Cindy Boer

196 | Chapter 4.1 48. Zhou, Y., et al., Wnt/beta-catenin Signaling in Osteoarthritis and in Other Forms of Arthritis. Curr Rheumatol Rep, 2017. 19(9): p. 53. 49. Ullah, A., et al., Homozygous sequence variants in the WNT10B gene underlie split hand/foot mal- formation. Genet Mol Biol, 2018. 41(1): p. 1-8. 50. Yu, P., et al., Mutations in WNT10B Are Identified in Individuals with Oligodontia. Am J Hum Genet, 2016. 99(1): p. 195-201. 51. Kantaputra, P.N., et al., WNT10B mutations associated with isolated dental anomalies. Clin Genet, 2018. 93(5): p. 992-999. 52. Jiao, S., et al., VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun, 2017. 8: p. 14058. 53. Lin, Z., et al., Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. Dev Cell, 2016. 39(4): p. 466-79. 54. Dupont, S., et al., Role of YAP/TAZ in mechanotransduction. Nature, 2011. 474(7350): p. 179-83. 55. Low, B.C., et al., YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett, 2014. 588(16): p. 2663-70. 56. Vincent, T.L. and A.K.T. Wann, Mechanoadaptation: articular cartilage through thick and thin. J Physiol, 2019. 597(5): p. 1271-1281. 57. Zhao, Z., et al., Mechanotransduction pathways in the regulation of cartilage chondrocyte ho- moeostasis. J Cell Mol Med, 2020. 24(10): p. 5408-5419. 58. Kong, Y.Y., et al., Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 1999. 402(6759): p. 304-9. 59. Remuzgo-Martínez, S., et al., Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis. Sci Rep, 2016. 6: p. 29713. 60. Papadaki, M., et al., New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflam- matory Arthritis. Front Immunol, 2019. 10: p. 97. 61. Kohli, S.S. and V.S. Kohli, Role of RANKL-RANK/osteoprotegerin molecular complex in bone remod- eling and its immunopathologic implications. Indian J Endocrinol Metab, 2011. 15(3): p. 175-81. 62. Zeyer, K.A. and D.P. Reinhardt, Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal, 2015. 9(4): p. 309-25. 63. Putnam, E.A., et al., Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital con- tractural arachnodactyly. Nat Genet, 1995. 11(4): p. 456-8. 64. Gonzalez, A.M., et al., Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids Barriers CNS, 2011. 8(1): p. 6. 65. Beecham, G.W., et al., Genome-wide association meta-analysis of neuropathologic features of Alz- heimer’s disease and related dementias. PLoS Genet, 2014. 10(9): p. e1004606. 66. Ferrari, N., et al., Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nat Commun, 2019. 10(1): p. 130. 67. Cubelos, B., et al., Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron, 2010. 66(4): p. 523-35. 68. Kedinger, V. and A. Nepveu, The roles of CUX1 homeodomain proteins in the establishment of a transcriptional program required for cell migration and invasion. Cell Adh Migr, 2010. 4(3): p. 348- 52. 69. Lizarraga, G., et al., Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol, 2002. 243(1): p. 44-54. 70. Xiong, Q., et al., A novel de novo mutation in COL2A1 leading to spondyloepiphyseal dysplasia congenita in a Chinese family. Hum Genome Var, 2018. 5: p. 17059. 71. Wilkin, D.J., et al., Small deletions in the type II collagen triple helix produce kniest dysplasia. Am J Med Genet, 1999. 85(2): p. 105-12.

RkJQdWJsaXNoZXIy ODAyMDc0