might benefit more from adjuvant aromatase inhibitors (AI). To test 
this hypothesis, in this study, these patients were treated with tamoxifen 40 mg. This 
subgroup of patients was defined as ‘(potential) switch to AI’ group. 

Supplementary section II 
Pharmacokinetic and pharmacogenetic analyses 
A validated liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) 
was used for the quantification of all tamoxifen and endoxifen measurements.2 Blood 
withdrawals were performed at the moment of trough levels of tamoxifen and endoxifen. 

CYP2D6 genotyping was performed using the Infiniti (Autogenomics; Carlsblad, 
CA, USA) and the Quantstudio machines (ThermoFisher Scientific; Waltham, MA, 
USA) at the Clinical Chemistry laboratory of the Erasmus University Medical Center. 
The patients’ blood samples were assayed on the following genetic variants: *2-10, *12, 
*13, *14, *17, *29, and *41. When the activity of specific CYP2D6 alleles was unknown, 
the website (pharmvar.org/gene/CYP2D6) was consulted. The literature was searched 
for its activity and a comparable allele in the model was filled in. 
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Supplementary section III 
To elucidate the potential of the POP-PK model, the patient-specific predicted 
endoxifen levels were compared with the observed steady-state endoxifen levels by 
quantifying the mean absolute prediction error (MAPE), relative bias and the root mean 
squared error (RMSE). A model is generally seen as potent when the relative bias is 
< 20% and the MAPE is < 35% and more than 30% of all prediction errors is within 
80 – 125% limit.3 Moreover, the POP-PK model's efficacy in identifying patients failing 
to achieve the 16 nM endoxifen threshold despite receiving the maximum tamoxifen 
dose of 40 mg, i.e. the ‘(potential) switch to AI’ group, was evaluated. Additionally, it 
was evaluated whether the model informed dose resulted in overexposure, which was 
defined as surpassing an endoxifen level of 32 nM while treated with a model-initiated 
dose increase. Both secondary endpoints were analyzed descriptively. 

The predictive efficacy of early endoxifen levels (measured within 14 days or between 
4-6 weeks after the initiation of tamoxifen treatment) was assessed in a post-hoc 
analysis by integrating them into the predictive model. The early endoxifen levels 
were not used to change tamoxifen doses during the study. Subsequently, the MAPE, 
relative bias, and RMSE were computed to evaluate the accuracy of predictions based 
on these early samples. Furthermore, an exploration was conducted to assess the 
potential impact of possessing this information, particularly in the context of acting if 
the early samples indicated levels below a certain threshold. 

To investigate whether dose adjusting according to MIPD would lead to more toxicity, 
the difference in tamoxifen-related side effects and HR-QOL between start of therapy 
and after reaching steady-state endoxifen plasma levels was evaluated, stratified on 
separate dosing categories. The difference in tamoxifen-related side effects and quality 
of life between baseline and 3 months of therapy was compared using a paired sample 
t-test or a Wilcoxon signed-rank test when appropriate. Changes in ES or HR-QOL 
were seen as clinically relevant when they surpassed 0.5 of standard deviation at 
baseline.4 The percentage of patients with clinically relevant changes in side effects 
per dose group were analyzed descriptively. 

Supplementary section IV 
During the study endoxifen samples prior to steady-state were obtained at the time of 
inclusions (<14 days of tamoxifen treatment, n=43) and after 4 – 6 weeks of treatment 
(n=102). Distribution of samples over time is provided in Figure S1. These samples were 
obtained to assess the predictive value of these samples for predicting steady-state 
concentrations. As the used model was not developed using pre-steady-state samples 
these were not used to affect the tamoxifen dose during treatment. In this post-hoc 
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analysis, the samples were imputed in the popPK model used in this research.1 A 
sample at the start of treatment (<14 days) deteriorated the predictive value of the 
model compared to the predictions prior to the start of treatment. Conversely, samples 
obtained between 4 – 6 weeks of treatment improved model predictions, although it 
introduced underprediction. Model evaluation by a visual predictive check, showed 
slight overprediction for the pre-steady-state samples, explaining the underprediction 
at steady-state (Figure S2). When imputing both pre-steady-state samples in the 
model, this did not improve the model predictions compared to only the sample taken 
after 4 – 6 weeks. 

Remarkably, in 13.2% of patients, the endoxifen plasma concentration decreased at 
steady-state endoxifen concentrations compared to the 4-6 week sample. In more than 
half of these patients the endoxifen plasma concentration dropped over 10%. For two 
patients in the 20 mg group, this meant that their endoxifen level dropped under the 
critical 16 nM threshold at steady-state. 

When using the early samples obtained at 4 – 6 weeks after treatment, 20 patients 
were expected to not reach endoxifen levels ≥16 nM at steady state. Fourteen out 
of fifteen patients identified as necessitating a switch to an AI fell within this group. 
Six of these patients will eventually achieve adequate endoxifen plasma levels (range 
16.6 – 20.5 nM). The six other patients were treated with 40 mg (1 patient), 30 mg (4 
patients) or 20 mg (1 patient). None of the five patients in this group that were treated 
with less than the maximum registered dose of 40 mg reached an endoxifen level >16 
nM. Therefore, these patients would have profited from dose escalation. Four out 
of these five patients would have achieved adequate exposure with dose escalation 
toward 40 mg, assuming therapy compliance would remain similar. The addition of 
samples obtained between 4-6 weeks after treatment initiation did not identify any 
false positives that would have been unrightfully dose increased. Alternatively, it did not 
recognize three patients treated with 20 mg that did not reach ≥16 nM levels at steady 
state. These patients had 4 – 6 weeks endoxifen levels of 15.7, 16.4, 16.6 nM (Table 
S2). For one patient who did not reach 16 nM treated with 20 mg, no pre-steady-state 
sample was available. If the early samples were used to change dose predictions, this 
would have changed the primary outcome. In that case 87.7% of the population would 
have achieved adequate endoxifen levels corresponding with a X2 = 5.15; p = 0.023.
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Table S1. Overview of the activity levels of the different CYP2D6 

CYP2D6 allel Activity level in POP-PK model

*1 1 

*2 0.560

*3 0.066

*4 0.047

*5 0.040

*6 0

*7 0

*9 0.378

*10 0.103

*17 0.156

*29 0.490

*31 0

*41 0.110

*1/*2 duplicate 1.400
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Implementation of model-informed precision dosing for tamoxifen therapy in patients with breast cancer: A prospective intervention study   

Figure S1. Distribution of all samples stratified on predicted dose group 
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Figure S2. Visual Predictive Check for endoxifen samples obtained in the study 
y-axis endoxifen nM, x-axis time in hou
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ABSTRACT 

Introduction 
CDK4/6 inhibitors (CDK4/6i) improve progression-free survival in patients with 
advanced oestrogen-receptor positive breast cancer. However, all CDK4/6i may 
increase creatinine levels, which can indicate kidney injury. In vitro research has 
shown that CDK4/6i can also inhibit tubular secretion of creatinine, thereby causing 
the phenomenon ‘pseudo-acute kidney injury (pseudo-AKI)’. The incidence of pseudo-
AKI is, however, unknown. We aimed to determine this incidence by assessing cystatin 
C, a protein filtered in the glomerulus without being subject to tubular secretion, in 
patients with creatinine increase during CDK4/6i treatment.

Methods 
In this retrospective single-center cohort study patients with breast cancer who 
received CDK4/6 inhibitors between January 1st 2017 and December 29th 2023 were 
screened for the incidence of creatinine increases suggesting potential kidney injury 
in the first six months of treatment. A significant creatinine increase was defined as 
1) a creatinine plasma level of >90 µmol/L in women or >115 µmol/L in men and >10% 
increase from baseline creatinine plasma level or 2) a creatinine plasma level >1.5 times 
baseline creatinine or 3) an increase in creatinine plasma level from baseline with >26 
µmol/L. Pseudo-AKI was diagnosed if the estimated glomerular filtration rate (eGFR) 
using cystatin C at the moment of creatinine increase was 1) equal or higher than eGFR 
using creatinine at baseline and/or 2) at least 25% higher than eGFR using creatinine 
at the moment of creatinine increase. The primary endpoint was the percentage of 
patients with pseudo-AKI analysed by means of the binomial probability test.

Results 
From the 234 patients treated with a CDK4/6i, 41 (17.5%) had creatinine levels indicating 
an AKI. From 22 of these 41 patients, cystatin C could be determined in retrospectively 
available serum. Pseudo-AKI was found in 16 out of 22 patients (73%, 95% CI 50-89%). 
In 5 out of 41 patients (12%) the CDK4/6i dose was unjustly adjusted or the drug was 
stopped due to creatinine increase. 

Conclusion 
Pseudo-AKI has a high incidence in patients treated with CDK4/6i. Determining an 
eGFR based on the cystatin C value should therefore be considered as the first step 
when creatinine increases during CDK4/6i treatment. 
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INTRODUCTION 
CDK4/6 inhibitors are protein kinase inhibitors that inhibit the cyclin-dependent 
kinases (CDK) 4 and 6; both important kinases for progression of the cell cycle.1 
Currently, three CDK4/6 inhibitors are registered for the treatment of advanced breast 
cancer: palbociclib, ribociclib and abemaciclib. The addition of CDK4/6 inhibitors to 
endocrine therapy has led to an improvement of both progression-free survival and 
overall survival in patients with advanced oestrogen-receptor positive (ER+)/HER2-
negative breast cancer when applied in first- or second line of treatment.2-9 Recently, 
abemaciclib, was also approved for treatment of patients with ER+/HER2-negative 
early breast cancer to prevent recurrence of disease.10

Despite the advantages of CDK4/6 inhibitors, these drugs can also lead to adverse 
events. Among the most frequently reported are neutropenia, anemia, fatigue, and 
diarrhea.4,5,8 An adverse event, observed across all types of CDK4/6 inhibitors, which 
so far has received less attention, is an elevation in creatinine which (by definition) 
leads to a lowered estimated glomerular filtration rate (eGFR). Abemaciclib showed an 
incidence range of 11-44%5,6,11,12, palbociclib of 13-22%13,14, and ribociclib of 22-28%.13,15

An increase in creatinine during the use of CDK4/6 inhibitors can be the result of 
nephrotoxicity of these drugs leading to kidney injury and a true decrease in GFR. 
The precise mechanism behind this form of kidney injury is unclear, but acute tubular 
necrosis and acute tubulo-interstitial nephritis have both been (rare) observations in 
patients treated with CDK4/6 inhibitors and may be caused by tubular damage due 
to cycle inhibition or hypersensitivity reactions, respectively.16 However, an increase 
in creatinine can also be caused by inhibition of the tubular secretion of creatinine. 
Active tubular secretion accounts for 10-40% of creatinine clearance depending on 
the stage of chronic kidney disease.17,18 This secretion is mediated trough the organic 
cation transporter 2 (OCT2) on the basolateral membrane of proximal tubule cells and 
the multidrug and toxin extrusion (MATE) protein 1 and 2 on the apical membrane.19,20 

In vitro research showed that abemaciclib, palbociclib and ribociclib can inhibit these 
transporters.21 Indeed, few case-reports22-24 and a case series25 demonstrated that 
in patients receiving CDK4/6 inhibitors in whom an increase in creatinine occurred,  
plasma concentrations of cystatin C, a protein filtered in the glomerulus but not subject 
to tubular secretion26, remained similar. This suggests that an elevation in creatinine 
is not always indicative of a reduction in renal function; it can also be caused by 
the inhibition of active tubular secretion of creatinine. This phenomenon is known as 
pseudo-acute kidney injury (pseudo-AKI).  The incidence of pseudo-AKI in patients 
using CDK4/6 inhibitors is, however, currently unknown.
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In clinical practice, encountering an elevated creatinine level prompts an investigation 
into the underlying cause. Also, CDK4/6 inhibitors or other important, but potentially 
nephrotoxic medication might be interrupted or decreased in dose. However, if 
pseudo-AKI indeed appears a frequent issue in patients using CDK4/6 inhibitors, 
incorporating the measurement of cystatin C in plasma could present a non-invasive 
and inexpensive solution for detecting pseudo-AKI. Therefore, the aim of our study is 
to determine the incidence of pseudo-AKI in patients treated with CDK4/6 inhibitors 
by assessing both creatinine and cystatin C in plasma. In addition, diagnostic and 
treatment consequences of creatinine increase in clinical practice were inventoried. 

METHODS 
This retrospective single-centre cohort study was conducted among patients treated 
with CDK4/6 inhibitors at the Erasmus MC Cancer Institute, Rotterdam, the Netherlands. 
On December 12th 2023 the study was approved by the local Medical Ethics Committee 
(Erasmus Medical Center, MEC 2023-0715). The study did not fall under the scope of 
the Medical Research Involving Human Subjects Act (WMO) and has been performed 
according to the “Code of Conduct for Responsible Use (2011)”. Therefore, written 
informed consent was not indicated. The study was registered on Clinicaltrials.gov 
(register.clinicaltrials.gov, MEC-2023-0715).  

All patients with breast cancer who received CDK4/6 inhibitors at our hospital between 
January 1st 2017 and  December 29th 2023 were screened for the incidence of creatinine 
increases suggesting potential kidney injury. Palbociclib and ribociclib are prescribed 
in cycles of three weeks followed by one week of rest, while abemaciclib is prescribed 
continuously. The inclusion criteria were as follows: 1) Patients must have used the 
CDK4/6 inhibitor for a minimum duration of one month, and 2) a  baseline value of 
creatinine had to be available within 30 days prior to the start of CDK4/6 inhibitor 
treatment. There was no upper limit of the baseline creatinine plasma level. Patients 
were screened for the incidence of AKI in the first six months of CDK4/6 inhibitor 
treatment. This defined period of six months was used to limit the presence of other 
factors potentially influencing the kidney function. Creatinine values were measured 
following standard clinical practice, mostly after 2, 4, 6, 8 and 12 weeks after start of 
treatment and then every three months thereafter. If a significant creatinine increase 
was found, creatinine levels were followed for a period of one year after start of 
treatment to observe the course of creatinine levels. A significant creatinine increase 
was defined as 1) a creatinine plasma level of >90 µmol/L in women or >115 µmol/L in 
men (according Common Terminology Criteria for Adverse Events (CTCAE) grade 1) 
and >10% increase from baseline creatinine plasma level and/or 2) a creatinine plasma 
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level >1.5 times baseline creatinine (according >CTCAE grade 2) and/or 3) an increase 
in creatinine plasma level from baseline with >26 µmol/L (AKIN grade 1).27 If patients 
used multiple CDK4/6 inhibitors, they were screened for creatinine increases in the six 
months after start of each individual CDK4/6 inhibitor. However, each patient could be 
included only once in the database. 

For the patients in whom an increase in creatinine occurred, patient- and tumour 
characteristics were collected and potential clinical consequences of the increase 
were inventoried. Patient charts were searched for influential factors for cystatin C at 
the moment of creatinine increase, namely hypo- or hyperthyroidism28, inflammation or 
infection29, weight loss or weight gain30, diabetes mellitus31 or use of corticosteroids.32 

At the time-points of creatinine increase, it was retrospectively checked whether 
cystatin C levels had been measured or if serum samples from stored blood from 
the exact same blood withdrawal at the time of creatinine increase were available. 
In patients from whom serum was available at the moment of AKI, it was also checked 
if serum was available at baseline. Serum samples used in this study were collected as 
part of standard diagnostic work-up. Remaining serum was stored in liquid nitrogen 
freezers. In this serum, cystatin C was measured.33 Subsequently, the eGFR according 
cystatin C levels were determined (Supplementary). Increase in creatinine levels was 
defined as pseudo-AKI if eGFR using cystatin C plasma levels was: 

1.	 equal or higher at the moment of creatinine increase than eGFR using creatinine 
plasma levels at baseline; and/or 

2.	 at least 25% higher than eGFR using creatinine plasma levels at the moment of 
creatinine increase. 

The primary endpoint was the percentage of patients with pseudo-AKI, determined 
by dividing the number of patients with a pseudo-AKI, identified through cystatin C 
measurement, by the total number of patients with available cystatin C levels. This 
endpoint was analysed by means of the binomial probability test and calculated 
together with the binomial exact 90% confidence interval (CI). Cystatin C levels at 
baseline, if available, were analysed descriptively, as was the incidence of clinical 
consequences of creatinine rise. 
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RESULTS 
In total, 234 patients diagnosed with advanced ER+/Her2-negative breast cancer were 
administered a CDK4/6 inhibitor between January 1st 2017 and December 29th 2023. 
Among these 234 patients, 41 (17.5%) were identified as having a significant increase 
in creatinine levels according to our definition (Figure 1).  Baseline characteristics can 
be found in Table 1.

The median time until a first increase in creatinine was 57 days (IQR 14-99) after start 
of treatment. In 22 of 41 patients, cystatin C was already prospectively measured (n 
= 3) and/or serum samples for measurement of cystatin C were available (n = 20). 
From 9 of these 22 patients, cystatin C could also be determined in serum levels 
taken at baseline, making it possible to compare cystatin C levels with pretreatment 
concentrations. In Table 1 is shown that no difference exists between patients with a 
cystatin C level determined and patients without a cystatin level determined.  

Pseudo-AKI was found in 16 out of 22 patients (70%, 95% CI 50-89%) and AKI was 
confirmed by cystatin C levels in the other six patients (Table 2, Figure 2). In the 22 
patients in which cystatin C measurements were performed, pseudo-AKI occurred in 
7 out of 8 (88%) patients on abemaciclib, 8 out of 11 (73%) patients on palbociclib and 
2 out of 4 (50%) patients on ribociclib. All patients in whom cystatin C was measured 
were screened for the presence of influential factors of cystatin C. These were present 
in four patients (i.e. one patient with hypothyroidism, one patient with an infection and 
two patients with weight loss) and might have affected the cystatin C level in one of 
them (subject 2, Table 2). 

