Cindy Boer

194 | Chapter 4.1 References 1. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseas- es and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1789-1858. 2. Hunter, D.J., D. Schofield, and E. Callander, The individual and socioeconomic impact of osteoar- thritis. Nat Rev Rheumatol, 2014. 10(7): p. 437-41. 3. Lowe, D.B., M.J. Taylor, and S.J. Hill, Associations between multimorbidity and additional burden for working-age adults with specific forms of musculoskeletal conditions: a cross-sectional study. BMC Musculoskelet Disord, 2017. 18(1): p. 135. 4. Hunter, D.J. and S. Bierma-Zeinstra, Osteoarthritis. Lancet, 2019. 393(10182): p. 1745-1759. 5. Spector, T.D. and A.J. MacGregor, Risk factors for osteoarthritis: genetics. Osteoarthritis Cartilage, 2004. 12 Suppl A: p. S39-44. 6. Zengini, E., et al., Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet, 2018. 50(4): p. 549-558. 7. Styrkarsdottir, U., et al., Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis, in Nat Genet. 2018: United States. p. 1681-1687. 8. Tachmazidou, I., et al., Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Sig- nals for Anthropometric Traits. Am J Hum Genet, 2017. 100(6): p. 865-884. 9. Mägi, R. and A.P. Morris, GWAMA: software for genome-wide association meta-analysis. BMC Bio- informatics, 2010. 11: p. 288. 10. Magi, R., C.M. Lindgren, and A.P. Morris, Meta-analysis of sex-specific genome-wide association studies. Genet Epidemiol, 2010. 34(8): p. 846-53. 11. Pulit, S.L., et al., Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet, 2019. 28(1): p. 166-174. 12. Kichaev, G., et al., Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum Genet, 2019. 104(1): p. 65-75. 13. Reynard, L.N. and J. Loughlin, Insights from human genetic studies into the pathways involved in osteoarthritis. Nat Rev Rheumatol, 2013. 9(10): p. 573-83. 14. Sandell, L.J., Etiology of osteoarthritis: genetics and synovial joint development. Nat Rev Rheuma- tol, 2012. 8(2): p. 77-89. 15. Muley, M.M., et al., Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J Neuroinflammation, 2017. 14(1): p. 168. 16. Bulik-Sullivan, B.K., et al., LD Score regression distinguishes confounding from polygenicity in ge- nome-wide association studies. Nat Genet, 2015. 47(3): p. 291-5. 17. Bulik-Sullivan, B., et al., An atlas of genetic correlations across human diseases and traits. Nat Gen- et, 2015. 47(11): p. 1236-41. 18. Suri, P., et al., Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. PLoS Genet, 2018. 14(9): p. e1007601. 19. Smits, P., et al., The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell, 2001. 1(2): p. 277-90. 20. Schaible, H.G., Osteoarthritis pain. Recent advances and controversies. Curr Opin Support Palliat Care, 2018. 12(2): p. 148-153. 21. Dimitroulas, T., et al., Neuropathic pain in osteoarthritis: a review of pathophysiological mecha- nisms and implications for treatment. Semin Arthritis Rheum, 2014. 44(2): p. 145-54. 22. Fu, K., S.R. Robbins, and J.J. McDougall, Osteoarthritis: the genesis of pain. Rheumatology (Oxford), 2018. 57(suppl_4): p. iv43-iv50. 23. Kidd, B., Mechanisms of pain in osteoarthritis. Hss j, 2012. 8(1): p. 26-8.

RkJQdWJsaXNoZXIy ODAyMDc0