Albertine Donker

Chapter 9 330 Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood. 2010;115(18):3817-3826. 81. Wahedi M, Wortham AM, Kleven MD, et al. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. The Journal of biological chemistry. 2017;292(44):18354- 18371. 82. De Falco L, Bruno M, Yilmaz-Keskin E, et al. The role of Matriptase-2 during the early postnatal development in humans. Haematologica. 2016;101(4):e126-128. 83. Willemetz A, Lenoir A, Deschemin JC, et al. Matriptase-2 is essential for hepcidin repression during fetal life and postnatal development in mice to maintain iron homeostasis. Blood. 2014;124(3):441-444. 84. Nicolas G, Bennoun M, Porteu A, et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(7):4596-4601. 85. Frazer DM, Wilkins SJ, Darshan D, Mirciov CSG, Dunn LA, Anderson GJ. Ferroportin Is Essential for Iron Absorption During Suckling, But Is Hyporesponsive to the Regulatory Hormone Hepcidin. Cellular and molecular gastroenterology and hepatology. 2017;3(3):410-421. 86. Frazer DM, Wilkins SJ, Anderson GJ. Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract. American journal of physiology Gastrointestinal and liver physiology. 2007;293(3):G525-531. 87. Soliman AT, De Sanctis V, Yassin M, Wagdy M, Soliman N. Chronic anemia and thyroid function. Acta bio-medica : Atenei Parmensis. 2017;88(1):119-127. 88. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. The Journal of nutrition. 2001;131(2s-2):568S- 579S; discussion 580S. 89. Oexle H, Gnaiger E, Weiss G. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochimica et biophysica acta. 1999;1413(3):99-107. 90. Dziegala M, Josiak K, Kasztura M, et al. Iron deficiency as energetic insult to skeletal muscle in chronic diseases. Journal of cachexia, sarcopenia and muscle. 2018;9(5):802-815. 91. Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. European journal of heart failure. 2016;18(7):762-773. 92. Lam CSP, Doehner W, Comin-Colet J. Iron deficiency in chronic heart failure: case- based practical guidance. ESC heart failure. 2018;5(5):764-771. 93. Georgieff MK. Long-term brain and behavioral consequences of early iron deficiency. Nutrition reviews. 2011;69 Suppl 1:S43-48. 94. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutrition reviews. 2006;64(5 Pt 2):S34-43; discussion S72-91. 95. Arsenault V, Mailloux C, Bonnefoy A, Lemyre E, Pastore Y. Iron-Refractory Iron Deficiency Anemia May Not Lead to Neurocognitive Dysfunction: A Case Report. Pediatrics. 2016;138(1). 96. Gualdi R, Casalgrandi G, Montosi G, Ventura E, Pietrangelo A. Excess iron into hepatocytes is required for activation of collagen type I gene during experimental siderosis. Gastroenterology. 1994;107(4):1118-1124. 97. Pietrangelo A, Montosi G, Totaro A, et al. Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene. The New England journal of medicine. 1999;341(10):725-732. 98. Pietrangelo A, Caleffi A, Corradini E. Non- HFE hepatic iron overload. Seminars in liver disease. 2011;31(3):302-318. 99. Ganz T. Iron and infection. International journal of hematology. 2017.

RkJQdWJsaXNoZXIy ODAyMDc0