Peter van Mourik

59 Potentiator synergy in rectal organoids 18. French, P. J. et al. Genistein activates CFTR Cl- channels via a tyrosine kinase- and protein phosphatase-independent mechanism. Am. J. Physiol. 273, C747– 53 (1997). 19. Sears, C. L. et al. Genistein and tyrphostin 47 stimulate CFTR-mediated Cl- secretion in T84 cell monolayers. Am. J. Physiol. 269, G874–82 (1995). 20. Melin, P. et al. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein. Biochem. Pharmacol. 67, 2187–2196 (2004). 21. Wang, W., Bernard, K., Li, G. & Kirk, K. L. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. J. Biol. Chem. 282, 4533–4544 (2007). 22. Bernard, K., Wang, W., Narlawar, R., Schmidt, B. & Kirk, K. L. Curcumin cross- links cystic fibrosis transmembrane conductance regulator (CFTR) polypeptides and potentiates CFTR channel activity by distinct mechanisms. J. Biol. Chem. 284, 30754–30765 (2009). 23. Berger, A. L. et al. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity. J. Biol. Chem. 280, 5221–5226 (2005). 24. Eckford, P. D. W., Li, C., Ramjeesingh, M. & Bear, C. E. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation- dependent but ATP-independent manner. J. Biol. Chem. 287, 36639–36649 (2012). 25. Jih, K.-Y. & Hwang, T.-C. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc. Natl. Acad. Sci. U.S.A. 110, 4404–4409 (2013). 26. Moran, O., Galietta, L. J. V. & Zegarra-Moran, O. Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains. Cell. Mol. Life Sci. 62, 446–460 (2005). 27. Sohma, Y., Yu, Y.-C. & Hwang, T.-C. Curcumin and genistein: the combined effects on disease-associated CFTR mutants and their clinical implications. Curr. Pharm. Des. 19, 3521–3528 (2013). 28. Yu, Y.-C. et al. Curcumin and genistein additively potentiate G551D-CFTR. J. Cyst. Fibros. 10, 243–252 (2011). 29. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 19 : 939–45 (2013). 30. Dekkers, J. F., van der Ent, C. K. & Beekman, J. M. Novel opportunities for CFTR-targeting drug development using organoids. Rare Dis 1, e27112 (2013). 31. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013). 32. Roth, D. M. et al. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol. 12, e1001998 (2014). 33. Okiyoneda, T. et al. Mechanism-based corrector combination restores ΔF508- CFTR folding and function. Nat. Chem. Biol. 9, 444–454 (2013). 3

RkJQdWJsaXNoZXIy ODAyMDc0