Albertine Donker

Rare Inherited Iron and Heme-related Anemias 127 3 underlying iron transport deficiency in microcytic anemia. Blood. 2004;104(5):1526- 1533. 60. Priwitzerova M, Pospisilova D, Prchal JT, et al. Severe hypochromic microcytic anemia caused by a congenital defect of the iron transport pathway in erythroid cells. Blood. 2004;103(10):3991-3992. 61. Iolascon A, Camaschella C, Pospisilova D, Piscopo C, Tchernia G, Beaumont C. Natural history of recessive inheritance of DMT1 mutations. The Journal of pediatrics. 2008;152(1):136-139. 62. Iolascon A, d’Apolito M, Servedio V, Cimmino F, Piga A, Camaschella C. Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood. 2006;107(1):349-354. 63. Ohgami RS, Campagna DR, Greer EL, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nature genetics. 2005;37(11):1264-1269. 64. Ohgami RS, Campagna DR, Antiochos B, et al. nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse. Blood. 2005;106(10):3625-3631. 65. Grandchamp B, Hetet G, Kannengiesser C, et al. A novel type of congenital hypochromic anemia associated with a nonsense mutation in the STEAP3/TSAP6 gene. Blood. 2011;118(25):6660-6666. 66. Guernsey DL, Jiang H, Campagna DR, et al. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nature genetics. 2009;41(6):651-653. 67. Kannengiesser C, Sanchez M, Sweeney M, et al. Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia. Haematologica. 2011;96(6):808-813. 68. Taketani S, Kakimoto K, Ueta H, Masaki R, Furukawa T. Involvement of ABC7 in the biosynthesis of heme in erythroid cells: interaction of ABC7 with ferrochelatase. Blood. 2003;101(8):3274-3280. 69. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Human molecular genetics. 1999;8(5):743-749. 70. Bottomley SS, Healy HM, Brandenburg MA, May BK. 5-Aminolevulinate synthase in sideroblastic anemias: mRNA and enzyme activity levels in bone marrow cells. American journal of hematology. 1992;41(2):76-83. 71. Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert WD, Heinz DW. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. The EMBO journal. 2005;24(18):3166-3177. 72. Campagna DR, de Bie CI, Schmitz-Abe K, et al. X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA- binding site mutations. American journal of hematology. 2014;89(3):315-319. 73. Cotter PD, MayA, Li L, et al. Four newmutations in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causing X-linked sideroblastic anemia: increased pyridoxine responsiveness after removal of iron overload by phlebotomy and coinheritance of hereditary hemochromatosis. Blood. 1999;93(5):1757-1769. 74. Cooley TB. A SEVERE TYPE OF HEREDITARY ANEMIA WITH ELLIPTOCYTOSIS: Interesting Sequence of Splenectomy. The American Journal of the Medical Sciences. 1945;209(5):561-568. 75. Bergmann AK, Campagna DR, McLoughlin EM, et al. Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations. Pediatric blood & cancer. 2010;54(2):273-278. 76. Ducamp S, Kannengiesser C, Touati M, et al. Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense

RkJQdWJsaXNoZXIy ODAyMDc0