Twelve of 41 patients with significant creatinine rise during CDK4/6 inhibitor use had 
used multiple types of CDK4/6 inhibitors. One of these 12 patients had an increase in 
creatinine during the use of all three types of CDK4/6 inhibitors. For this patient, we 
could measure cystatin C levels during the use of palbociclib and ribociclib. During 
both types of CDK4/6 inhibitors, pseudo-AKI was observed. 

An overview of cystatin C and creatinine levels before the start of CDK4/6 inhibitor 
treatment can be found in Table 3. The eGFRs obtained through cystatin C levels 
were (substantially) lower compared to those derived from creatinine levels, with one 
exception. For eight of these nine patients the baseline value was taken at a moment 
of observed cancer progression. 

Of the 41 patients with creatinine values   according to our definition of AKI, additional 
diagnostics (n = 4) and/or medication adjustments (n = 11) were made in 15 patients (36%) 
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(Table 4). In five of the 41 cases, the CDK4/6 inhibitor was stopped or lowered in dose. 
Patient characteristics of these patients can be found in the Supplement.

Figure 1. Flowchart patient selection 
SCr: serum creatinine, CDK4/6i: CDK 4/6-inhibitors 
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Table 1. Baseline characteristics

Baseline characteristics 
(n =4 1)

No Cystatine 
C (n = 19)

Cystatin C  
(n = 22)

p 
value

Age at start CDK4/6 inhibitor (years) 58 [54-61] 58 [56-60] 57 [53-64] 0.77

Timing of metastatic disease       1

Synchronous 5 (12%) 2 (11%) 3 (14%)  

Metachronous 36 (88%) 17 (89%) 19 (86%)  

Localisation of metastasis        

Visceral 31 (76%) 14 (74%) 17 (77%) 1

Bone only 6 (15%) 2 (11%) 4 (18%) 0.8

Bone and lymph node only 4 (10%) 3 (16%) 1 (5%) 0.5

Number of treatment lines before 
CDK4/6 inhibitor

      0.52

0 12 (29%) 6 (32%) 6 (27%)  

1 16 (39%) 9 (47%) 7 (32%)  

2 8 (20%) 2 (11%) 6 (27%)  

>3 5 (12%) 2 (11%) 3 (14%)  

CDK4/6 inhibitor used       0.28

Palbociclib 21 (51%) 12 (63%) 9 (41%)  

Abemaciclib 5 (12%) 2 (11%) 3 (14%)  

Ribociclib 3 (7%) 0 (0%) 3 (14%)  

Multiple 12 (29%) 5 (26%) 7 (32%)  

Endocrine backbone       0.18

Aromatase inhibitor 12 (29%) 8 (42%) 4 (18%)  

Fulvestrant 29 (71%) 11 (58%) 18 (82%)  

Median duration of CDK4/6 
inhibitor treatment (days)

184 [85-277] 128 [76-215] 233 [104-
309]

0.38

Baseline renal values       0.4

Normal values (eGFR >90 ml/min/m2) 8 (20%) 5 (26%) 3 (14%)  

Chronic kidney disease grade 1 
(eGFR 60-89 ml/min/m2)

30 (73%) 12 (63%) 18 (82%)  

Chronic kidney disease grade 2 
(eGFR 30-59 ml/min/m2)

3 (7%) 2 (11%) 1 (5%)  

Comorbidity        

Hypertension 4 (10%) 2 (11%) 2 (9%) 1

Coronary artery disease 0 (0%) 0 (0%) 0 (0%) 1

Medication        

Angiotensin receptor inhibitor 2 (5%) 1 (5%) 1 (5%) 1

NSAID 3 (7%) 1 (5%) 2 (9%) 1

ACE inhibitor 1 (2%) 0 (0%) 1 (5%) 1
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Baseline characteristics 
(n =4 1)

No Cystatine 
C (n = 19)

Cystatin C  
(n = 22)

p 
value

Cystatin C relevant variables        

Diabetes Mellitus 1 (2%) 1 (5%) 0 (0%) 1

Inflammation during AKI timepoint 1 (2%) 0 (0%) 1 (5%) 1

Corticosteroid use during AKI timepoint 0 (0%) 0 (0%) 0 (0%) 1

Thyroid dysfunction 1 (2%) 0 (0%) 1 (5%) 1

Table 2. Glomerular filtration rate (ml/min/m2) using creatinine and cystatin C 

Subject CDK4/6i Baseline Moment of AKI according creatinine

creatinine 
(µmol/L)

eGFR creatinine 
(µmol/L)

eGFR cystatinC 
(mg/L)

eGFR Difference 
eGFR1

1 Abemaciclib 80 70 100 53 0.62 111 109%*

2 Abemaciclib 76 73 113 45 0.94 78 74%*

3 Abemaciclib 79 75 96 60 0.78 103 71%*

4 Abemaciclib 81 75 92 64 0.7 109 71%*

5 Abemaciclib 120 45 151 34 1.34 50 47%*

6 Abemaciclib 70 79 93 55 0.93 78 42%*

7 Abemaciclib 51 90 95 57 0.93 80 40%*

8 Abemaciclib 75 78 93 60 1.16 61 2%

9 Palbociclib/
Ribociclib

90 63 109 43 1.04 70 63%*

10 Palbociclib 82 62 104 45 0.96 72 60%*

11 Palbociclib 62 90 89 66 0.8 102 55%*

12 Palbociclib 75 70 99 50 0.97 72 45%*

13 Palbociclib 81 70 92 60 0.88 87 45%*

14 Palbociclib 81 70 99 55 0.98 76 38%*

15 Palbociclib 86 66 96 58 0.96 78 35%*

16 Palbociclib 79 68 93 56 1 71 26%*

17 Palbociclib 67 93 94 61 1.01 74 22%

18 Palbociclib 86 60 125 38 1.84 31 -18%

19 Palbociclib 71 81 94 57 1.58 40 -30%

20 Ribociclib 70 74 110 43 1.03 66 53%*

21 Ribociclib 69 86 92 61 1.07 68 11%

22 Ribociclib 79 72 91 60 1.16 60 0%
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Table 3. Creatinine and cystatin C at baseline 

Creatinine 
(µmol/L)

eGFR creatinine 
(ml/min)

Cystatin C 
(mg/L)

eGFR cystatin C 
(ml/min)

Difference in eGFR 
(ml/min)

3 79 75 0.98 78 3

8 75 78 1.16 61 -17

9 90 63 1.22 57 -6

15 86 66 1.17 60 -6

16 79 68 1.27 52 -16

18 86 60 1.48 42 -18

19 71 81 1.6 39 -42

20 70 74 1.16 56 -18

22 79 72 1.28 53 -19

Table 4. Clinical consequences of increased creatinine levels 

Consequences AKI cohort (n = 41)

CDK4/6 inhibitor stopped/interrupted 5 (12%)

CDK4/6 inhibitor reduced in dose 1 (2%)

Diagnostic evaluation for AKI performed
    Ultrasound abdomen
    Urinalysis 

4 (12%)
2
2

Other medication that was altered1

    Bisphosphonates 
    NSAIDs
    Diuretics

9 (22%)
6
2
1
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DISCUSSION 
This is the first study investigating the incidence of pseudo-AKI in a large real-life 
cohort of patients with advanced breast cancer using CDK4/6 inhibitors. Eighteen 
percent of the patients had a sufficient and clinically relevant rise in creatinine in the 
first six months of CDK4/6 inhibitor treatment. In these patients, we found a surprisingly 
high incidence of pseudo-AKI (73%), especially in patients using abemaciclib (88%). 
Furthermore, we observed that in 10% of patients additional diagnostics to the cause 
of AKI were performed (ultrasound abdomen or urinalysis) and in 21% of patients 
potentially nephrotoxic drugs (i.e. bisphosphonates, NSAIDs or diuretics) were 
altered. Most importantly, in 12% of patients the CDK4/6 inhibitor dose was unjustly 
adjusted or the drug was stopped due to the creatinine increase. Consequently, 
eGFR determination based on cystatin C levels upon creatinine increases should be 
encouraged before proceeding with such interventions. This could potentially prevent 
unnecessary diagnostic procedures or drug interruptions. 

The incidence of creatinine elevations in our study (18%) is comparable with earlier 
studies.5,6,11-15 We found that in only 27% of patients with a rise in creatinine levels, 
the diagnosis of AKI persisted when eGFR was determined using cystatin C levels. 
An earlier study investigated six patients on palbociclib (n = 3), abemaciclib (n = 
2) and ribociclib (n = 1) with biopsy-proven AKI, among whom five patients were 
diagnosed with acute tubular necrosis and one patient with acute tubulointerstitial 
nephritis.16 Interestingly, the median time from CDK4/6 initiation to AKI in these patients 
was 278 days, which is substantially longer than the median time of 57 days from 
CDK4/6 inhibitor initiation to creatine rise in our cohort. Also, the median creatinine 
value was 265 µmol/L, three patients had stage 3 AKI and one patient underwent renal 
replacement therapy. All patients had proteinuria on dipstick. Therefore, in severe 
cases of creatinine level increases, especially in patients with normal eGFR before start 
of CDK4/6 inhibitor treatment18, the chance for a real AKI should always be considered.

In our study, pseudo-AKI was defined as an increase in creatinine values resulting in a 
decrease in eGFR calculated using creatinine plasma levels, while the eGFR calculated 
with cystatin C plasma levels was 1) equal to or higher than the baseline eGFR using 
creatinine plasma level; and/or 2) at least 25% higher than eGFR based on creatinine 
plasma levels at the time of creatinine increase. Although there is no universally 
accepted definition of pseudo-AKI, prior studies have explored this phenomenon. 
Our definition is stricter than that used in a recent study by Chen et al where pseudo-
AKI was assessed for Tyrosine Kinase Inhibitors.34 In this study creatinine increase 
was seen as pseudo-AKI when the eGFR measured with cystatin C was higher than 
the eGFR measured with creatinine. In another study involving abemaciclib in healthy 
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subjects, pseudo-AKI was evaluated using metformin.21 Metformin is a known substrate 
of OCT2, MATE1 and MATE2. Coadministration of metformin and abemaciclib led to 
increased exposure to metformin. Interestingly, in the same study, the coadministration 
of abemaciclib and iohexol did not alter iohexol plasma concentrations, which counts 
as the gold standard for measuring GFR, Although not directly clinically applicable, 
these findings  confirm the underlying theory of pseudo-AKI. Additionally, cystatin C 
concentrations remained stable between the periods when patients were administered 
abemaciclib and placebo. Unfortunately, in our study design we were not able to 
compare cystatin C levels within patients. 

The incidence of pseudo-AKI seemed to differ in our study per CDK4/6 inhibitor (88% 
for abemaciclib, 73% for palbociclib and 50% for ribociclib), but absolute numbers were 
small, in particular for ribociclib (n = 3). In vitro studies have shown that abemaciclib 
can inhibit all three tubular transporters (OCT2, MATE1 and MATE2)21, while ribociclib 
exhibits a potentially inhibitory effect on OCT2 and MATE135 and palbociclib only 
affects OCT2.36 This pathophysiology can clarify the difference in incidence of pseudo-
AKI among the different CDK4/6 inhibitors. Also, patients treated with palbociclib or 
ribociclib receive the drug for three weeks and then have a rest week before the next 
cycle, in contrast to abemaciclib which is given continuously. Taken the half-life of 
palbociclib (i.e. 29 hours) and ribociclib (i.e. 30-55 hours) into account, it is expected 
that the potential inhibiting effect of palbociclib and ribociclib on the transporters OCT2 
and MATE1 should disappear during the rest week. Since laboratory tests including 
creatinine levels are usually performed at the end of the rest week, the incidence of 
pseudo-AKI  might even be underestimated for palbociclib and ribociclib in this study.  

In our study, we found that the cystatin C levels at baseline were much higher than 
expected (when compared with creatinine levels) and therefore eGFR derived from 
cystatin C levels was worse compared to eGFR derived from creatinine levels. There is 
evidence that cystatin C levels are higher in patients with cancer compared to healthy 
subjects.37,38 Also, in studies including patients with melanoma, cystatin C levels 
were higher in patients with metastatic disease compared to patients with primary 
melonama.39,40 Another study found that cystatin C was evident in cancer cells (and not 
in benign tumors).41 The timing of baseline values in our study was just before the start 
of CDK4/6 inhibitors, i.e. the time of cancer progression. Possibly, cystatin C levels 
are also higher at time of cancer progression, which might explain the impaired eGFR 
derived from cystatin C levels before start of CDK4/6 inhibitors. This could lead to an 
underestimation of the eGFR based on the cystatin C in this study. However, if this 
would be the case, it would not affect the current finding of a percentage of pseudo-
AKI, but would instead increase that percentage.
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This study has some limitations. First, it concerns a retrospective study with the 
majority of cystatin C determined from stored residual serum samples. Given that 
cystatin C levels remain stable in serum for at least seven years, this factor has, at 
most, a very limited impact on the results.33 Also, although cystatin C levels are not 
influenced by tubular secretion or muscle mass like creatinine, other factors such as 
inflammation, glucocorticoid use, diabetes, thyrotoxicosis, higher weight, and male 
sex could lead to higher cystatin C levels.28,30-32 All patients were checked for the 
presence of these factors and only one patient lost more than 10% weight within ttwo 
months which may have influenced the results of that single patient. Last, eGFR based 
on cystatin C (or creatinine) is less reliable in a non-steady-state situation as AKI.42 
Indeed, in almost all cases only one blood withdrawal was available during AKI in which 
both creatinine and cystatin C was determined. There may be substantial individual 
variation in the eGFR measurement based on either creatinine or cystatin C which can 
only be accounted for by measuring the GFR by e.g. inulin clearance.43 However, this is 
a costly and time-consuming procedure and not routinely available in most hospitals. 

In conclusion, the additional use of cystatin C in case of a rise in serum creatinine 
may reveal pseudo-AKI in 73% of patients and could prevent unnecessary diagnostic 
interventions or drug alterations. In patients taking CDK4/6 inhibitors who develop a 
decreased eGFR based on creatinine levels, we therefore recommend determining 
eGFR based on serum cystatin C levels to make a pseudo-AKI the most likely cause. 
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SUPPLEMENTARY MATERIAL 

Additional information 
eGFR according cystatin C levels were determined using the following equations:

1.	 133 * (cystatin C level/0.8)-0.499 * 0.996Age[*0.932 if female] when cystatin C levels 
were equal to or below 0.8 mg/L and 

2.	 133 * (cystatin C level/0.8)-1.328 * 0.996Age[*0.932 if female] when cystatin C levels 
were above 0.8 mg/L.44 

Supplementary table
Supplementary Table 1. Patients in which CDK4/6 inhibitor was stopped or interrupted

CDK4/6 inhibitor Baseline SCr SCr at 
interruption

Duration 
interruption

eGFR 
restored? 

Other toxicity 
(CTCAE)

Abemaciclib 57 99 1 week Yes Neutropenia grade 2
Headache grade 1

Palbociclib 69 106 2 weeks Yes Neutropenia grade 3

Palbociclib 86 125 No restart1 Yes Diarrhea grade 1

Abemaciclib 77 104 1 week Yes None

102 No restart2 Yes None

Abemaciclib 80 101 4 weeks Yes Neutropenia grade 3
Diarrhea grade 1

100 No restart3 Yes Neutropenia grade 3

SCr in µmol/L, CTCAE; Common Terminology Criteria for Adverse Events 
1. After discontinuation of palbociclib; progression of disease was discovered 
2. After discontinuation of abemaciclib, patient developed severe neutropenia and therefore abemaciclib 
was definitely halted 
3. No reintroduction of abemaciclib because of severe neutropenia 
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ABSTRACT 

Background 
Data on exposure-response or exposure-toxicity relationships of CDK4/6 inhibitors 
(CDK4/6i) are limited and inconclusive. We aimed to investigate whether there is an 
association between palbociclib exposure and progression-free survival (PFS), adverse 
events (AEs), and dose reductions. 

Methods 
Data were retrieved from the prospective, multicenter SONIA-trial in which patients 
with advanced estrogen receptor-positive, HER2 neu receptor-negative breast cancer 
were randomized to receive CDK4/6i treatment in first versus second-line. Blood for 
pharmacokinetics (PK) was taken at day 15 of cycles 1 and 2 during CDK4/6i treatment. 
Individual trough concentrations and plasma area under the curves of palbociclib were 
constructed using a population-PK model. Associations with palbociclib exposure were 
tested using Cox regression for PFS and chi-squared tests for AEs or dose reductions. 

Results 
PK data were available for 344 patients. No association between palbociclib exposure 
and PFS was found. Although patients with higher palbociclib exposure had more dose 
reductions during their entire CDK4/6i treatment course, this was not reflected by a 
higher incidence of grade 3-4 AEs in the first three months. 

Conclusion 
The absence of an association between palbociclib exposure and PFS and the 
presence of the association between palbociclib exposure and dose reductions 
suggest that dose reductions may safely be performed in case of palbociclib-related 
toxicity. 
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INTRODUCTION 
Since 2017, cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors are available for 
patients with hormone receptor positive (HR+) advanced breast cancer. The addition 
of CDK4/6 inhibitors (i.e. palbociclib, ribociclib, and abemaciclib) to endocrine therapy 
has nearly doubled progression free survival (PFS) in both first- and second line 
treatment.1-6 CDK4/6 inhibitors use is also associated with increased toxicity. Grade 3-4 
neutropenia occurs in over 60% of patients treated with palbociclib or ribociclib, and in 
almost one-quarter of patients treated with abemaciclib.2,4,7 Other frequently reported 
adverse events include anemia, thrombocytopenia, nausea and fatigue.1,4,7 Adverse 
events can lead to treatment interruption, dose modification, or discontinuation of the 
drug, potentially compromising treatment outcomes. Indeed, more than one-third of 
patients receiving CDK4/6 inhibitors require a dose reduction due to adverse events 
and almost one-quarter discontinue CDK4/6 inhibitor treatment early.8,9 Conversely, 
some patients tolerate the administered dose very well but may not achieve optimal 
benefit from CDK4/6 inhibitor therapy as higher doses may be more effective. Given 
the variability in response and tolerability to CDK4/6 inhibitors, patients may benefit 
from individualized dosing approaches like dose-escalations or dose-reductions. High 
inter-patient variability in trough plasma levels (Cmin) is known.10-12 However, data on 
exposure-response or exposure-toxicity relationships of CDK4/6 inhibitors are limited 
and inconclusive to date. 

