Peter van Mourik

60 Chapter 3 34. Eckford, P. D. W. et al. VX-809 and related corrector compounds exhibit secondary activity stabilizing active F508del-CFTR after its partial rescue to the cell surface. Chem. Biol. 21, 666–678 (2014). 35. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011). 36. Sato, T. et al. Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett’s Epithelium. Gastroenterology. 141 : 1762–72 (2011). 37. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med 17 : 1225–7 (2011). 38. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013). 39. Lin, S. et al. Identification of synergistic combinations of F508del cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Assay Drug Dev Technol 8, 669–684 (2010). 40. Phuan, P.-W. et al. Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy. Mol. Pharmacol. 86, 42–51 (2014). 41. Boinot, C., Jollivet Souchet, M., Ferru-Clément, R. & Becq, F. Searching for combinations of small-molecule correctors to restore f508del-cystic fibrosis transmembrane conductance regulator function and processing. J. Pharmacol. Exp. Ther. 350, 624–634 (2014). 42. Roth, E. K. et al. The K+ channel opener 1-EBIO potentiates residual function of mutant CFTR in rectal biopsies from cystic fibrosis patients. PLoS ONE 6, e24445 (2011). 43. Clancy, J. P. et al. Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function. PLoS ONE 8, e73905 (2013). 44. Beekman, J. M. et al. CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy: Report on the pre-conference meeting to the 11th ECFS Basic Science Conference, Malta, 26-29 March 2014. J. Cyst. Fibros. 13, 363–372 (2014). 45. Wang, F., Zeltwanger, S., Yang, I. C., Nairn, A. C. & Hwang, T. C. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J. Gen. Physiol. 111, 477–490 (1998). 46. Lansdell, K. A., Cai, Z., Kidd, J. F. & Sheppard, D. N. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line. J. Physiol. (Lond.) 524 Pt 2, 317–330 (2000). 47. Derand, R., Bulteau-Pignoux, L. & Becq, F. The cystic fibrosis mutation G551D alters the non-Michaelis-Menten behavior of the cystic fibrosis transmembrane conductance regulator (CFTR) channel and abolishes the inhibitory Genistein binding site. J. Biol. Chem. 277, 35999–36004 (2002).

RkJQdWJsaXNoZXIy ODAyMDc0