Saskia Baltrusch

148 Chapter 5 16. Junius, K., Degelaen, M., Lefeber, N., Swinnen, E., Vanderborght, B., and Lefeber, D. (2017a). Bilateral, misalignment-compensating, full-DOF hip exoskeleton: design and kinematic validation. Appl. Bionics Biomech. 2017:5813154. 17. Junius, K., Lefeber, N., Swinnen, E., Vanderborght, B., and Lefeber, D. (2017b). Metabolic effects induced by a kinematically compatible hip exoskeleton during STS. IEEE Trans. Biomed. Eng. 65, 1399-1409. 18. Schiele, A., and van der Helm, F. C. (2006). Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 456–469. 19. Abdoli-Eramaki, M., Stevenson, J. M., Reid, S. A., and Bryant, T. J. (2007). Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD). J. Biomech. 40, 1694–1700. 20. Imamura, Y., Tanaka, T., Suzuki, Y., Takizawa, K., and Yamanaka, M. (2014). Analysis of trunk stabilization effect by passive power-assist device. J. Robot. Mechatron. 26, 791–797. 21. Zhang, H., Kadrolkar, A., and Sup, F. C. (2016). Design and preliminary evaluation of a passive spine exoskeleton. J. Med. Devices 10, 10–17. 22. Inose, H., Mohri, S., Arakawa, H., Okui, M., Koide, K., Yamada, Y., et al. (2017). “Semi-Endoskeleton-Type Waist Assist AB-Wear Suit Equipped with Compressive Force Reduction Mechanism,” in 2017 IEEE International Conference on Robotics and Automation (ICRA) (Singapore), 2–7. 23. Abdoli-Eramaki, M., Agnew, M. J., and Stevenson, J. M. (2006). An onbody personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks. Clin. Biomech. 21, 456–465. 24. Barrett, A. L., and Fathallah, F. A. (2001). “Evaluation of four weight transfer devices for reducing loads on lower back during agricultural stoop labor,” in ASAE Annual International Meeting, 2001 (Sacramento, CA). 25. Bosch, T., van Eck, J., Knitel, K., and de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 54, 212–217. 26) Baltrusch, S., van Dien, J., van Bennekom, C., and Houdijk, H. (2018). The effect of a passive trunk exoskeleton on functional performance in healthy individuals. Appl. Ergon. 72, 94–106. 27. Babic, J., Mombaur, K., Lefeber, D., van Dieën, J., Graimann, B., Russold, M., et al. (2017). “Spexor: Spinal exoskeletal robot for low back pain prevention and vocational reintegration,” in Wearable Robotics: Challenges and Trends, eds J. 28. Christophy, M., Senan, N. A. F., Lotz, J. C., and O’Reilly, O. M. (2012). A Musculoskeletal model for the lumbar spine. Biomech.Model.Mechanobiol. 11, 19–34. 29. Pons, J. L. (2008).Wearable Robots: Biomechatronic Exoskeletons. Chichester: John Wiley & Sons. 30. Tilley, A. R. (2002). The Measure of Man and Woman: Human Factors in Design, Vol. 1. New York, NY: JohnWiley & Sons. 31. Kingma, I., Baten, C. T. M., Dolan, P., Toussaint, H. M., Van Dieën, J. H., De Looze, M. P., et al. (2001). Lumbar loading during lifting: a comparative study of three measurement techniques. J. Electromyogr. Kinesiol. 11, 337–345. 32. Millard, M., Sreenivasa, M., and Mombaur, K. (2017). Predicting the motions and forces of wearable robotic systems using optimal control. Front. Robot. AI 4:41.

RkJQdWJsaXNoZXIy ODAyMDc0