In order to reach a greater understanding of the pharmacokinetics (PK) of palbociclib, a 
population pharmacokinetic model (popPK model) incorporating important predictors for 
exposure is helpful to predict Cmin and plasma area under the curve (AUC) concentrations 
from random PK samples. Different popPK models have already been developed to 
describe the PK and pharmacodynamics of palbociclib.13-16 These models were either 
based on PK data from clinical trials (Phase I, II and III trials) or from real-world data with 
limited sampling. Interestingly, these different sources of PK data resulted in different 
popPK model structures to describe palbociclib PK: one-compartment models for 
real-world data compared to two-compartment models for clinical trial data.13-16 These 
differences between clinical trial and real-world data may be due to differences in 
the number of the PK samples available for model development. Based on limited 
samples, it is often difficult to estimate all PK parameters of a (rather complex) popPK 
model. An approach taking into account PK information from a previously developed 
popPK model is beneficial in case of such sparse datasets. This can be achieved using 
a frequentist Bayesian approach ($PRIOR approach), which enables the estimation 
of PK parameters based on previous PK data and sparse data collected.17 PK data 
derived from this informed popPK model could help to further delineate the variability 
in response and tolerability to palbociclib in our cohort. 
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In this paper, we developed a popPK model of palbociclib using the $PRIOR approach. 
With this popPK model we predicted individual Cmin and AUC concentrations from 
random PK samples taken from patients in the SONIA study. The SONIA study evaluated 
the efficacy of CDK4/6 inhibitors added to either first- or second-line endocrine therapy 
in patients with HR+, her2neu receptor-negative (Her2-) breast cancer. We aimed 
to investigate the potential relationship between palbociclib exposure and clinical 
response or toxicity and dose-reductions in the SONIA-study.

METHODS 
All data were derived from patients participating in the SONIA (Selecting the Optimal 
position of CDK4/6 Inhibitors in HR+ Advanced breast cancer) study. The SONIA study 
is a multicenter randomised phase 3 study evaluating the efficacy, safety, quality-of-
life and cost-effectiveness of CDK4/6 inhibitors added to either first- or second line 
endocrine therapy in patients with HR+, Her2-advanced breast cancer.18 The study was 
approved by the Medical Ethics committee from the Netherlands Cancer Institute in 
March 2017 and registered in the European Clinical Trials database (2015-000617-43) 
and in the ClinicalTrials.gov database (NCT03425838). Patients were included in the 
study between November 2017 and September 2021 in the Netherlands.

Study design
Patients were eligible for the study if they were diagnosed with advanced breast cancer 
and were planned to receive aromatase inhibitors as first line treatment. A total of 1050 
patients were randomised 1:1 to receive either first line treatment with an aromatase 
inhibitor plus a CDK4/6 inhibitor, followed at progression by fulvestrant monotherapy 
in second line or first line treatment with monotherapy aromatase inhibitor followed at 
progression by fulvestrant plus a CDK4/6 inhibitor in second line. A detailed description 
of the study and the main results has been published earlier.19 Patients started with the 
standard dose of 125 mg palbociclib. Dose reductions were performed according study 
protocol/ SmPC, i.e. dose reduction was recommended for the subsequent cycles in 
case a non-haematological adverse event Common Terminology Criteria for Adverse 
Events (CTCAE) grade 3 or higher occurred. In case of a grade 3 haematological adverse 
event, palbociclib dose was only reduced in case of prolonged (> 1 week) recovery to 
grade 2 or lower, recurrent grade 3 haematological or need for transfusions. Palbociclib 
dose was always reduced in case of a grade 4 haematological adverse event. In general, 
a first dose reduction would be to 100 mg/day and a second dose reduction to 75 mg/
day. Dose re-escalation was not allowed. 
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Since February 2018, patients in the SONIA study could consent separately to participate 
in the PK part of the study. Extra blood samples were taken at at random time points on 
day 15 +/- 5 days of cycle 1 and day 15 +/- 5 days of cycle 2 during the treatment with 
a CDK4/6 inhibitor. Time of blood withdrawal and time of last CDK4/6 inhibitor intake 
before blood withdrawal were noted for every patient. Blood was collected in EDTA tubes 
and processed at the day of collection by centrifugation at 1500 – 2000 g for 10 minutes. 
Plasma was stored at -20˚C until analyses. Plasma concentrations were quantified using 
a validated liquid chromatography-tandem mass spectrometry method.20

Population pharmacokinetic model 
A popPK model was developed using NONMEM (version 7.5.0, ICON development 
Solutions, Ellicott City, MD, USA) software. Since only limited sampling data were 
available for each patient, the $PRIOR subroutine as Bayesian modelling was used to 
inform poorly informed parameters of our data (based on the distribution of the prior 
parameter) according to Chan Kwong et al.17 This is an elegant alternative to fixing PK 
parameters in case of sparse datasets due to difficulties estimating all PK parameters. 
Using the $PRIOR approach enables modelling of sparse data. The previously developed 
two-compartment model by Courlet et al. was used as prior information model.13 Model 
development using the prior subroutine is further specified in the Supplementary 
data. Finally, a brief covariate analysis was performed to potentially further improve the 
model fit, where allometric scaling and differences between capsules or tablets were 
investigated (see Supplementary data methods for details). 

To discriminate and select between models physiological plausibility, goodness-of-fit 
(GOF) plots, precision of parameter estimates and change in objective function were 
assessed. A significant improvement of the fit for hierarchical nested models was 
considered at a drop of ≥3.84 points, corresponding to a p<0.05 (χ2-distribution with 1 
degree of freedom). The GOF plots and prediction corrected visual predictive checks 
(pcVPC) were assessed to evaluate model fits.21,22  

Pharmacokinetic analyses
For each patient, area under the curve (AUC0-tau) plasma concentration and trough 
levels (Cmin) at cycle 1 and 2 were constructed from random samples using the PK 
model. AUC0-tau describes the palbociclib exposure during the treatment period of 
three weeks, since palbociclib is prescribed in cycles of three weeks followed by 
one week off. AUC0-tau was derived from the PK model by dividing the dose with the 
individual estimated clearance, that was derived using Maximum a Posteriori Bayesian 
estimation. Individual PK parameter estimates (i.e. empirical Bayes PK estimates) 
were also used to obtain individual predicted Cmin.23 When PK data for both cycles 
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were available, an average AUC0-tau and Cmin for both cycles together was calculated 
per patient. If PK data were available for only one cycle, AUC0-tau and Cmin from this 
cycle were used for analyses. At least one sample should be above the lower limit of 
quantification in order for a patient to be included. If a patient switched to another 
CDK4/6 inhibitor after the first cycle, only PK data from the initial CDK4/6 inhibitor 
(i.e. palbociclib) were used. Since there was only a maximum of two PK samples per 
patient (spare data sampling), it was not possible to simulate other PK end-points such 
as time until maximum concentration (Tmax) or peak plasma concentration (Cmax) due to 
the high risk of shrinkage towards the population mean.

Response analyses
Radiologic response evaluation was performed every 12 weeks according Response 
Evaluation Criteria in Solid Tumors (RECIST v.1.1).24 The relation between exposure 
and PFS was analysed separately per treatment strategy. First progression since 
start of palbociclib treatment, either in first- or second-line depending on when 
the patient received CDK4/6i treatment, was used for exposure-response analysis. 
Progression was defined as objective disease progression according to RECIST, 
clinical deterioration on palbociclib leading to discontinuation of therapy, initiation of 
chemotherapy for breast cancer or death, whatever occurred first. 

Toxicity analyses 
Laboratory assessment (hematology and chemistry) was performed every two weeks 
in the first two cycles, every four weeks during cycle three and four and every three 
months in the cycles thereafter in patients receiving CDK4/6 inhibitors. Grade 3 and 
4 adverse events were assessed at every visit according the CTCAE. To exclude as 
many competing risks as possible, only grade 3 and 4 adverse events in the first 
three months after start of CDK4/6 inhibitor were included for analyses of the relation 
between exposure and toxicity. Adverse events were analysed separately when 
occurring in at least 10% of patients in the first three months of treatment. In patients 
in whom palbociclib was reduced in dose in the second cycle due to adverse events 
in the first cycle, only the PK data of the first cycle were included in the exposure-
toxicity analyses. Also, when analysing the relationship between exposure and dose 
reduction, for all patients who underwent dose reduction in the second cycle, only PK 
data of the first cycle were included. 

Statistical analyses
Baseline characteristics of patients were analysed using descriptive statistics. 
The primary endpoint for exposure-response analyses was time from randomisation to 
first progression for patients treated with palbociclib in the first line and time from start 
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palbociclib until first progression in second line for patients treated with palbociclib in 
second line. Univariable Cox regression was performed to test the association between 
PFS and palbociclib exposure by means of Cmin and AUC0-tau. For further insight, 
palbociclib exposure was split above or below median and above or below first quartile 
level. Hazard ratios were estimated by means of a Cox proportional hazard model. 
Survival curves were generated by Kaplan-Meier analysis. The occurrence of adverse 
events or dose reductions was compared between different quartiles of palbociclib 
exposure. Chi-squared test for trend in proportions was used to test whether a trend 
was seen for more adverse events or dose reductions with higher palbociclib exposure.   

RESULTS 
A total of 652 samples of 366 patients could be used for development of the PK-model. 
For analyses of the exposure-response and exposure-toxicity, only data of patients 
who initiated palbociclib at least three months before the data cut-off (December 
1st 2022) were included. Therefore, PK data were available for 344 patients of whom 
235 patients were treated with palbociclib in first line and 109 patients, those who 
progressed to second line before data cut-off, were treated with palbociclib in second 
line. Baseline characteristics can be found in Table 1. 

PK model development
Palbociclib PK was adequately captured by a two-compartment model with first-
order absorption (including a lag time), where the final popPK model was informed 
based on a prior model.13 From the 652 samples, 51 samples (7.8%) were derived from 
patients using palbociclib tablets instead of capsules. No difference in bioavailability 
between capsules and tablets was identified. However, allometric scaling improved the 
goodness of fit (GOF) plots and was added to all relevant model parameters (clearance 
[CL], central compartment [V1], peripheral compartment [V2], and intercompartment 
clearance between V1 and V2 [Q]) with fixed allometric scaling components (0.75 for CL 
and Q and 1 for V1 and V2). CL was estimated at 62.6 L/h (relative standard error (RSE): 
2%) and a high volume of distribution was estimated for both compartments (2370 
(RSE: 7%) and 682 (RSE: 8.5%) L for V1 and V2, respectively). All PK parameters were 
estimated with good precision (relative standard errors (RSEs) <31%). Final parameter 
estimates and further information regarding model development is provided in the 
Supplementary data results. In addition, the GOF plots and pcVPC of the final model 
are shown in Supplementary Figure 1 and 2.
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Table 1. Baseline characteristics 

median [IQR] or n (%) Palbociclib in first line (n = 235) Palbociclib in second line (n = 109)

Agea 63 [54-70] 60 [53-71]

Weightb 73 [65-84] 75 [64-88]

BMIb 26 [24-30] 26 [24-30]

WHO performancea

   0
   1
   2

106 (45%)
116 (49%)
13 (6%)

55 (50%)
48 (44%)

6 (6%)

Menopausal status
   Pre- or perimenopausal
   Postmenopausal 

37 (16%)
198 (84%)

19 (17%)
90 (83%)

Visceral disease
   Yes
   No

129 (55%)
106 (45%)

62 (57%)
47 (43%)

Bone only disease
   Yes
   No

40 (17%)
195 (83%)

19 (17%)
90 (83%

Aromatase inhibitorc

   Anastrozole
   Letrozole

57 (24%)
178 (76%)

-
-

age in years, BMI in kg/m2  

aat the moment of inclusion in the SONIA-study;  bat the start of CDK4/6 inhibitor; cduring CDK4/6 inhibitor 
treatment

Table 2. Adverse events and dose reduction in different palbociclib exposure groups 

Palbociclib
Cmin

Q1 <50.8 
ng/mL

Q2 50.8–60.8 ng/
mL

Q3 60.9-74.7 ng/
mL

Q4 >74.8 ng/
mL

p for trend

All AEs
>grade 3 

45/86
(52%)

52/85
(61%)

46/85
(54%)

48/85
(56%)

0.88

Neutropenia
>grade 3

35/86
(41%)

39/85
(46%)

40/85
(47%)

41/86
(48%)

0.36

Dose 
reduction

25/83
(30%)

39/87 
(45%)

36/85
(42%)

44/86
(51%)

0.01*

Palbociclib
AUC0-tau

Q1 <1660 
ng*h/mL

Q2 1660–1900 
ng*h/mL

Q3 1900-2220 
ng*h/mL

Q4 >2220 ng*h/
mL

p for trend

All AEs
>grade 3

43/86 
(50%)

50/85 
(59%)

52/85 
(61%)

46/86
(53%)

0.59

Neutropenia
>grade 3

31/86
(36%)

38/85
(45%)

46/85
(54%)

40/86
(47%)

0.09

Dose 
reduction

20/83
(24%)

41/87
(47%)

40/85
(47%)

43/86
(50%)

0.001*

Cmin: trough concentration, AUC: area under the curve plasma concentration
*statistically significant
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Figure 1. Kaplan Meier curves exposure-response relationship palbociclib 
Palbociclib trough levels were included in the analyses. Panels A/B. Progression free survival when palbociclib 
was given as 1st line treatment; Panels C/D. Progression free survival when palbociclib was given as 2nd 
line treatment. 
HR: hazard ratio, CI: confidence interval, Q1: first quartile 
Cmin: trough concentration, AUC: area under the curve plasma concentration   *statistically significant 

Exposure-respons analyses
For 270 patients, PK data of both treatment cycles were available, for 55 patients only PK 
data of cycle 1 were available and for 19 patients only PK data of cycle 2 were available. 
Thirty patients used a lower dose of palbociclib in cycle 2 (100 mg; n = 26, 75 mg, n = 
4). The median Cmin of palbociclib during cycle 1 and 2 in our cohort was 60 ng/mL (IQR 
50 – 74 ng/mL, min-max 16.1-130.8 ng/mL) and the median AUC0-tau was 1886 ng*h/mL 
(IQR 1650 – 2210 ng*h/mL, min-max 1007 – 3567 ng*h/mL). In first line, there was no 
significant association between PFS and palbociclib exposure (HR 0.98 per 10 units (ng/
mL) increase, 90% CI 0.90-1.06, p = 0.60 for Cmin and HR 1.00, 90% CI 0.96-1.03 per 
100 units (ng*h/mL) increase, p = 0.91 for AUC0-tau). Also, PFS did not differ significantly 
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between patients with palbociclib Cmin above or below median (HR 1.11, 90% CI 0.83-1.47) 
or between patients with palbociclib Cmin above or below first quartile limit, i.e. 50 ng/mL 
(HR 0.95, 90% CI 0.68-1.31). For the latter analysis, the Kaplan-Meier curves crossed, but 
seemed to show an effect early on. This was checked by means of the restricted mean 
survival time method, yet again no effect could be found. Similar results were found for 
patients treated with palbociclib in second line (Supplementary Table 1).  Kaplan Meier 
curves and hazard ratios can be found in Figure 1. When the analyses were repeated 
using AUC0-tau, similar results were found (Supplementary Table 1).

Exposure-toxicity analyses 
Twenty-four of 344 patients experienced toxicity grade 3-4 during cycle 1 leading to 
a dose reduction in cycle 2. For these patients, only PK data of cycle 1 were included. 
Since for  two patients no PK data at cycle 1 were available, toxicity analyses were 
performed using 342 patients. 191/342 (56%) of patients experienced any toxicity 
grade 3-4 during the first three cycles. Neutropenia was the only individual adverse 
event occurring in >10% of patients during the first three cycles of treatment, occurring 
in 155/342 (45%) of patients. Patients were divided in quartiles according to Cmin 

and AUC0-tau concentrations. Because of exclusion of some PK data for the toxicity 
endpoint, quartiles of palbociclib PK were slightly different compared to the exposure-
response analyses. The occurrence of adverse events was compared between different 
quartiles and can be found in Table 2. No significant trend for more adverse events 
with higher palbociclib exposure could be found. No other individual toxicities could be 
analysed separately because of too low incidence in the first three months of treatment.

Additionally, the incidence of dose reductions during the entire treatment period with 
palbociclib was compared across different quartiles of exposure. Here, for all patients 
who had already received a dose reduction in cycle 2, only PK data from cycle 1 were 
used. This applied to 30 patients, three of whom had no PK data available for cycle 1, 
resulting in 341 patients available for analysis. All but three dose reductions were due 
to some form of toxicity (not further specified). There was a significant relationship 
between higher palbociclib Cmin (p = 0.01) and AUC0-tau (p = 0.001) and the occurrence 
of dose reductions (Table 2). 

DISCUSSION 
In the largest clinical PK study conducted thus far, we found no relationship between 
palbociclib exposure and PFS. Interestingly, no relationship between palbociclib 
exposure and grade 3-4 adverse events in the first three months was found. However, 
patients with higher palbociclib exposure more frequently underwent dose reduction. 
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For the development of the palbociclib popPK model used in our study the $PRIOR 
subroutine was used (adding PK information of a previously developed popPK model), 
as an alternative to fixing parameters or fitting an unrealistic simplified model due to 
limited sampling. Different studies have shown that using a prior approach results in 
a better fit than fixing parameters.25,26 However, a disadvantage of the prior approach 
is that a covariate analysis cannot be performed on prior informed parameters.17 Since 
it is known that the time until maximum plasma concentration of palbociclib capsules 
is longer than palbociclib tablets27, we tested the effect of formulation on the relative 
bioavailability (with no prior weight) to further improve the model fit. However, no 
effect of differences between capsules and tablets on this relative bioavailability was 
identified indicating that formulation does not influence the bioavailability in patients. 

