Peter van Mourik

199 General discussion 47. Dekkers, J. F. et al. Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508del CFTR mutations. J. Cyst. Fibros. (2016) doi:10.1016/j. jcf.2016.04.007. 48. Berkers, G. et al. Clinical effects of the three CFTR potentiator treatments curcumin, genistein and ivacaftor in patients with the CFTR-S1251N gating mutation. J. Cyst. Fibros. 1–7 (2020) doi:10.1016/j.jcf.2020.04.014. 49. Yang, Z., Kulkarni, K., Zhu, W. & Hu, M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer. Agents Med. Chem. 12 , 1264–80 (2012). 50. Anand, P., Kunnumakkara, A. B., Newman, R. A. & Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 4 , 807–818 (2007). 51. Keating, D. et al. VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N. Engl. J. Med. 379 , 1612–1620 (2018). 52. Awatade, N. T. et al. R560S: A class II CFTR mutation that is not rescued by current modulators. J. Cyst. Fibros. 18 , 182–189 (2019). 53. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19 , 939–45 (2013). 54. Berkers, G. et al. Rectal Organoids Enable Personalized Treatment of Cystic Fibrosis. Cell Rep. 26 , 1701-1708.e3 (2019). 55. de Winter – de Groot, K. M. et al. Forskolin-induced swelling of intestinal organoids correlates with disease severity in adults with cystic fibrosis and homozygous F508del mutations. J. Cyst. Fibros. 1–6 (2019) doi:10.1016/j. jcf.2019.10.022. 56. Stanbrook, M. B. The Repeatability of Forced Expiratory Volume Measurements in Adults With Cystic Fibrosis. Chest 125 , 150–155 (2004). 57. Kyrilli, S. et al. Insights into the variability of nasal potential difference, a biomarker of CFTR activity. J. Cyst. Fibros. 1–7 (2019) doi:10.1016/j.jcf.2019.09.015. 58. Vermeulen, F., Lebecque, P., Boeck, K. De & Leal, T. Biological variability of the sweat chloride in diagnostic sweat tests : A retrospective analysis. J. Cyst. Fibros. 16 , 30–35 (2017). 59. Collaco, J. M., Blackman, S. M., McGready, J., Naughton, K. & Cutting, G. R. Quantification of the Relative Contribution of Environmental and Genetic Factors to Variation in Cystic Fibrosis Lung Function. J. Pediatr. 157 , 802-807.e3 (2010). 60. Goss, C. H., Newsom, S. A., Schildcrout, J. S., Sheppard, L. & Kaufman, J. D. Effect of Ambient Air Pollution on Pulmonary Exacerbations and Lung Function in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 169 , 816–821 (2004). 61. Rubin, B. K. Exposure of Children with Cystic Fibrosis to Environmental Tobacco Smoke. N. Engl. J. Med. 323 , 782–788 (1990). 62. Smyth, A., O’Hea, U., Williams, G., Smyth, R. & Heaf, D. Passive smoking and impaired lung function in cystic fibrosis. Arch. Dis. Child. 71 , 353–354 (1994). 63. O’Connor, G. T. et al. Median Household Income and Mortality Rate in Cystic Fibrosis. Pediatrics 111 , e333–e339 (2003). 64. Taylor-Cousar, J. L. et al. Lumacaftor/ivacaftor in patients with cystic fibrosis and advanced lung disease homozygous for F508del-CFTR. J. Cyst. Fibros. (2017) doi:10.1016/j.jcf.2017.09.012. 9

RkJQdWJsaXNoZXIy ODAyMDc0