Stephanie van Hoppe

17 Introduction R E F E R E N C E S 1. Dean M, HamonY, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily, J Lipid Res, 7 (2001) 1007-1017. 2. Aikawa T, Holm ML, Kanekiyo T. ABCA7 and Pathogenic Pathways of Alzheimer’s Disease, Brain Sci, 2 (2018) 10.3390/brainsci8020027 3. Mijac D, Vukovic-Petrovic I, Mijac V, et al. MDR1 gene polymorphisms are associated with ulcerative colitis in a cohort of Serbian patients with inflammatory bowel disease, PLoS One, 3 (2018) e0194536. 10.1371/ journal.pone.0194536 4. Schumacher T, Benndorf RA. ABC Transport Proteins in Cardiovascular Disease-A Brief Summary, Molecules, 4 (2017) 10.3390/molecules22040589 5. ZaiouM, BakillahA. Epigenetic Regulation of ATP-BindingCassette ProteinA1 (ABCA1) Gene Expression: A New Era to Alleviate Atherosclerotic Cardiovascular Disease, Diseases, 2 (2018) 10.3390/diseases6020034 6. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily, Genome Res, 7 (2001) 1156-1166. 10.1101/gr.184901 7. Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs, J Clin Invest, 11 (1996) 2517-2524. 10.1172/JCI118699 8. Vlaming ML, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice, Adv Drug Deliv Rev, 1 (2009) 14-25. 10.1016/j.addr.2008.08.007 9. Lockman PR, Mittapalli RK, Taskar KS, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer, Clin Cancer Res, 23 (2010) 5664-5678. 10.1158/1078-0432.CCR-10-1564 10. Taskar KS, Rudraraju V, Mittapalli RK, et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer, Pharm Res, 3 (2012) 770-781. 10.1007/s11095-011-0601-8 11. Plant N. The human cytochrome P450 sub-family: transcriptional regulation, inter-individual variation and interaction networks, Biochim Biophys Acta, 3 (2007) 478-488. 10.1016/j.bbagen.2006.09.024 12. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol Ther, 1 (2013) 103-141. 10.1016/j. pharmthera.2012.12.007 13. Westlind-Johnsson A, Malmebo S, Johansson A, et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism, Drug Metab Dispos, 6 (2003) 755-761. 14. Lin YS, Dowling AL, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism, Mol Pharmacol, 1 (2002) 162-172. 15. Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall, J Pharm Pharmacol, 5 (2009) 541-558. 10.1211/jpp/61.05.0002 16. Flockhart DA, Rae JM. Cytochrome P450 3A pharmacogenetics: the road that needs traveled, Pharmacogenomics J, 1 (2003) 3-5. 10.1038/sj.tpj.6500144 17. Pelkonen O, Turpeinen M, Hakkola J, et al. Inhibition and induction of human cytochrome P450 enzymes: current status, Arch Toxicol, 10 (2008) 667-715. 10.1007/s00204-008-0332-8 18. Athukuri BL, Neerati P. Enhanced Oral Bioavailability of Domperidone with Piperine in Male Wistar Rats: Involvement of CYP3A1 and P-gp Inhibition, J Pharm Pharm Sci, (2017) 28-37. 10.18433/J3MK72 19. Tsimberidou AM, Eggermont AM, Schilsky RL. Precision cancer medicine: the future is now, only better, Am Soc Clin Oncol Educ Book, (2014) 61-69. 10.14694/EdBook_AM.2014.34.61 20. Blume-Jensen P, Hunter T. Oncogenic kinase signalling, Nature, 6835 (2001) 355-365. 10.1038/35077225 21. Durmus S, Sparidans RW, Wagenaar E, et al. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar, Mol Pharm, 11 (2012) 3236-3245. 10.1021/mp3003144

RkJQdWJsaXNoZXIy MTk4NDMw