Earlier research regarding the relationship between palbociclib exposure and PFS 
remained inconclusive. For instance, in the PALOMA-1 study, a trend for longer PFS 
in patients with palbociclib concentration >60 ng/mL, the same cut-off point as in our 
study, was found but this was not statistically significant and this study was performed 
in a small subgroup of patients (n = 81, median PFS of 24.5 months vs. 17 months).28 
Another study used popPK modelling to elucidate the relationship between palbociclib 
plasma concentration and PFS and found no difference between PFS in patients with 
palbociclib plasma concentrations above or below 78 ng/mL, coinciding with the third 
quartile limit in our study, in the PALOMA-3 study.29 In vitro, the concentrations of 
palbociclib required to achieve 50% inhibition (IC50) of CDK4 and CDK6 were found to 
be 33.5 ng/mL and 48.7 ng/mL, respectively.11,30 Given that these levels are comparable 
to the average plasma Cmin concentrations observed clinically, we hypothesized that 
palbociclib efficacy could be influenced by variations in exposure. However, the 
lack of association between palbociclib exposure and PFS in our and other studies 
demonstrates that in vitro findings do not always directly translate to clinical outcomes.

In contrast with our findings, earlier research regarding the relationship between 
palbociclib exposure and toxicity did suggest more adverse events with higher 
palbociclib levels. Phase 1 studies and PK modelling suggested that higher palbociclib 
concentrations were associated with a higher incidence of neutropenia grade 3-4.15 
Also, a small prospective study (n = 58) found a trend for higher palbociclib Cmin in 
patients with neutropenia grade 3-4 compared with patients without neutropenia grade 
3-4 in the first two cycles (76.7 vs. 66.7 ng/mL, p = 0.06).31 Compared to our study, 
these studies were small, which might be the reason for the conflicting results.  

We showed that patients with higher palbociclib exposure more frequently underwent 
dose reductions. Almost all dose reductions were caused by some form of toxicity. 
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However, there was no higher incidence of grade 3-4 adverse events in the first three 
months of treatment in patients with higher palbociclib exposure. There are several 
potential explanations for this apparent contradiction. For instance, a substantial 
burden of grade 1-2 adverse events might have prompted the need for dose reduction 
over time. Unfortunately, these lower grade adverse events were not systematically 
monitored during the study. Furthermore, our toxicity analyses did not include grade 
3-4 adverse events occurring beyond the initial three months of therapy. Although it is 
known that most adverse events occur in the first three months32, it remains unknown if 
grade 3-4 adverse events occurring after this timeframe have influenced the likelihood 
of dose reduction. 

Our results regarding a relationship between palbociclib exposure and dose reduction 
and the absence of a relationship between palbociclib exposure and PFS suggest 
that it is safe to reduce the dose in patients suffering from palbociclib-related 
toxicity. Indeed, a real world study involving 70 patients, of whom 40 underwent a 
dose reduction of palbociclib, found no differences in PFS between patients who 
underwent a dose reduction compared to those who did not.33 Similar results were 
found in real-world studies of ribociclib and abemaciclib.9,34,35 However, this study 
does not address whether dose reductions could be safely applied to all patients, 
including those without toxicity or even from start of treatment, which warrants further 
investigation. Additionally, it would be interesting to explore a potential relationship 
between palbociclib exposure and lower-grade or long-term adverse events.

Unfortunately, we only had PK data of cycle 1 and cycle 2 in this study. Therefore, dose 
reductions, interruptions or early discontinuation of treatment occurring after cycle 
2 could not be taken into account when comparing PFS across different palbociclib 
exposure groups. This limitation may have introduced some bias, but it aligns with 
clinical practice where therapeutic drug monitoring would be most beneficial around 
start of treatment to consider early dose adjustments. Another limitation is that we 
had to predict Cmin and AUC0-tau concentrations instead of taking blood samples at the 
time of minimum concentration or conducting more frequent sampling for each patient. 

In conclusion, our study did not find a relationship between palbociclib exposure 
and PFS. Patients with higher palbociclib exposure more frequently underwent dose 
reductions. Yet, this was not reflected by a higher incidence of grade 3-4 adverse 
events in the first three months. Although more research regarding lower grade adverse 
events and the effect of dose reductions on efficacy is needed, our results suggest that 
patients who experience palbociclib-related toxicity can safely be reduced in dose. 
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SUPPLEMENTARY MATERIAL
Supplementary Table 1. Hazard ratios palbociclib exposure and progression-free survival 

Palbociclib in first line Palbociclib in second line

Cmin 

Continuous (per 10 units) HR 0.98, 90% CI 0.90-1.06 HR 0.95, 90% CI 0.88-1.03

Median split HR 1.11, 90% CI 0.83-1.47 HR 0.92, 90% CI 0.64-1.32

Q1 split HR 0.95, 90% CI 0.68-1.31 HR 1.19, 90% CI 0.78-1.82

AUC

Continuous (per 100 units) HR 1.00, 90% CI 0.96-1.03 HR 0.98, 90% CI 0.95-1.02

Median split HR 1.19, 90% CI 0.90-1.58 HR 1.01, 90% CI 0.71-1.44

Q1 split HR 1.04, 90% CI 0.75-1.46 HR 1.07, 90% CI 0.70-1.61 

Cmin: trough level, AUC: area under the curve plasma concentration, HR: hazard ratio, CI: confidence interval
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SUMMARY 
This thesis explored the pharmacokinetics of two important (classes of) drugs in 
the treatment of estrogen-receptor positive breast cancer: tamoxifen and CDK4/6 
inhibitors. We investigated how the pharmacokinetics of these drugs relate to adverse 
effects and efficacy. Additionally, we aimed to elucidate less commonly known adverse 
effects associated with tamoxifen and CDK4/6 inhibitors. In this chapter, the key 
findings of our research will be summarized and discussed. 

PART I. Tamoxifen and adverse effects 
In chapter 2, the effects of lower tamoxifen doses on adverse effects and clinical 
efficacy was summarized in a narrative review. Several randomized controlled trials 
(RCTs) found fewer adverse effects with low dose tamoxifen compared to 20 mg 
tamoxifen and equal adverse effects between low dose tamoxifen and placebo. 
No studies assessing clinical efficacy of low dose tamoxifen were performed in the 
adjuvant setting. However, several studies (RCTs and observational studies) showed 
efficacy of low dose tamoxifen in decreasing the incidence of invasive breast cancer 
or carcinoma in situ in the primary (women with high breast cancer risk) or secondary 
prevention setting (women with a history of carcinoma in situ). Also, studies using 
derivatives for clinical efficacy, i.e. mammographic density and proliferation marker 
Ki67, were included. Mammographic density is based on the distribution between 
stromal, epithelial and fat cells and higher mammographic density has been associated 
with increased breast cancer risk. On the contrary, a reduction in mammographic 
density after a longer period of tamoxifen 20 mg daily, has been associated with 
a lower risk at breast cancer recurrence. We found that low dose tamoxifen also 
significantly reduced mammographic density compared to placebo and led to a non-
inferior reduction compared with tamoxifen 20 mg. Second, Ki67, a nuclear marker 
expressed in all phases of the cell cycle other than the G0-phase, is expressed in 
proliferating cells in breast cancer and has proven to be a valuable predictive marker. 
A decrease in Ki67 expression after a short period of endocrine therapy has shown to 
be a strong predictor for efficacy of this treatment. We found that low dose tamoxifen 
can also decrease Ki67 expression. In this review, we have shown that low dose 
tamoxifen has a clinically relevant, improved toxicity profile compared with standard-
dose tamoxifen and summarized strong, albeit indirect, evidence that lower doses of 
tamoxifen also possess anti-tumor efficacy.

 To investigate whether dose reduction can also improve adverse effects in the adjuvant 
setting we set up the clinical study as described in chapter 3. In this study, tamoxifen 
dose reduction was proposed to patients with bothersome tamoxifen-related adverse 
effects and endoxifen levels above 32 nM (i.e. two times the supposed threshold of 16 
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nM). Eventually, 17 evaluable patients were reduced from a tamoxifen dose of 20 mg 
(i.e. standard dose) to a dose of 10 mg. A clinically relevant improvement in adverse 
effects and quality of life was observed in 41% and 65% of the patients, respectively. 
These improvements were not seen in patients whose doses were not reduced (n = 
60). In 21% of patients, endoxifen dropped slightly below 16 nM (e.g. 12.8, 15.5, 15.8, 
15.9 nM, respectively), stressing the importance of reassessing endoxifen levels after 
altering the tamoxifen dose. This study demonstrates that dose reduction can be an 
effective strategy for patients who would otherwise quit anti-hormonal therapy or who 
are highly suffering from tamoxifen-related adverse effects. However, no placebo arm 
was included in this study so a potential placebo effect of lowering the tamoxifen dose 
on side-effects cannot fully be excluded. 

In chapter 4, we have investigated the combination of tamoxifen and cannabidiol 
(CBD); a component of the Cannabis Sativa plant. CBD is increasingly used among 
patients with breast cancer in the hope to alleviate adverse events. However, CBD might 
affect tamoxifen pharmacokinetics since it is known to be a potential inhibitor of the 
most important enzyme in tamoxifen metabolism; CYP2D6. Therefore, we investigated 
the potential pharmacokinetic interaction between CBD and tamoxifen. Plasma levels 
of endoxifen, the most important metabolite of tamoxifen, decreased when CBD was 
used concomitantly with tamoxifen but remained within bio-equivalence boundaries (n 
= 15, 90% confidence interval (CI) -18.7%, -6.1%). As a secondary aim, we investigated 
whether CBD could indeed alleviate tamoxifen-related adverse events. The use of CBD, 
in the maximum over-the-counter dosage of 50 mg, decreased adverse events and 
improved quality of life (n = 26). Whether CBD should be recommended to patients 
with bothersome tamoxifen-related adverse effects has yet to be proven in a placebo-
controlled study. Meanwhile, patients do not have to be discouraged if they want to 
try CBD next to their tamoxifen therapy.

Venous thromboembolism (VTE) is a rare but severe adverse effect associated with 
tamoxifen use. Whether there is a dose- or exposure-dependent effect of tamoxifen 
on this adverse effects remains currently unknown. In chapter 5 we investigated the 
relationship between tamoxifen and endoxifen plasma levels and various coagulation 
proteins which are presumably involved in tamoxifen-related VTE. At both 3 and 6 
months of tamoxifen therapy, higher plasma levels of tamoxifen and endoxifen were not 
associated with higher levels of the procoagulant tissue factor or thrombin generation 
parameters nor with lower levels of the anticoagulant proteins antithrombin and protein 
C. Also, tamoxifen dose decrease or increase did not seem to be associated with 
adjustments of coagulation protein levels, although these comparisons were limited 
as the majority of patients in this study stayed on the standard dose of tamoxifen 20 
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mg. The outcome of this study is reassuring and provides a first indication that higher 
tamoxifen (or endoxifen) levels do not have an additional procoagulant effect and 
therefore might not lead to a further increased risk of tamoxifen-related VTE. However, 
a study with more patients who underwent tamoxifen dose-adjustments could give a 
more clear answer on whether therapeutic drug monitoring (TDM)-directed tamoxifen 
dose-escalation could additionally increase VTE risk. Also, evident VTE events would 
be a better end point but since VTE has a relatively low incidence of ~3% among 
tamoxifen users, this would require a very large number of patients and such a study 
seems not feasible.

In chapter 6, we have investigated a less frequently studied adverse effect of 
tamoxifen; cognitive functioning, and the impact of tamoxifen and endoxifen plasma 
levels on this important adverse effect. A total of 135 women completed the Amsterdam 
Cognition Scan, an online neurophysiological test assessing both subjective and 
objective cognition functioning after two years of tamoxifen treatment. Women who 
were treated with tamoxifen reported mild cognitive complaints and performed worse 
on verbal learning, processing speed, executive functioning, and motor functioning 
compared to matched no-cancer controls. The cognitive functions of older women 
(>57 years of age) were more severely affected by tamoxifen than the cognitive 
functions of younger women. Remarkably, higher tamoxifen and endoxifen levels, 
as well as a higher tamoxifen dose, were associated with worse performance on 
several cognitive domains. This relationship was especially present in younger women. 
This study prompts additional questions regarding tamoxifen and cognition. As a 
secondary endpoint of the PREDICTAM-study (NCT05036278), performance on the 
Amsterdam Cognition Scan will be compared before start of tamoxifen and after two 
years of tamoxifen in patients using different tamoxifen doses. These results must 
confirm the effect of tamoxifen on cognitive functioning and the potential relationship 
between tamoxifen doses and plasma levels with the effect of tamoxifen on cognitive 
functioning. Subsequently, it should be investigated whether discontinuing tamoxifen, 
or even reducing the dose, could improve cognitive functioning in affected patients.  

PART II. Tamoxifen Model Informed Precision Dosing  
In chapter 7, we developed a population-pharmacokinetic (POP-PK) model for 
tamoxifen. In contrast with earlier POP-PK models, in our model, CYP2D6 activity per 
allele was estimated on a continuous scale. Compared with using CYP2D6 phenotypes, 
inter-individual variability (IIV) in predicting endoxifen levels was decreased by 
37% when using the continuous CYP2D6 activity scale. Age, body length and BMI 
were identified as other influential factors for tamoxifen clearance (age and length) 
and endoxifen formation (BMI). Higher age and shorter length lead to less tamoxifen 
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clearance and thus higher endoxifen levels. Higher BMI leads to less metabolization 
from tamoxifen to endoxifen and thus lower endoxifen levels. Including age, BMI and 
length, unexplained IIV in endoxifen formation was decreased to 25.1% and IIV in 
tamoxifen clearance was decreased to 32.1%. The model was successfully validated 
in an external validation dataset. Using this model, dosing cut-off points could be 
determined in order to predict a tamoxifen dose before start of treatment with which 
a patient would reach an endoxifen level >16 nM. 

In chapter 8, the POP-PK model that was developed in chapter 7 was used to 
prospectively implement model-informed precision dosing (MIPD) in order to achieve 
adequate endoxifen exposure prior to TDM. In this study, 106 patients received a 
predicted tamoxifen dose at start of treatment among which 65% received 20 mg, 16% 
received 30 mg and 19% received 40 mg tamoxifen. After attaining steady-state, 84.0% 
of patients reached endoxifen levels ≥16 nM, which was not significantly higher compared 
to a historical control cohort where all patients were treated with tamoxifen 20 mg 
(77.9.%, p=0.17). However, the model showed adequate performance according several 
external evaluation thresholds and correctly identified patients requiring the maximum 
registered dose before starting treatment (significantly less endoxifen levels <16 nM in 
the 40 mg groups). The lower-than-expected percentage of patients reaching endoxifen 
levels >16 nM can be explained by a larger proportion of patients with impaired CYP2D6 
activity in the intervention cohort compared to the control cohort. Additionally, the 
model correctly identified patients who were unable to reach the therapeutic threshold. 
In conclusion, MIPD showed promise compared to conventional one-size-fits-all dosing 
of 20 mg tamoxifen, particularly in certain subgroups, but TDM still remains an important 
addition. The model is practical for use in the clinic since it includes the predictors 
age, length, BMI and CYP2D6 genotype, which are all easy factors to assess. Another 
advantage is that MIPD can be applied for endoxifen thresholds of whatever desired 
value. Therefore, when in the future a definite endoxifen threshold will be implemented 
in clinical practice, a combination of MIPD and TDM should be used.  

PART III. CDK4/6 inhibitors  
In chapter 9, we investigated the incidence of pseudo-acute kidney injury (AKI) 
in patients with advanced breast cancer treated with CDK4/6 inhibitors. Pseudo-AKI 
is a phenomenon in which creatinine plasma levels are increased without a reduction 
in renal function. This can be caused by inhibition of tubular secretion of creatinine 
and abemaciclib, palbociclib and ribociclib can all induce this inhibition. Cystatin C 
is another protein which can be used to assess renal function and is not subject to 
tubular secretion. From the 234 patients treated with a CDK4/6 inhibitor (palbociclib 
88%, ribociclib 6%, abemaciclib 6%) between 2017 and 2024 at the Erasmus MC 
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Cancer Institute, 41 (17.5%) of the 234 patients had a significant increase in creatinine 
levels in the first six months of treatment. From 22 of these 41 patients, cystatin C levels 
could be determined. Pseudo-AKI was found in 16 out of 22 patients (73%, 95% CI 
50-89%). Pseudo-AKI occurred most frequently in patients using abemaciclib. In 15 
out of 41 patients (36%) additional diagnostics (n = 4 ) and/or medication adjustments 
(n = 11) were performed because of increasing creatinine levels. Therefore, cystatin C 
levels should be measured in patients on CDK4/6 inhibitors treatment with an impaired 
kidney function based on creatinine levels since it can reveal pseudo-AKI and thereby 
prevent unnecessary diagnostic interventions or drug alterations.  

