Albertine Donker

Chapter 3 128 mutations. Human mutation. 2011;32(6):590- 597. 77. Aivado M, Gattermann N, Rong A, et al. X-linked sideroblastic anemia associated with a novel ALAS2 mutation and unfortunate skewed X-chromosome inactivation patterns. Blood cells, molecules & diseases. 2006;37(1):40-45. 78. Cazzola M, May A, Bergamaschi G, Cerani P, Rosti V, Bishop DF. Familial- skewed X-chromosome inactivation as a predisposing factor for late-onset X-linked sideroblastic anemia in carrier females. Blood. 2000;96(13):4363-4365. 79. Harris JW, Danish EH, Brittenham GM, McLaren CE. Pyridoxine responsive hereditary sideroblastic erythropoiesis and iron overload: two microcytic subpopulations in the affected male, one normocytic and one microcytic subpopulation in the obligate female carrier. American journal of hematology. 1993;42(4):400-401. 80. Barton JC, Lee PL. Disparate phenotypic expression of ALAS2 R452H (nt 1407 G --> A) in two brothers, one with severe sideroblastic anemia and iron overload, hepatic cirrhosis, and hepatocellular carcinoma. Blood cells, molecules & diseases. 2006;36(3):342-346. 81. Furuyama K, HarigaeH, Kinoshita C, et al. Late- onset X-linked sideroblastic anemia following hemodialysis. Blood. 2003;101(11):4623-4624. 82. Cotter PD, Rucknagel DL, Bishop DF. X-linked sideroblastic anemia: identification of the mutation in the erythroid-specific delta- aminolevulinate synthase gene (ALAS2) in the original family described by Cooley. Blood. 1994;84(11):3915-3924. 83. Camaschella C. Treating iron overload. The New England journal of medicine. 2013;368(24):2325-2327. 84. Ye H, Jeong SY, Ghosh MC, et al. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. The Journal of clinical investigation. 2010;120(5):1749-1761. 85. Ye H, Rouault TA. Erythropoiesis and iron sulfur cluster biogenesis. Advances in hematology. 2010;2010. 86. Camaschella C, Campanella A, De Falco L, et al. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood. 2007;110(4):1353- 1358. 87. Balwani M, Doheny D, Bishop DF, et al. Loss-of-function ferrochelatase and gain-of- function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and x-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of X-linked protoporphyria. Molecular medicine (Cambridge, Mass). 2013;19:26-35. 88. Whatley SD, Mason NG, Holme SA, Anstey AV, Elder GH, Badminton MN. Molecular epidemiology of erythropoietic protoporphyria in the U.K. The British journal of dermatology. 2010;162(3):642-646. 89. Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN. Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood. 2007;110(12):4108- 4110. 90. DelabyC, Lyoumi S, DucampS, et al. Excessive erythrocyte PPIX influences the hematologic status and iron metabolism in patients with dominant erythropoietic protoporphyria. Cellular and molecular biology (Noisy-le- Grand, France). 2009;55(1):45-52. 91. Balwani M, Desnick RJ. The porphyrias: advances in diagnosis and treatment. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2012;2012:19-27. 92. Fritsch C, Bolsen K, Ruzicka T, Goerz G. Congenital erythropoietic porphyria. Journal of the American Academy of Dermatology. 1997;36(4):594-610. 93. Solis C, Aizencang GI, Astrin KH, Bishop DF, Desnick RJ. Uroporphyrinogen III synthase erythroid promoter mutations in adjacent

RkJQdWJsaXNoZXIy ODAyMDc0