In chapter 10 we assessed whether palbociclib exposure was related to response 
or toxicity in patients with advanced breast cancer. We included 344 patients from 
the SONIA-study, of whom 235 patients were treated with palbociclib in the first line, 
and 109 patients were treated with this CDK4/6 inhibitor in the second line. Trough 
plasma levels and area under the curve (AUC) plasma concentrations were derived 
from a pharmacokinetic POP-PK model. In first line, progression free survival did 
not differ between palbociclib levels above or below the median trough plasma level 
of 60 ng/mL, nor between palbociclib levels below or above the 1st quartile limit of 
50 ng/mL. Similar results were found for patients treated with palbociclib in second 
line. Also, when analyses were repeated using AUC0-tau, similar results were found 
Adverse events were assessed in the first 3 months of treatment. Any toxicity Common 
Terminology Criteria for Adverse Events (CTCAE) grade 3 or higher occurred in the 
first three months in 191/342 (56%) of patients. Neutropenia CTCAE grade 3 or higher 
occurred in 155/342 (45%) of patients. No significant trend for more adverse events 
or neutropenia with higher palbociclib levels was found. However, there was a trend 
towards more dose reductions in patients with higher palbociclib levels (p = 0.01). 
This apparent contradiction may be explained by a substantial burden of grade 1-2 
adverse events which might have prompted the need for dose reduction over time but 
were unfortunately not routinely assessed during our study. Although more research 
regarding lower grade adverse events and the effect of dose reductions on efficacy is 
needed, our results suggest that patients who experience palbociclib-related toxicity 
can safely be reduced in dose.
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GENERAL DISCUSSION & FUTURE PERSPECTIVES 
In this thesis, we have discussed the impact of tamoxifen-related adverse effects. 
Generally, tamoxifen-related adverse effects are scored as low grade, and therefore 
these side-effects are often considered less impactful than, for example, those 
experienced during chemotherapy. However, since patients are treated with adjuvant 
anti-hormonal therapy for at least five to ten years1-3, even more low-grade adverse 
effects can become very distressing, especially since they can severely affect daily 
life activities, work, physical activities and (sexual) relationships during all these 
years of treatment.4,5 The high non-adherence rate among adjuvant tamoxifen users 
(~40%) underscores the significant burden of tamoxifen-related adverse events.6-8 
Moreover, non-adherence to tamoxifen also results in higher breast cancer recurrence 
rates.9,10 Correct management of anti-hormonal therapy-related adverse events 
is crucial for improving therapy outcomes and quality of life among breast cancer 
survivors. Unfortunately, there are few evidence-based approaches for the treatment 
of tamoxifen-related adverse events. As discussed in chapters 2 and 3 tamoxifen 
dose reduction could be an option for managing adverse events. However, to ensure 
tamoxifen efficacy, an endoxifen threshold to which tamoxifen doses can be titrated 
should be established. 

Conversely, as discussed in (mainly) chapters 7 and 8, patients with ‘too low’ 
endoxifen levels may require a tamoxifen dose-escalation to achieve optimal tamoxifen 
efficacy. To minimize potential adverse effects, tamoxifen dose-escalation should only 
be done in patients for whom it is really needed. An endoxifen efficacy threshold is 
also needed to select those patients in whom the tamoxifen dose should be increased.   

Endoxifen efficacy threshold
Until now, endoxifen thresholds are derived from retrospective studies. Madlensky et 
al. (2011) divided endoxifen levels of 1370 adjuvant treated patients with breast cancer 
into quintiles and found that patients with endoxifen levels in the lowest quintile (<16 
nM) had a 30% higher breast cancer recurrence risk than patients with endoxifen levels 
>16 nM (hazard ratio (HR) 1.35, 95% CI 1.00-1.82).11 When exploring dichotomized 
optimal cut-off points, the threshold was again determined at 16 nM. A smaller study 
in 2015 from Saladores et al. divided endoxifen levels of 306 patients in quartiles and 
found a higher recurrence rate (HR 1.94, 95% CI 1.04 – 4.14) for patients with endoxifen 
levels in the lowest quartile (endoxifen <14 nM) compared to patients with endoxifen 
levels in the highest quartile (endoxifen >35 nM).12 Lastly, Helland et al. (2017) searched 
for a cut-off value in endoxifen levels from 86 patients who were treated with adjuvant 
tamoxifen and were followed for a median of 14 years.13 They found a breast cancer 
specific survival of 57% in patients with endoxifen levels below 9 nM compared to a 
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breast cancer specific survival of 84% in patients with endoxifen levels above 9 nM 
(HR 3.73, 95% CI 1.05 – 13.22). A strength of the studies of Helland and Madlesnky is 
the search for a cut-off value without dividing endoxifen levels in different subgroups, 
which can lead to loss of valuable information. A limitation of the work by Helland et 
al. is, however, the sample size of only 86 patients. Although the relationship between 
endoxifen exposure and response has been found in all three studies, the precise 
thresholds could be subject to chance, because of the retrospective nature of the 
studies and potentially unknown confounders. 

To obtain stronger evidence, prospective studies tried to confirm the exposure-response 
relationship of endoxifen. In the CYPTAM study, 662 patients were prospectively followed 
and after a median follow-up of six years the effect of endoxifen levels on relapse-free 
survival was determined. No association between continuous endoxifen levels, endoxifen 
levels below or above 16 nM or endoxifen levels divided in quartiles with relapse-free 
survival could be found.14 In another paper from the same group, the thresholds of 10 and 
14 nM endoxifen were also investigated, but again, no association with breast cancer 
recurrence was found.15 However, it was discussed that the CYPTAM study – with 662 
patients and only 40 events – was probably underpowered to draw final conclusions, 
especially considering the short follow-up time and the censoring of two-third of the 
patients after switching to an aromatase inhibitor after 2.5 years.16-18 It was estimated 
that - to adequately determine the added value of therapeutic drug monitoring and 
subsequent dose adjustment of tamoxifen - 1500-3200 patients should be randomized 
and followed for at least 15 years.19,20 Such large studies with a long-follow up duration 
are probably not deemed feasible to be performed in this field. Consequently, the best 
available evidence currently comes from retrospective studies.  

Determining an endoxifen threshold using surrogate endpoints
In the metastatic setting, events of breast cancer progression occur earlier and more 
frequent than in the adjuvant setting. Two prospective studies investigated the effect 
of endoxifen levels on progression-free survival or objective response rate.21,22 The 
latter study also included patients treated with tamoxifen in the neoadjuvant setting, 
accounting for one third of the study population, and patients treated with tamoxifen as 
second-line metastatic treatment.22 Both studies did not find an association between 
endoxifen levels and progression-free survival or objective response rate. However, 
tamoxifen is not the drug-of-choice for endocrine neo-adjuvant treatment, as aromatase 
inhibitors results in a higher proportion of pathologic complete responses.23 Also, the 
chance for tamoxifen resistance is higher in the metastatic setting and after multiple 
treatment lines.24,25 Consequently, studies in the advanced breast cancer setting do not 
seem appropriate for assessing a potential exposure-response relation of tamoxifen.  
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Although there is strong retrospective evidence that an exposure-response relationship 
for endoxifen exists, this cannot adequately be assessed in prospective studies. 
Accordingly, the measurement of endoxifen levels guiding the treatment with tamoxifen 
is currently not mentioned in both ESMO (European Society of Medical Oncology) 
and ASCO (American Society of Clinical Oncology) early breast cancer guidelines.1,3 In 
the most recent guidelines of the Dutch Pharmacogenetics Working Group and Royal 
Dutch Pharmacist Association however, dose increase or alternative medication is 
advised for patients with poor and intermediate CYP2D6 metabolism, who frequently 
have low endoxifen levels.26,27  

Probably, additional retrospective studies will not contribute much to expanding our 
knowledge regarding an endoxifen threshold, which is essential to optimize tamoxifen 
therapy, balancing both adverse effects and efficacy. Moreover, in such studies, the 
possibility of an individual endoxifen threshold cannot be taken into account. Other 
patient factors determining tamoxifen efficacy are, for example, higher expression of 
mainly the estrogen receptor, but also the progesterone receptor, both associated 
with increased tamoxifen efficacy.28,29 Probably, estradiol plasma levels also play an 
important role, since tamoxifen is more effective in premenopausal women when 
combined with ovarian function suppression as Gonadotropin-Releasing Hormone 
(GnRH) agonists.30 It could be hypothesized that patients with different estradiol levels 
or estrogen or progesterone receptor expression, require different levels of endoxifen 
exposure. Also, intratumoral endoxifen levels vary in patients, probably due to different 
expression levels of several drug transporters on the breast cancer cell.31-33 Given 
the variability in individual factors potentially influencing endoxifen requirements, 
I advocate for the use of an in vivo endocrine therapy sensitivity test in the preoperative 
setting, to improve the personalization of tamoxifen therapy. 

In-vivo endocrine therapy sensitivity tests in the preoperative 
setting 
Since adjuvant therapy is administered when the tumor is removed, it is not possible 
to individually assess the efficacy of an adjuvant drug in the adjuvant setting. However, 
before breast surgery, the effect of a specific drug on the tumor can be assessed in the 
waiting-time for surgery, the so-called ‘window-of-opportunity’. Ki67 is a proliferation 
marker in breast tumors that can be used as an efficacy marker in this setting. 
As mentioned in chapter 2, the percentage of Ki67 is used as a prognostic marker in 
breast cancer, in which a low Ki67% predicts a more favorable outcome compared 
to a high Ki67%.34 Ki67 dynamics also appear to be a competent predictive marker. 
For example, the difference in early endocrine response (i.e. adequate suppression 
of Ki67 below 10%) between anastrozole and tamoxifen in the small neo-adjuvant 
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IMPACT-trial35 predicted the long-term adjuvant results from the large ATAC-trial.36 
The same effect accounted for the BIG 1-98 trial where letrozole and tamoxifen for 
postmenopausal women were compared.37,38 Also, in the POETIC-trial, patients with a 
high baseline Ki67% that decreased sufficiently after neo-adjuvant endocrine therapy 
had a breast cancer recurrence rate comparable to that of patients with a low baseline 
Ki67 and much lower than that of patients in which Ki67 remained high.39 These 
studies show that Ki67 suppression after a short period of neo-adjuvant endocrine 
therapy can predict long-term adjuvant endocrine therapy response.35,39,40 From a 
short period (two weeks) of neo-adjuvant tamoxifen in a daily dose of 20 mg it is 
known that it decreases Ki67 from >10% to <10% in approximately 40% of patients.41,42  
Therefore, this marker can be used as an early surrogate endpoint to predict long term 
outcome and therefore tamoxifen sensitivity.   

The preoperative setting can be a window-of-opportunity to establish (individual) 
endoxifen thresholds for efficacy. If patients are treated preoperatively with tamoxifen, 
it can be investigated above which endoxifen level tumors show an adequate 
response in Ki67 (Figure 1). In patients who are treated with preoperative tamoxifen 
their specific response of Ki67 can be assessed, which also takes their personal 
ER- and PR-expression, estradiol level and intra-tumoral tamoxifen and endoxifen 
levels into consideration. This approach enables the determination of tumor sensitivity 
for specific endoxifen levels in each individual patient However, the assessment of 
individual tamoxifen sensitivity is only applicable for patients with luminal B breast 
cancer (i.e. tumors with Ki67% >10%) and for patients who do not have an indication for 
neoadjuvant chemotherapy. For patients with luminal A breast cancer or patients who 
have to undergo neoadjuvant chemotherapy the general threshold shall be applicable. 
Currently, a study to investigate this principle in a clinical setting has been set up and 
will enroll patients soon. 

When a (personalized) endoxifen efficacy threshold can be established, this will 
improve tamoxifen treatment in multiple ways. First, the general endocrine therapy 
efficacy could be improved by increasing the tamoxifen dose or switching to aromatase 
inhibitors in patients in which endoxifen levels are too low. Second, menopausal 
adverse effects can be reduced in patients where tamoxifen dose reduction is feasible, 
as performed in a subset of patients in chapter 3. Second, although in chapter 5 a 
reassuring lack of association between tamoxifen and endoxifen levels and a further 
increased procoagulant state was found, it remains uncertain whether the absence of 
this association will hold when assessing venous thromboembolism events. Increasing 
tamoxifen doses only for patients who require it based on their individual endoxifen 
threshold could minimize the additional risk of venous thromboembolism as much 
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as possible. Third, as discovered in chapter 6, cognitive problems after tamoxifen 
therapy may be influenced by the amount of tamoxifen and endoxifen exposure. Dose 
reduction, while attaining endoxifen efficacy, could potentially improve cognitive 
functioning in affected patients. Concurrently, in patients with endoxifen levels which 
are deemed too low, dose escalation of tamoxifen or a switch to aromatase inhibitors 
should be performed. As discussed in chapter 8, it is feasible to predict endoxifen 
steady-state levels before start of tamoxifen and dose-escalation could thus - when 
needed - already be performed at the moment of treatment initiation. 

Preoperative window-of-opportunity design

neoadjuvant tamoxifen

ENDO

adjuvant tamoxifen

3m0

no side effects

side effects

ENDO

personalised dosing using 
endoxifen threshold

continue tamoxifen 20 mg daily

Ki67%Ki67%

Figure 1. Pre-operative window-of-opportunity design 
Patients with ER+ breast cancer who have an indication for adjuvant endocrine therapy receive preoperative 
tamoxifen. After a short period of 20 mg tamoxifen a tumor biopsy for Ki67 determination will be done and 
the concurrent endoxifen level will be determined in plasma. Another 2 weeks of 40 mg tamoxifen will result 
in the steady-state concentration of endoxifen. At this moment the patient will undergo breast surgery and 
the endoxifen concentration will be determined again. Using the combination of Ki67 response and the 
corresponding endoxifen level, dose adjustments of tamoxifen can be performed in the adjuvant setting 
in case of side effects. If patients do not respond to tamoxifen at all (Ki67 remained high) another adjuvant 
treatment could be considered. 

CDK4/6 inhibitors in the advanced setting 
The efficacy of endocrine therapy can also be optimized by the addition of other drugs, 
for example CDK4/6 inhibitors. In ER-positive, advanced breast cancer the addition of 
a CDK4/6 inhibitor to letrozole in first line or to fulvestrant in second line is standard-
of-care and improves progressive-free and overall survival.43-48 In chapter 10, we have 
investigated whether the exposure of palbociclib, one of the most frequently prescribed 
CDK4/6 inhibitors, is associated with progression free survival, adverse events or 
dose-reductions. We did not find an exposure-response relation between palbociclib 
exposure and progression free survival or severe adverse events. Contrarily, dose 
reductions were more common in patients with higher palbociclib concentrations, 
suggesting a higher incidence of (possibly low grade) adverse events in these patients. 
These findings imply that current palbociclib dosing reaches a therapeutic plateau. 
However, this study does not determine how far above the plateau current palbociclib 
levels are, nor whether all patients could safely undergo dose reduction. 
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For interpretation of these findings, it is important to know that anti-cancer drugs 
are traditionally dosed according the maximum tolerated dose (MTD), a familiar, 
time-honored method to determine the dose of investigational drugs on phase II 
and III trials.49 The MTD is established in phase I trials, where increasing doses are 
administered until unacceptable adverse effects occur. However, the maximum dose 
that could be tolerated may not be the minimum dose that is needed for optimal 
efficacy. Also, the MTD is mostly determined in the first weeks of treatment and does 
not take into account more long-term adverse effects that occur over time. 

Earlier real world studies regarding palbociclib found no differences in progression-free 
survival between patients who underwent a dose reduction due to toxicity compared 
to those who did not.50 Similar results were found in real-world studies of ribociclib and 
abemaciclib.51-53 An important adverse event of ribociclib is QTc prolongation. Recently, 
the AMALEE study is performed as a post-approval commitment to determine whether 
reducing the starting dose of ribociclib from 600 mg to 400 mg could decrease QTc 
prolongation without compromising efficacy in advanced breast cancer treatment.54 In 
this phase II study 376 patients were randomized in first line between 400 mg ribociclib 
or 600 mg ribociclib next to an aromatase inhibitor. Results were presented at the San 
Antonio Breast Cancer Conference 2022. Overall response rate, the primary endpoint, 
was 41.5% in the patient group treated with 400 mg ribociclib and 45.3% in the group 
treated with 600 mg ribociclib. Although the overall response rates were not statistically 
different between the two dosage groups, non-inferiority for the 400 mg dose could not 
be established. However, immature results for progression free survival did not indicate 
any difference between 400 mg and 600 mg ribociclib treatment groups and QTc 
prolongation occurred less in the 400 mg dose group. The full manuscript of this trial is 
eagerly awaited. In the meantime, these study results confirm the potential overdosing 
in CDK4/6 inhibitors and encourage research regarding the potential similar efficacy 
between lower and standard dosing in targeted drugs, especially in CDK4/6 inhibitors. 

CDK4/6 inhibitors in the adjuvant setting
Currently, CDK4/6 inhibitors are also considered for adjuvant treatment. However, the 
efficacy of CDK4/6 inhibitors added to adjuvant endocrine therapy is controversial. 
Abemaciclib was the first CDK4/6 inhibitor for which efficacy in the adjuvant treatment 
of patients with estrogen-receptor positive, her2neu-negative breast cancer was 
shown.46 In the monarchE study, patients with high risk early breast cancer were 
randomized between two years of abemaciclib after breast surgery, in addition to 
standard of care endocrine therapy as tamoxifen or aromatase inhibitor, or standard 
of care endocrine therapy only. The addition of abemaciclib to endocrine therapy 
decreased the risk of breast cancer recurrence with a HR of 0.66 (95% CI 0.58-
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0.76, 12% versus 17.6%) after a median follow-up of 42 months. Recently, benefit 
of ribociclib in the adjuvant setting was found in the NATALEE study.55 Addition of 
ribociclib for 3 years reduced breast cancer recurrence within 3 years after breast 
surgery with a HR of 0.75 (95% CI 0.62-0.91, 6.9% versus 9.6%) in high risk patients. 
On the contrary, in both the PALLAS study and PENELOPE-B study, no benefit of 
adjuvant palbociclib could be found.56,57  

Following the above mentioned results, adjuvant abemaciclib has been approved by 
both the U.S. Food and Drug Administration (FDA) and European Medicines Agency 
(EMA) and has been included in ESMO and ASCO guidelines.58-61 The FDA and EMA 
mainly assess quality, safety and efficacy of a new drug. For the reimbursement of 
anti-cancer drugs in the Netherlands, a positive advice of the Dutch Committee for 
the Evaluation of Oncological Agents (“Commissie ter Beoordeling van Oncologische 
Middelen – commissie BOM”) is required. The commissie BOM evaluates anti-cancer 
drugs for clinical relevance according the PASKWIL-criteria (i.e., Palliative, Adjuvant, 
Specific side-effects, Quality of Life, Impact of treatment and Level of Evidence-
criteria).62,63 The goal of commissie BOM is to ensure that anti-cancer drugs provide 
real benefits to patients by using the PASKWIL criteria to assess their added value, 
prioritizing overall survival improvement. Since proving survival benefits can be time-
consuming, progression-free survival can be used as a surrogate endpoint but must 
meet stringent criteria. This strict evaluation aims to enhance the likelihood of eventual 
survival benefits. By differentiating between highly effective treatments and those with 
limited benefits and significant side effects, commissie BOM aims to ensure that only 
the most beneficial drugs become available to patients. However, such strict approval 
of anti-cancer drugs might also lead to delayed access to potentially efficacious drugs. 
In 2023, the PASKWIL criteria have been updated and, among others, the hazard ratio 
for disease free survival benefit in the adjuvant setting is adjusted from 0.7 to 0.6. 
Therefore, adjuvant abemaciclib is not yet reimbursed in the Netherlands.64  

Endocrine therapy sensitivity tests might also guide the use of 
adjuvant CDK4/6 inhibitors 
In the current setting, sixteen patients need to be treated with adjuvant abemaciclib for 
two years to be able to prevent one event of breast cancer recurrence. These numbers 
suggest that the specific patient group for which adjuvant CDK4/6 inhibitors are most 
beneficial, could (or should) be further specified. An endocrine therapy sensitivity 
test could guide in the selection of patients in need for extended adjuvant therapy. 
For example, patients in whom Ki67% remains high after preoperative endocrine 
therapy with the adjuvant endocrine drug of choice, might have extra benefit from 
the addition of adjuvant abemaciclib. In such a study, high risk patients according the 
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monarch-E population in whom Ki67% remains high after short preoperative endocrine 
therapy with an aromatase inhibitor, should be randomized between adjuvant treatment 
with or without abemaciclib. Possibly, such a study design could lead to less patients 
being overtreated while simultaneously abemaciclib becomes already available in the 
Netherlands for those in need for additional treatment. A similar study is currently 
being performed in countries where adjuvant abemaciclib is approved in certain patient 
groups with a high breast cancer risk. In the POETIC-A study (NCT04584853), patients 
with breast cancer who currently do not apply for adjuvant abemaciclib (according to 
the ASCO guidelines) are treated pre-operatively with an aromatase inhibitor. If Ki67 
percentages remain high after this treatment, patients are randomized between 
addition of adjuvant abemaciclib to endocrine therapy or endocrine therapy only. 
In contrast with the above mentioned study idea, the POETIC-A mainly focusses on 
expanding instead of narrowing the indication for adjuvant CDK4/6 inhibitors. 

In conclusion, this thesis explored various approaches to address tamoxifen-related 
side effects, an important problem in the adjuvant treatment of hormone-sensitive 
breast cancer. In addition to the well-known side effects, we further investigated 
less common adverse effects linked to tamoxifen exposure, like cognitive decline 
and venous thrombosis. Whether dose-adjustments can also mitigate these adverse 
effects warrants further investigation. Moreover, our research indicates that palbociclib 
exposure is not related to efficacy, although dose reductions are more frequently 
performed in patients with higher palbociclib exposure. This implies that dose reduction 
can safely be performed in case of adverse effects and high plasma levels. However,  
whether dose reductions can be applied to all patients, including those without toxicity 
or even from start of treatment, requires additional research. As highlighted in this 
discussion, in the future, the use of an in vivo sensitivity test may guide (endocrine) 
therapy choices in breast cancer by selecting the right therapy (dose) for the right 
patient and easily show (early) benefit, or absence of benefit, and should be used more 
often in clinical research and practice.  
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NEDERLANDSE SAMENVATTING 
Borstkanker is de meest voorkomende vorm van kanker bij vrouwen en grofweg 1 op 
de 7 vrouwen zal in haar leven borstkanker krijgen. Behandelingen worden gelukkig 
steeds beter dankzij het uitvoeren van wetenschappelijk onderzoek. Daarmee 
is de kans om aan borstkanker te overlijden sinds 1989 bijna gehalveerd. Helaas 
overlijdt wereldwijd nog steeds 2.5% van alle vrouwen aan (complicaties van of door 
uitgezaaide) borstkanker. Deze indrukwekkende getallen benadrukken het belang van 
het nog beter kunnen begrijpen van deze ziekte en het nog verder verbeteren van de 
behandelmogelijkheden. 

Borstkanker kan worden ingedeeld in verschillende subtypes. Op basis van de 
aanwezigheid van bepaalde receptoren, bindingsplekken waarop bepaalde hormonen 
of eiwitten kunnen aangrijpen, kan de volgende indeling gemaakt worden: 

-	 hormoongevoelig: bij de aanwezigheid van oestrogeen en/of progesteron 
receptoren 

-	 Her2neu-positief: bij de aanwezigheid van her2neu receptoren
-	 triple-negatief: bij afwezigheid van de receptoren: oestrogeen-, progesteron- en 

Her2-receptor 
Een grote meerderheid van de patiënten met borstkanker (ongeveer 75%) heeft 
het hormoongevoelige subtype. De groei van deze vorm van borstkanker wordt 
meestal met name, via de oestrogeen receptoren, gestimuleerd door het hormoon 
oestrogeen. Om deze groei tegen te gaan bieden de oestrogeen receptoren een goede 
mogelijkheid om doelgerichte behandelingen te geven. In dit proefschrift ligt de focus 
op twee belangrijke (groepen) medicijnen in de behandeling van hormoongevoelige 
borstkanker: tamoxifen en CDK4/6 remmers. Er is met name onderzoek gedaan naar 
de relatie tussen de farmacokinetiek van beide geneesmiddelen met de bijwerkingen 
of effectiviteit van de therapie. 

Farmacokinetiek van een geneesmiddel beschrijft wat het lichaam van de patiënt 
doet met het geneesmiddel. Farmacokinetiek beschrijft de mate van absorptie 
(opname) van een geneesmiddel, bijvoorbeeld in de maag als het geneesmiddel 
oraal wordt ingenomen, maar ook de distributie (verdeling) van een geneesmiddel 
door het lichaam. Ook het metabolisme van een geneesmiddel (de omzetting van het 
geneesmiddel in actieve of juist inactieve stoffen; meestal in de lever) en de uitscheiding 
van een geneesmiddel via bijvoorbeeld de urine of de ontlasting, behoren tot de 
farmacokinetiek. De mate van absorptie, distributie, metabolisatie en uitscheiding 
van een geneesmiddel bepalen, samen met de eigenschappen van de patiënt die het 
geneesmiddel inneemt, de concentratie van het geneesmiddel in het bloed. 

177686_Buijs_BNW.indd   258177686_Buijs_BNW.indd   258 22/01/2025   14:0622/01/2025   14:06



259

Appendices 

A

Tamoxifen 
Tamoxifen is een ‘selectieve oestrogeen receptor modulator’. Het geneesmiddel kan 
binden aan de oestrogeen receptor van een tumorcel en zorgt er met deze binding 
voor dat oestrogeen niet meer kan binden en daarmee de tumorcel niet verder 
gestimuleerd kan worden door oestrogenen tot celdeling (leidend tot de groei van de 
kanker) en zelf uiteindelijk leidt tot het ten gronde gaan van de kankercellen. Tamoxifen 
wordt al gebruikt sinds 1973 en is nog steeds een enorm belangrijk medicijn in de 
behandeling van hormoongevoelige borstkanker. Het wordt meestal toegepast als 
‘adjuvante’ behandeling. Dit is een type behandeling die wordt gegeven na lokale en/
of locoregionale behandeling zoals borstoperaties en radiotherapie, om de kans op 
terugkeer van de borstkanker zo klein mogelijk te maken. Tamoxifen, in de standaard 
dosering van 20 mg per dag voor een periode van 5 jaar na de operatie, vermindert 
de kans op terugkeer van de borstkanker gemiddeld met 40%. 

Doordat oestrogeen receptoren ook op andere organen voorkomen, kan tamoxifen 
helaas ook tot bijwerkingen leiden. Bijwerkingen van tamoxifen zijn onder andere 
opvliegers, gewrichtspijn, slapeloosheid, vaginale afscheiding, gewichtstoename en 
stemmingswisselingen. Hoewel de bijwerkingen van tamoxifen meestal beschreven 
worden als mild, zeker ten opzichte van bijvoorbeeld de bijwerkingen die kunnen 
optreden ten tijde van chemotherapie, hebben patiënten die tamoxifen gebruiken 
jarenlang last van deze bijwerkingen en kunnen de bijwerkingen zeker ook negatieve 
effecten hebben op de dagelijkse bezigheden zoals werk, lichamelijke activiteit, 
seksualiteit en relaties. Dit kan daarmee ok een grote invloed hebben op de kwaliteit 
van leven en zorgt er voor dat bijna de helft van de patiënten binnen vijf jaar (door 
eigen keuze) stopt met deze behandeling, waarvan 1/3 van deze patiënten zelfs al in het 
eerste jaar. Uiteraard zorgt het niet innemen van tamoxifen ook voor een grotere kans 
op terugkeer van de borstkanker. Het verminderen van de bijwerkingen van tamoxifen 
is dan ook van groot belang. 

Met betrekking tot de farmacokinetiek is het belangrijk om te weten dat tamoxifen 
een complex metabolisme heeft. Tamoxifen wordt in de lever omgezet in een aantal 
andere bestanddelen (‘metabolieten’), waarvan endoxifen de belangrijkste is. Deze 
omzetting wordt geregeld door (met name) het enzym CYP2D6. Endoxifen heeft de 
sterkste binding met de oestrogeen receptor en de hoogste concentratie van alle 
bestandsdelen in het bloed. Verschillende retrospectieve studies hebben een relatie 
gevonden tussen de concentratie van endoxifen in het bloed en de effectiviteit van 
tamoxifen. De drempelwaarde van 16 nM heeft de sterkste wetenschappelijke basis. 
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Op basis van deze bestaande drempelwaardes van endoxifen kunnen voor de 
individuele patiënt zo nodig aanpassingen in de doseringen gemaakt worden mocht de 
concentratie onder die drempelwaarde liggen. Dit wordt therapeutic drug monitoring 
(TDM) van tamoxifen genoemd. Er zijn meerdere onderzoeken waarin TDM van tamoxifen 
is toegepast en dit halveert het percentage patiënten met een te lage endoxifen 
concentratie in het bloed van ongeveer 20 naar 10%.

Deel I. Tamoxifen en bijwerkingen
In dit proefschrift zijn we op zoek gegaan naar eventuele oplossingen voor bijwerkingen 
van tamoxifen, waarbij we uiteraard zoveel mogelijk de effectiviteit van tamoxifen willen 
behouden. Daarnaast hebben we gekeken naar zeldzamere lange termijn bijwerkingen 
van tamoxifen, waaronder veneuze trombose (bloedstolsels in de kuiten of stolsels die 
doorgeschoten zijn naar de longen) en cognitieve stoornissen en de eventuele relatie 
van deze bijwerkingen met tamoxifen en endoxifen concentraties in het bloed. 

Een mogelijke oplossing voor het verminderen van de bijwerkingen van tamoxifen 
zou een dosisverlaging kunnen zijn. In hoofdstuk 2 hebben we literatuuronderzoek 
gedaan om te achterhalen wat er al bekend is over de bijwerkingen en effectiviteit van 
lagere doseringen tamoxifen. Er zijn meerdere studies gedaan met lagere doseringen 
tamoxifen in de primaire (bij patiënten met een verhoogd risico op borstkanker) 
en secundaire (bij patiënten met een voorstadium van borstkanker) preventieve setting. 
In deze studies bleken de bijwerkingen van lage dosering tamoxifen minder te zijn ten 
opzichte van de bijwerkingen met de standaard dosering van 20 mg tamoxifen per 
dag en ongeveer gelijk aan de bijwerkingen die patiënten ervaren met een placebo. 
Tamoxifen in een lage dosering zorgt in deze populaties ook voor een lagere kans op 
borstkanker of een voorstadium van borstkanker ten opzichte van placebo. Er werd 
met betrekking tot de effectiviteit geen vergelijking gemaakt met 20 mg tamoxifen 
per dag. Ook zijn er helaas geen studies gedaan naar de effectiviteit van lagere 
doseringen tamoxifen in de adjuvante setting. Om meer inzicht te krijgen, hebben we 
ook gekeken naar studies waar afgeleide maten die mogelijk de klinische effectiviteit 
van tamoxifen weergeven werden onderzocht. Een van deze afgeleiden is de 
mammografische dichtheid. We weten al dat in patiënten waarbij de mammografische 
dichtheid vermindert na eenmaal daags 20 mg tamoxifen, de kans op borstkanker 
ook lager is. Lagere doseringen tamoxifen bleken mammografische dichtheid ook 
te kunnen verminderen, mogelijk in een zelfde mate als dagelijks 20 mg tamoxifen. 
Een andere afgeleide is de proliferatiemarker Ki67, te meten in delende borstkanker 
cellen. Een verlaging van Ki67 na kortdurende tamoxifen behandeling (voorafgaand 
aan de operatie) is voorspellend voor de lange termijn effectiviteit van tamoxifen na de 
operatie. Ook lage doseringen tamoxifen bleken Ki67 te kunnen verlagen. Dus, lagere 
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doseringen tamoxifen hebben een klinisch relevant, verbeterd bijwerkingenprofiel 
vergeleken met tamoxifen in standaarddosering en er zijn sterke, hoewel indirecte, 
aanwijzingen dat lagere doseringen tamoxifen eveneens een anti-tumoreffect hebben. 

Omdat er vrijwel geen studies in de adjuvante setting zijn naar de bijwerkingen van 
lagere doseringen tamoxifen, hebben wij in hoofdstuk 3 de tamoxifen dosering 
verlaagd van 20 mg naar 10 mg per dag bij patiënten die veel last ervaarden van 
hun bijwerkingen en endoxifen concentraties in het bloed hadden van ten minste 
32 nM (twee keer de drempelwaarde van 16 nM). Van de 17 patiënten die een 
dosisverlaging hebben ondergaan, had na 3 maanden 41% van de patiënten een 
klinisch relevante verbetering in bijwerkingen en 65% van de patiënten in kwaliteit 
van leven. Deze verbetering werd niet gezien in een groep van 60 patiënten die de 
tamoxifen behandeling in een dosering van 20 mg per dag continueerden en leek dus 
niet te verklaren door een tijdseffect. Bij 21% van de patiënten daalde de endoxifen 
concentratie licht onder de 16 nM (12.8, 15.5, 15.8, 15.9 nM), wat het belang benadrukt 
van het opnieuw bepalen van endoxifen concentraties na het aanpassen van de 
tamoxifen dosering. Deze studie toont aan dat dosisverlaging een effectieve strategie 
kan zijn voor patiënten die sterk lijden onder of zouden stoppen met anti-hormonale 
therapie vanwege tamoxifen-gerelateerde  bijwerkingen. Er is in deze studie helaas 
geen vergelijking gemaakt met een placebo, waardoor een mogelijk placebo-effect 
van het verlagen van de tamoxifendosering niet volledig kan worden uitgesloten.

In hoofdstuk 4 hebben we de combinatie van tamoxifen en CBD-olie onderzocht. 
CBD is een van de twee belangrijkste bestandsdelen van cannabis maar, in 
tegenstelling tot THC, niet psychoactief of potentieel verslavend. CBD wordt in 
toenemende mate gebruikt door patiënten met borstkanker in de hoop bijwerkingen 
te verminderen. Hoewel CBD verschillende receptoren in het menselijk lichaam kan 
beïnvloeden en eerder in verband is gebracht met een vermindering van slapeloosheid 
en pijn, is het onbekend of CBD de bijwerkingen van tamoxifen zou kunnen verbeteren. 
Daarnaast zou CBD de concentraties van endoxifen in het bloed kunnen verlagen, 
doordat CBD een potentiële remmer is van CYP2D6 dat tamoxifen in endoxifen 
omzet. In ons onderzoek gebruikten 15 patiënten voor 4 weken lang CBD-olie in een 
dosering van driemaal daags tien druppels onder de tong (~50 mg) naast hun tamoxifen 
behandeling. Hoewel de plasma concentraties van endoxifen daalden bij gelijktijdig 
gebruik van CBD, bleven ze binnen bio-equivalentie grenzen. Dit betekent dat ondanks 
enige afname de concentraties van endoxifen met of zonder CBD nog steeds als 
vergelijkbaar kunnen worden gezien. Als secundair doel hebben we onderzocht of 
CBD daadwerkelijk tamoxifen-gerelateerde bijwerkingen kan verlichten. Het gebruik 
van CBD in de maximaal vrij verkrijgbare dosis is onderzocht in 26 patiënten en 
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verminderde bijwerkingen en verbeterde de kwaliteit van leven. Of CBD echt gunstig 
is en aanbevolen kan worden aan patiënten met hinderlijke bijwerkingen moet nog 
worden bewezen in een placebo-gecontroleerde studie. Momenteel hoeven patiënten 
in ieder geval niet meer ontmoedigd te worden als ze CBD willen proberen naast hun 
tamoxifen behandeling. 

Het is niet volledig duidelijk hoe tamoxifen het risico op veneuze trombose verhoogt, maar 
het is bekend dat tamoxifen bloed-verdunnende eiwitten zoals antitrombine, proteine 
C en tissue factor pathway remmer kan verlagen en vorming van stollingseiwitten juist 
kan stimuleren. In hoofdstuk 5  hebben we de concentratie van antitrombine, proteine 
C, tissue factor en trombine vorming parameters gemeten in patiënten die behandeld 
werden met tamoxifen en de mogelijke relatie van deze tamoxifen-geassocieerde 
stollingseiwitten met de tamoxifen dosis en concentraties van tamoxifen en endoxifen 
in het bloed onderzocht. Bij zowel 3 als 6 maanden tamoxifen behandeling bleken hogere 
concentraties van tamoxifen en endoxifen niet geassocieerd met hogere concentraties 
van het bloedstollende tissue factor of parameters voor trombine vorming noch met 
lagere concentraties van de bloed verdunnende eiwitten antitrombine en proteine C. 
Ook leek verhoging of verlaging van de tamoxifen dosis geen invloed te hebben op de 
stollingseiwit concentraties, hoewel deze vergelijkingen werden beperkt door het feit 
dat de meerderheid van de patiënten in deze studie de standaarddosis van 20 mg per 
dag gebruikte. Deze studie biedt geruststelling en geeft een eerste indicatie dat hogere 
tamoxifen- of endoxifen concentraties geen extra bloedstollend effect hebben en dus 
mogelijk niet leiden tot een verder verhoogd risico op tamoxifen-gerelateerde trombose. 
Een grotere studie met meer patiënten die tamoxifen dosisaanpassingen ondergaan, zou 
een duidelijker antwoord kunnen geven over het risico op trombose bij TDM-gestuurde 
tamoxifen dosisverhoging.    

Recente studies hebben het gebruik van tamoxifen ook in verband gebracht met een 
afname in cognitief functioneren. Ook in de hersenen zitten oestrogeen-receptoren 
en oestrogenen kunnen in de hersenen dan ook verschillende cognitie verbeterende 
effecten hebben. Tamoxifen kan via binding aan de oestrogeen-receptoren in de 
hersenen deze effecten beïnvloeden. Over deze potentiële bijwerking is echter nog 
maar weinig bekend. In hoofdstuk 6 hebben we door middel van afname van de 
Amsterdam Cognition Scan score (een gevalideerde online neuropsychologische 
test) gekeken naar het effect van twee jaar tamoxifen gebruik op het objectief en 
subjectief cognitief functioneren van in totaal 135 vrouwen met hormoongevoelige 
borstkanker. Tamoxifen gebruikers presteerden slechter op verbale leerprocessen, 
verwerkingssnelheid, uitvoerende functies en motorische vaardigheden in vergelijking 
met gezonde vrouwelijke controles. Patiënten die tamoxifen gebruiken rapporteerden 
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zelf milde cognitieve klachten. Het cognitief functioneren van vrouwen ouder dan 57 
jaar was meer aangedaan door tamoxifen dan het cognitief functioneren van vrouwen 
onder de 57 jaar. Een opvallende bevinding was dat hogere tamoxifen en endoxifen 
concentraties en een hogere tamoxifendosering geassocieerd waren met slechtere 
prestaties op verschillende cognitieve domeinen. Verder onderzoek is nodig om 
de effecten van tamoxifen dosisverhoging, dosisverlaging of het stopzetten van de 
therapie op cognitief functioneren te onderzoeken. 

Deel II. Predictie van tamoxifen en endoxifen blootstelling
In hoofdstuk 7 hebben we een predictie-model voor de farmacokinetiek van tamoxifen 
ontwikkeld. Voor een dergelijk model wordt er onderzocht welke variabelen de 
concentraties van tamoxifen en endoxifen kunnen voorspellen. Met behulp van 3661 
gemeten concentraties van meer dan 500 patiënten hebben we leeftijd, lengte, body-
mass index (BMI) en CYP2D6 genotype geïncludeerd in het predictie-model. Leeftijd en 
lengte hebben invloed op de eliminatie van tamoxifen waarbij een hogere leeftijd leidt 
tot minder eliminatie van tamoxifen (en hogere concentraties) en een grotere lengte 
juist leidt tot meer eliminatie van tamoxifen (en lagere concentraties). BMI en CYP2D6 
genotype hebben invloed op de omzetting van tamoxifen in endoxifen. Een hoger 
BMI zorgt voor verminderde omzetting en dus lagere concentraties van tamoxifen. 
Het CYP2D6 genotype is verreweg de belangrijkste factor in het predictiemodel. 
Het genotype staat voor de genen die je van je beide ouders hebt gekregen en die in 
dit geval samen de activiteit van het CYP2D6 eiwit bepalen. Deze activiteit kan ook 
ingedeeld worden in groepen, maar dit is minder nauwkeurig dan kijken naar activiteit 
op een continue schaal. Na ontwikkeling is het model succesvol gevalideerd in een 
extern validatie-cohort. 

Met behulp van het model uit hoofdstuk 7 kunnen dosering drempels worden bepaald 
om de tamoxifen startdosering te voorspellen waarmee een patiënt een endoxifen 
concentratie >16 nM kan bereiken. Het toepassen van deze dosering drempels 
hebben we prospectief gevalideerd in hoofdstuk 8. Het doel van dit hoofdstuk 
was dat een hoger percentage patiënten een endoxifen concentratie >16 nM zou 
bereiken door al bij start van de behandeling de juiste dosering voor te schrijven. 
In 106 patiënten werd door middel van het model een startdosering van tamoxifen 
20 mg (65%), 30 mg (16%) of 40 mg (19%) per dag voorspeld. Hiermee bereikte 84% 
van de patiënten een endoxifen concentratie >16 nM, wat niet significant hoger was 
dan een historische controlegroep waarin alle patiënten met 20 mg tamoxifen daags 
werden behandeld (77.9%). Het model voorspelde echter adequaat de toekomstige 
endoxifen concentraties en identificeerde correct patiënten die 40 mg tamoxifen 
per dag nodig hadden (significant minder patiënten met endoxifen concentratie <16 
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nM in de 40 mg-groep). Een verklaring voor het lager dan verwachte percentage 
patiënten met endoxifen concentratie >16 nM is het grotere aandeel van patiënten met 
verminderde CYP2D6-activiteit in de predictie-groep versus de controlegroep. Deze 
patiënten kunnen zelfs met de hoogste geregistreerde tamoxifen dagdosering van 40 
mg geen endoxifen concentratie van 16 nM bereiken en kunnen daarom waarschijnlijk 
beter behandeld worden met een andere anti-hormonale therapie. Samenvattend lijkt 
doseren volgens het predictiemodel veelbelovend vergeleken met de conventionele 
'one-size-fits-all' dosering van 20 mg tamoxifen per dag -- vooral in bepaalde 
subgroepen -- maar TDM blijft een belangrijke aanvulling. 

Deel III. CDK4/6 remmers
CDK4/6 remmers zijn relatief nieuwe geneesmiddelen in de behandeling van 
uitgezaaide borstkanker. In dit geval is de borstkanker verspreid naar andere organen, 
zoals de botten, lever of lymfeklieren, en kan de borstkanker helaas niet meer genezend 
behandeld worden. Gelukkig kan de borstkanker met behulp van verschillende 
behandelingen nog wel afgeremd worden. Voor hormoongevoelige borstkanker zijn 
CDK4/6 remmers (waaronder palbociclib, ribociclib en abemaciclib) één van deze 
behandelingen. CDK4/6 remmers worden gecombineerd met anti-hormonale therapie 
en remmen (oestrogeen afhankelijke) celdeling en zorgen op deze manier voor een 
afname van de kanker celgroei. 

Ook CDK4/6 remmers kunnen bijwerkingen veroorzaken, met neutropenie (een te laag 
aantal witte bloedcellen) als meest voorkomende bijwerking. Een minder bekende, 
maar ook vaak voorkomende, bijwerking is een hogere creatinine concentratie in het 
bloed. Een stijging van creatinine duidt meestal op verslechterde nierfunctie, maar 
kan ook komen doordat verschillende geneesmiddelen de uitscheiding van creatinine 
kunnen remmen. In dit geval is het creatinine wel verhoogd maar is de nierfunctie nog 
intact, en worden artsen misleid door de hoge creatinine waarden. Er zijn een paar zeer 
kleine studies die aantonen dat ook CDK4/6 remmers de uitscheiding van creatinine 
kunnen remmen, maar het is niet bekend hoe vaak een creatinine stijging wordt 
veroorzaakt door dit fenomeen en hoe vaak er echt een nierfunctiestoornis speelt bij 
patiënten die CDK4/6 remmers gebruiken. In hoofdstuk 9 hebben we een retrospectief 
onderzoek gedaan bij alle patiënten die in het Erasmus MC behandeld werden met 
CDK4/6 remmers. Bij de patiënten waar een creatinine stijging optrad gedurende de 
behandeling hebben we cystatine C in het bloed gemeten. Dit is een eiwit dat net als 
creatinine gefilterd wordt in de nier en waarbij een stijging een verslechtering van de 
nierfunctie aanduidt. In tegenstelling tot creatinine, kan de uitscheiding van cystatine 
C niet beïnvloed worden door CDK4/6 remmers. Bij 41 van de 234 patiënten (17.5%) 
bleek sprake van een significante stijging van de creatinine concentratie. Bij 22 van 
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deze 41 patiënten konden cystatine C concentraties gemeten worden. In 16 van de 
22 patiënten waar de creatinine concentraties op nierfunctiestoornissen duidden, 
waren de cystatine C concentraties normaal (73%). In 36% van de patiënten waren 
naar aanleiding van de gestegen creatinine concentraties aanvullende diagnostische 
onderzoeken of medicatie aanpassingen gedaan, die mogelijk achteraf dus niet nodig 
waren geweest. Naar aanleiding van ons onderzoek adviseren we om bij patiënten 
die behandeld worden met CDK4/6 remmers en creatinine concentraties hebben 
die duiden op een nierfunctie stoornis, eerst cystatine C te meten zodat onnodige 
diagnostiek, medicatie aanpassingen of bezorgdheid kunnen worden voorkomen.  

In hoofdstuk 10 hebben we naar de relatie gekeken tussen palbociclib concentraties en 
effectiviteit en toxiciteit van de behandeling. Wij konden geen relatie aantonen tussen 
progressie vrije overleving en palbociclib concentraties. Er was ook geen significante 
trend voor meer ernstige bijwerkingen of ernstige neutropenie bij hogere palbociclib 
concentraties. Er was wel een significante trend naar meer dosisverlagingen bij patiënten 
met hogere palbociclib concentraties. Hoewel dit tegenstrijdig lijkt, zou het kunnen 
dat mildere bijwerkingen, die helaas niet werden bijgehouden in deze studie, hebben 
geleid tot de noodzaak tot dosisreductie. Mogelijk bereiken sommige patiënten onnodig 
hoge palbociclib concentraties met de huidige standaard dosis van 125 mg per dag. 
De afwezigheid van een relatie tussen effectiviteit en concentraties suggereert dat het 
mogelijk is om de dosis veilig te verlagen in het geval van palbociclib-gerelateerde 
bijwerkingen. 
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Sanne B. Schagen Department of Psychosocial Research and Epidemiology, Netherlands 
Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The 
Netherlands

Saskia M. Wilting Department of Medical Oncology, Erasmus MC Cancer Institute, 
Rotterdam, the Netherlands

Sebastiaan D.T. Sassen Department of Clinical Pharmacy, Erasmus University Medical Center; 
Rotterdam, the Netherlands; Rotterdam Clinical Pharmacometrics 
Group; Rotterdam, the Netherlands

Sophia J. van den 
Boogerd

Department of Medical Oncology, Alexander Monro Hospital, 
Bilthoven, The Netherlands

Stefan A.J. Buck Department of Medical Oncology, Erasmus MC Cancer Institute, 
Rotterdam, the Netherlands

Stijn L.W. Koolen Department of Medical Oncology, Erasmus MC Cancer Institute, 
Rotterdam, the Netherlands; Department of Clinical Pharmacy, 
Erasmus University Medical Center; Rotterdam, the Netherlands

Thomas E. Mürdter Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 
Germany; University of Tübingen, Tübingen, Germany
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PhD PORTFOLIO 

Summary of PhD training and teaching 
Name PhD Candidate: Sanne Buijs 
Erasmus University MC: Department of Medical Oncology 
PhD period: 2020-2024 
Promotor: Prof. dr. A.H.J. Mathijssen and prof. dr. A. Jager
Copromotor: Dr. S.L.W. Koolen

Year Workload 
(ECTS)

1. PhD training
General courses
BROK course 2021 1.5
Research Integrity 2022 0.3
Biostatistical Methods NIHES1 2021 4.5
Specific courses 
Excel Basic & Advanced course 2021 0.7
Basic course on 'R' 2021 1.8
Basic Introduction course on SPSS 2022 1.0
Survival Analysis course 2022 0.6
Biomedical English Writing and Communication 2022 2.0
Castor Study Building and Data Management 2021 0.1
Guidance Skills course 2021 0.1
PhD Intervision meetings 2022-2023 1.0

(Inter)national conferences 
Annual European Society Medical Oncology (ESMO) Congress, 
Paris, Madrid

2022, 2023 4.0

European Breast Cancer Conference (EBCC), Barcelona 2022 1.0
San Antonio Breast Cancer Symposium (SABCS), San Antonio 2022 2.0
Borstkanker Behandeling Beter Symposium 2021, 2022 1.0
Translational Pharmacology meetings 2020-2024 1.0
Dutch Society for Clinical Pharmacology & Biopharmacy 
(NVKFB) Scientific Meeting  

2023 0.3

ACE-ABC (Academic Center for Breast Cancer) Annual 
Research days

2021-2024 1.0

Dutch Breast Cancer Research Group (BOOG) Plenary Meetings 2021-2023 1.0
NABON-BOOG Symposium 2022 0.2
Oncology Education meetings 2020-2024 1.0
Cancer Retraite Erasmus MC Cancer Institute 2023, 2024 1.0
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Year Workload 
(ECTS)

Presentations
Poster presentations ESMO Congress 2022, 2023 0.6
Poster presentation EBCC 2022 0.3
Poster presentation SABCS 2022 0.3
Poster presentation Medical Oncology Research day 2021 0.3
Poster presentation NVKFB Scientific Meeting 2023 0.3
Poster presentation Cancer Retraite 2023 0.3
Borstkanker Behandeling Beter Symposium 2021, 2022 0.8
BOOG Plenary meeting 2021 0.4
ACE-ABC Research Meeting 2020 0.4
BOOG-SABCS meeting 2022 0.4
Medical Oncology Research Meeting 2023 0.4
Clinical Pharmacology Meeting 2024 0.4

 2. Teaching
Medical school training
Tutorial class first-year medical student 2021 1.0
Medical school bachelor phase coaching program 2022-2024 1.0
Supervising Master thesis 
Noud van Maanen 2021 1.0
Ruben van Nijnatten 2022-2023 1.5
Famke Weeterings 2023 1.0

3. Other
Organizational activities
BOOG Young Investigator Day 2023 1.0
Medical Oncology Scientific Day, Erasmus MC Cancer Institute 2021, 2022 1.0
Breast Cancer Journal Club 2022-2023 1.0

Total 40.5 ECTS
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CURRICULUM VITAE 
Sanne Buijs werd op 27 augustus 1993 geboren 
in Capelle aan den IJssel. Als oudste dochter van 
Annemarie Rozendaal en Ronald Buijs groeide zij op 
samen met haar broer Peter en zus Madelief. Na het 
behalen van haar VWO diploma begon zij in 2011 aan 
de studie Psychologie aan de Universiteit Leiden. 
Na een jaar besloot zij echter haar passie te volgen en 
werd via de decentrale selectie toegelaten tot de studie 
Geneeskunde aan het Erasmus MC in Rotterdam. 
Tijdens haar studie haalde Sanne veel voldoening uit 
organisatorische nevenactiviteiten, wat haar ertoe 
bracht om na haar bachelor een jaar lang fulltime 
het bestuur van de Medische Faculteitsvereniging 
Rotterdam (MFVR) te versterken.

Gedurende haar verpleegstage in de Daniel den Hoed werd Sanne gegrepen door 
de oncologische zorg en deze interesse werd tijdens de minor Oncologie en de 
coschappen verder bevestigd. Zij besloot haar masteronderzoek te verrichten op 
de afdeling Interne Oncologie bij de Personalised Medicine groep van professor 
Mathijssen. Tijdens deze stage werd haar enthousiasme voor onderzoek doen 
aangewakkerd en na een bijzondere en hele leuke tijd als ANIOS Interne Geneeskunde 
in het Albert Schweitzer ziekenhuis in Dordrecht, keerde zij eind 2020 terug voor een 
promotietraject. Gedurende 3,5 jaar heeft Sanne zich verdiept in de behandeling van 
hormoongevoelige borstkanker onder begeleiding van professsor Agnes Jager, dr. 
Stijn Koolen en professor Ron Mathijssen. Vervolgens heeft zij met veel plezier op de 
afdeling Interne Oncologie in het Erasmus MC gewerkt. Op 1 januari 2025 is zij gestart 
met de opleiding tot internist in het Amphia Ziekenhuis in Breda.   
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Dankwoord 
In ruim 4 jaar onderzoek werk je met heel veel verschillende collega’s samen en komen 
er veel belangrijke mensen op je pad. Graag wil ik hier de gelegenheid nemen om mijn 
dankbaarheid uit te spreken. 

Allereerst wil ik alle patiënten bedanken die aan de onderzoeken in mijn proefschrift, 
en aan wetenschappelijk onderzoek in het algemeen, mee hebben geholpen. Ik heb 
enorme bewondering voor het feit dat patiënten gedurende een hele moeilijke en 
kwetsbare periode in hun leven de moeite nemen om belangeloos mee te helpen aan 
wetenschappelijk onderzoek, in de hoop om daarmee de zorg voor patiënten na hen 
te verbeteren. Bedankt ook voor de mooie en inspirerende gesprekken gedurende de 
verschillende onderzoeken. Deze gesprekken hebben mij veel geleerd en gemotiveerd 
tijdens mijn promotieonderzoek. 

Professor Mathijssen, beste Ron, wat een geluk dat professor van Zuylen mij ooit 
per toeval tijdens een kookworkshop aanraadde om, als ik geïnteresseerd was in 
de oncologie, echt contact met jou te zoeken. Zo geschiedde en inmiddels zijn we 
een masteronderzoek en een promotieonderzoek verder. Je hebt een enorme passie 
voor onderzoek en weet als geen ander hoe je jouw groep kan enthousiasmeren en 
verbinden. Je bent voor jouw PhD-studenten echt dag en nacht bereikbaar en de deur 
in Be4 stond altijd open. Bedankt voor de fijne tijd en het vertrouwen. 

Professor Jager, beste Agnes, wij leerden elkaar gelijk aan het begin van mijn 
promotietraject goed kennen door ons gezamenlijk in een grote subsidieaanvraag te 
storten. Voor mij is die samenwerking nog steeds één van de hoogtepunten van mijn 
tijd als onderzoeker. Ik heb toen, en in de jaren die volgden, enorm veel van jou mogen 
leren zowel als wetenschapper, als dokter, en als mens. Hoe druk je ook was, je nam 
altijd de tijd om mijn artikelen van grondige feedback te voorzien, en had ook altijd 
aandacht voor life-events als een marathon, verhuizing of sollicitatie. 

Dr. Koolen, beste Stijn, het was heel erg fijn om jou als copromotor bij mijn team te 
hebben. Ik heb veel gehad aan onze inhoudelijke discussies en kon altijd weer verder 
met een project waarmee ik was vastgelopen als ik bij jou was geweest. Jij bleef rustig 
(juist als ik soms heel druk was), gaf een weloverwogen advies en zorgde ervoor dat ik 
weer met vertrouwen door kon. Gelukkig hebben we ook veel lol gehad, bijvoorbeeld 
tijdens het onbeperkt chocolademousse eten in Parijs en op de SS-Rotterdam tijdens 
de retraites. 
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Graag wil ik professor Sabine Linn, professor Hugo van der Kuy, professor Henk-
Jan Guchelaar, professor Birgit Koch, professor John Martens en dr. Linetta Koppert 
bedanken voor de interesse in mijn proefschrift en de bereidheid om plaats te nemen 
in de oppositie. 

Linetta, jij hebt tijdens de oncologie minor mijn interesse voor de oncologie verder 
aangewakkerd en zowel tijdens mijn coschap chirurgie als gedurende de momenten 
dat wij elkaar tegenkwamen tijdens mijn promotie mij altijd enorm gemotiveerd met 
jouw onuitputtelijke enthousiasme. Bedankt daarvoor en ik vind het een grote eer dat 
je nu in mijn commissie plaatsneemt. 

Ik wil alle co-auteurs en betrokkenen bij de verschillende manuscripten bedanken voor 
de prettige samenwerking. Ik heb van ieders eigen expertise enorm veel mogen leren. 

Tijdens mijn promotie heb ik in een heel fijn team gewerkt en ik wil alle collega’s 
van het Farmacolab enorm bedanken voor de samenwerking, altijd gezellige lunches, 
leuke labuitjes, padellen, barbecues, vrijmibo’s, hulp met SPSS/R/research-manager/
pipetteren en noem maar op. Ik ging echt (bijna) elke dag met een grote lach naar werk. 

Inge, Mei en Peter, zonder jullie kon ons lab niet bestaan. Bedankt voor al jullie 
werk voor de vele samples van de SONIA en de tamoxifen studies. Mei, bedankt voor 
je zorgvuldigheid, je wist altijd precies waar in het lab ik iets kon vinden, en uiteraard 
bedankt voor je heerlijke kookkunsten. Inge, jij bent zo geïnteresseerd en altijd in voor een 
praatje. Dat maakte een lab bezoekje om de SONIA-samples uit te zoeken extra gezellig. 

Esther, bedankt voor je geduldige uitleg en hulp met alle statistiek. Ondanks de 
ontelbare meetings die we hebben gehad over lastige statistiek ideeën voor onze 
ENDO-67 studie bleef je altijd enthousiast en behulpzaam en ook bij mijn overige 
studies stond je altijd voor mij klaar. 

Louwrens & Ruben, jullie fijne begeleiding tijdens mijn masteronderzoek heeft er 
mede toe geleid dat ik zo enthousiast over onderzoek ben geworden. Bedankt voor 
het vertrouwen dat jullie in mij hadden en Louwrens, ik vond het een eer om jouw 
onderzoekslijn door te mogen zetten. 

Bram, ik vond het super fijn om bij meerdere projecten samen te kunnen werken. 
Ik heb echt heel veel van je geleerd, we vulden elkaar perfect aan en konden altijd goed 
sparren. Als ik mij zorgen maakte over een bepaald project, kon jij mij altijd weer zo 
gerust stellen. En.. het kostte wat jaren tijd, maar ik begrijp nu eindelijk (een beetje?) 
wat NON-MEM is. 

Niels G, wat was jij een aanwinst voor de 19e verdieping! Ondanks dat je onze jongste 
collega was, met toch (toen nog) de minste ervaring, was jij op de één of andere manier 
binnen no-time dé collega waarbij je voor zo ongeveer elke vraag terecht kon. En daarnaast 
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bracht je ook enorm veel gezelligheid. Gelukkig kan ik je straks in het Amphia nog heel 
vaak tegenkomen als co-collega! 

Steef, wat bijzonder om naast vrienden ook collega’s te zijn. Gelukkig was je de 
samenwerking nog niet zat en mag ik dit jaar zelfs helpen met het organiseren van jullie 
prachtige bruiloft. 

Daan, na onze samenwerking in het Albert Schweitzer ziekenhuis kon het natuurlijk 
niet anders dan dat we op zoek gingen naar een gezamenlijk project om tijdens onze 
promoties te doen. We zijn er een aantal keer voor naar Leiden gereisd en hebben heel 
veel tijd gezamenlijk achter SPSS gezeten, maar ik vind het erg leuk dat we samen 
het artikel over tamoxifen en stolling hebben kunnen schrijven. Extra leuk dat we nu 
ook collega-aios zijn. 

Tom, nadat jij mij, als gewaardeerde dokter Tom, op weg hielp op de afdeling, kon ik 
jou vervolgens een aantal maanden later als nieuwe buurman op de 19e  op weg helpen 
in de wereld van het onderzoek. Bedankt voor al het lachen, ook (of vooral) om je flauwe 
grappen. Ik kijk uit naar het etentje in jullie nieuwe huis! 

Sheraz, wij hebben samen hele mooie gesprekken gehad en je hebt echt oog 
voor hoe het met je collega’s gaat. Tegelijkertijd konden wij, tot grote ergernis van onze 
kamergenoten, ook uren kletsen over Game of Thrones en The Last of Us. Wat ben ik blij 
dat je mijn laatste jaren onze kamer kwam versterken. 

Lieve vrouwen van de 19e, met jullie heb ik zo’n ontzettend fijne tijd gehad en ik ben 
heel blij dat we onze band in ere houden en met elkaar blijven afspreken. 

Lieve Karlijn, jij stond altijd klaar met wijze raad, sterke verhalen en humor. Ik ben heel 
blij dat ik daar in het Amphia als collega’s ook weer van mag genieten. 

Lieve Mir, van vriendinnen naar collega’s naar vriendinnen, ik vond het zo fijn om al 
die jaren met jou samen te werken en elkaar zo vaak te spreken. Jij hebt altijd alles tot in 
de puntjes georganiseerd en ik (iedereen?) gebruik nog steeds jouw formats als voorbeeld. 

Lieve Leni, het was altijd gezellig als jij er op donderdag was en je kan met jou dan ook 
over alles praten. Ik heb grote bewondering voor hoe jij jouw proefschrift hebt geschreven 
en jouw ontwikkeling als onderzoeker. Ook toen ik in de kliniek stond, kon ik af en toe even 
bij jou op de 5e komen buurten en mijn ei kwijt.  Bedankt daarvoor!  

Lieve Maaike, mijn overbuurvrouw, ik had echt niet geweten wat ik zonder jou had 
gemoeten de afgelopen jaren! Dag in, dag uit konden wij álles bij elkaar kwijt. Je keek 
kritisch mee met elke poster of lastige e-mail, dacht mee met mijn onderzoeken en stond 
ook altijd voor mij klaar als er buiten werk iets aan de hand was. En uiteraard hebben we 
ook heel erg veel gelachen. Bedankt, je bent een schat. 

Noud en Famke, ik vond het ontzettend leuk om jullie te begeleiden met jullie 
masteronderzoek, bedankt voor jullie inzet en kritische vragen. Ruben, met jou was 
het extra bijzonder omdat jij als research master student 1.5 jaar bij ons was. Het was 
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ontzettend leuk om jou te zien ontwikkelen als ‘oude klasgenoot van Madelief’ tot een 
volwaardig onderzoeker die alles zelf regelde en bedacht. 

Lieve meiden van beneden, lieve Noor, Noortje en Lisa, bedankt dat jullie mij hebben 
geadopteerd in jullie ‘borstkanker onderzoek groep’. Ik vond het altijd super fijn om 
even bij jullie op Be te buurten en met elkaar te kunnen sparren zowel inhoudelijk 
over onderzoek als over lastige logistiek, sollicitaties of gezellige weekenden. Sorry 
ook voor het afleiden, vooral voor jullie andere kamergenoten, het was soms iets té 
gezellig. Inmiddels zetten we die gezelligheid gelukkig door met etentjes buiten werk. 
Ik kijk alweer uit naar de volgende! 

Lieve Lisa, wij hebben samen het meest intensief samen gewerkt en ik heb daar 
echt hele mooie herinneringen aan. Toen we gingen fietsen voor start van ons congres in 
Barcelona nam jij mij op sleeptouw en vervolgens mocht ik hetzelfde doen bij jou tijdens 
ons hardlooprondje. Zo ging het eigenlijk ook tijdens onze samenwerkingen, we vulden 
elkaar perfect aan. Zo heb ik van jou geleerd om nooit meer handmatig iets op te zoeken 
in Excel.. En was met jou samen zelfs uren in de stikstofvriezer samples uitzoeken leuk 
om te doen. Het is voor mij echt de kers op de taart dat ons onderzoek dat we samen 
opgezet hebben nu gepubliceerd is. Ik hoop nog heel veel vaker urenlang met elkaar over 
alles te kunnen praten, want ik heb er een vriendin bij. 

Professor Martens, beste John, dit zie ik ook als de plek om jou te bedanken, want 
ook jij hebt mij zo af en toe in jouw groep opgenomen. Bedankt voor de gezelligheid 
tijdens San Antonio, de inhoudelijke discussies en het heerlijke etentje. Wat een bijzondere 
afsluiter dat jij ook in mijn commissie plaats neemt. 

Mandy, jij stond altijd klaar om mee te denken met verwijzingen, inhoudelijk over een 
nieuwe studie of tijdens de Journal Club. Ik vind het ontzettend leuk dat jij nu verder 
gaat met het ENDO-67 project, en ook ik sta altijd klaar om mee te denken. 

Na het afronden van mijn promotie-traject heb ik gewerkt als ANIOS bij de oncologie 
in het Erasmus MC. Ik wil alle oncologen bedanken voor de gezelligheid, fijne 
samenwerking en laagdrempelige supervisie. Ik heb veel van jullie mogen leren. In het 
bijzonder Arjen, Sander en Simone, bedankt voor de fijne sfeer en het vertrouwen in 
mijzelf dat jullie mij weer hebben gegeven. 

De interne oncologie heeft een geweldige groep secretaresses. Bedankt voor jullie 
hulp en ondersteuning, in het bijzonder José, Rosita en Marcella. José, bedankt voor 
je logistieke hulp de afgelopen jaren en zeker de afgelopen tijd rondom Hora Finita. 
Rosita, wat vond ik het leuk om met jou de wetenschapsdag te organiseren. Dankzij 
jouw energie en organisatie skills was het enorm geslaagd. Marcella, ik heb het al vaak 
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tegen je gezegd maar je bent echt een grote aanwinst en een geweldige secretaresse. 
Ik hoop in de toekomst nog meer met je samen te mogen werken. 

Ik had het geluk dat de verwijzingen voor mijn studies binnen stroomden vanwege de 
enorme inzet vanuit de regionale ziekenhuizen. Heel graag wil ik de verpleegkundig 
specialisten en oncologen uit het Franciscus Gasthuis, IJsselland ziekenhuis, Ikazia 
Ziekenhuis, Maasstad ziekenhuis en Spijkenisse Medisch Centrum bedanken voor de 
ontzettend fijne samenwerking bij de TOTAM en PREDICTAM studie. 

Beste professor Feelders, lieve Richard, wij kennen elkaar nu al meer dan 31 jaar. 
Samen met Annewieke ben jij sinds dat ik had besloten geneeskunde te willen 
studeren een enorme support voor mij. Wat bijzonder dat we nu in dezelfde week een 
wetenschappelijke promotie maken, ik tot doctor en jij tot professor. Ik wil er binnenkort 
graag met jullie op proosten! 

Ik heb heel veel geluk dat ik een heleboel fijne vrienden en vriendinnen om mij heen heb 
die altijd zorgen voor afleiding, motivatie, gezelligheid en steun. Ik ben erg dankbaar 
voor jullie in mijn leven. 

Lief 49ste bestuur, wat mooi dat een jaar met elkaar bestuur van de Medische 
Faculteitsvereniging doen heeft geresulteerd in een eeuwige vriendschap. Ik kijk alweer 
uit naar het volgende kerstdiner of wintersport.  
Lieve Tom & Eef, wij promoveerden tegelijkertijd in het EMC en bij elk klein promotie-
succesje hebben we taart gegeten. Later bij de grote successen zijn we het een beetje 
vergeten. Volgens mij kunnen we wel weer een goede reden bedenken om binnenkort 
bij 1 van jullie in Vlaardingen een taartje te eten. 
Lieve Frank & Daan, bij jullie was het altijd zo fijn thuis komen na een drukke werkdag. 
Helaas wonen wij inmiddels niet meer bij jullie in het gebouw, maar vergeet niet, een 
verre vriend is beter dan een goede buur.. 
Lieve Fabi, ondanks jouw eigen mooie carrière was jij altijd geïnteresseerd in hoe het bij 
mij ging en stond je altijd met tips klaar. Jij bent nog steeds degene die mijn to-do list 
op orde krijgt als het mij zelf niet meer lukt. Bedankt voor het zijn van zo’n fijne vriendin.

Lieve CHAOS-meiden, ik ben zo blij met zo’n liefdevolle vriendinnengroep die elkaar, 
al sinds de start van onze geneeskunde studie, altijd steunen en aanmoedigen. 
Lieve Naoom, Mar en Daph, wat was het fijn dat er tijdens onze promotie-tijd altijd wel 
een vriendin in de buurt was voor een koffietje. We begrepen elkaar altijd. 

Lieve Merel en Sjoerd, wie had gedacht dat ik uiteindelijk met jullie beiden over 
het leven als promovendus kon praten. Het is altijd fijn om bij elkaar ons verhaal kwijt te 
kunnen, het liefste bij jullie thuis met kaas en een goede fles wijn (want daar zijn jullie zo 
goed in). Bedankt voor alle gezelligheid en ik kijk uit naar het volgende etentje met elkaar. 
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Lieve Eveline & Naomi, lieve paranimfen, jullie zijn vriendinnen uit duizenden en weten 
precies wat een promotie-traject inhoudt. Met jullie achter mij tijdens mijn verdediging 
en naast mij tijdens het leven kan ik zeker de wereld aan. 

Lieve Silvio & Karin, lieve Conny & Eduard en lieve Maxime & Lex. Al bijna 9 jaar staan 
jullie deuren in Tilburg (en Eindhoven) altijd voor mij open. Ik vind het ontzettend fijn 
dat ik een schoonfamilie heb gevonden waar ik mij zo thuis bij voel. Bedankt voor alle 
mooie herinneringen met elkaar. 

Lieve papa en mama, dankzij jullie liefdevolle basis en opvoeding sta ik nu hier en daar 
zal ik jullie altijd dankbaar voor zijn. 
Pap, hoe hard jij werkt voor je doelen is voor mij een groot voorbeeld en heeft mij al 
mijn hele leven gemotiveerd. Tegelijkertijd ben je er ook steeds beter in geworden om 
mij te motiveren om meer te ontspannen.. Bedankt dat je altijd voor mij klaar staat, 
want; ‘heb je een probleem? Dan ga je naar je vader’. 
Mam, jij bent de meest zorgzame en lieve moeder die wij ons maar kunnen wensen. 
Ik hoef maar te mompelen dat ik het een beetje druk heb en jij staat al klaar om mij te 
ontzorgen. Als ik een moeilijke dag heb gehad, ben jij vaak de eerste die ik wil bellen 
en weet jij mij altijd weer een hart onder de riem te steken. Bedankt dat je altijd trots 
op mij bent, wat ik ook doe. Ik ben ook zo trots op jou. 

Lieve Peter & Madelief, wat hebben wij een bijzondere band. Midden in mijn promotie 
hebben we met z’n drieën en hele mooie reis gemaakt naar Guatemala die dat alleen 
maar heeft versterkt en Peet, met jou heb ik mijn tijd als promovendus mogen afsluiten 
in Brazilië. Wat een geluk. Bedankt voor jullie onvoorwaardelijke broer-zus liefde. Ik ben 
heel trots op jullie. 

Uiteindelijk draait het in het leven om de liefde. Lieve Ol, wat ben ik blij dat ik in jou 
de liefde van mijn leven heb gevonden. Jij bent mijn grootste supporter, en zorgt er 
tegelijkertijd altijd voor dat ik weer tot rust kom. Ik ben zo trots op wie jij bent en ik 
kan niet wachten op de rest van ons leven samen. 
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