Cindy Boer

General Discussion | 273 6 References 1. Zeggini, E., et al., Identification of new susceptibility loci for osteoarthritis (arcOGEN): a ge- nome-wide association study. Lancet, 2012. 380(9844): p. 815-23. 2. Visscher, P.M., et al., 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet, 2017. 101(1): p. 5-22. 3. MacGregor, A.J., et al., The genetic contribution to radiographic hip osteoarthritis in women: re- sults of a classic twin study. Arthritis Rheum, 2000. 43(11): p. 2410-6. 4. Magnusson, K., et al., Genetic factors contribute more to hip than knee surgery due to osteoar- thritis- a population-based twin registry study of joint arthroplasty. Osteoarthritis Cartilage, 2017. 25(6): p. 878-884. 5. Spector, T.D., et al., Genetic influences on osteoarthritis in women: a twin study. Bmj, 1996. 312(7036): p. 940-3. 6. Magnusson, K., A. Turkiewicz, and M. Englund, Nature vs nurture in knee osteoarthritis- the impor- tance of age, sex and body mass index. Osteoarthritis Cartilage, 2019. 27(4): p. 586-592. 7. Bijkerk, C., et al., Heritabilities of radiologic osteoarthritis in peripheral joints and of disc degener- ation of the spine. Arthritis Rheum, 1999. 42(8): p. 1729-35. 8. Ishimori, M.L., et al., Heritability patterns in hand osteoarthritis: the role of osteophytes. Arthritis Res Ther, 2010. 12(5): p. R180. 9. Zengini, E., et al., Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet, 2018. 50(4): p. 549-558. 10. Tachmazidou, I., et al., Identification of new therapeutic targets for osteoarthritis through ge- nome-wide analyses of UK Biobank data. Nat Genet, 2019. 51(2): p. 230-236. 11. Styrkarsdottir, U., et al., Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis, in Nat Genet. 2018: United States. p. 1681-1687. 12. Wray, N.R., et al., Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model. Cell, 2018. 173(7): p. 1573-1580. 13. Brzustowicz, L.M. and A.S. Bassett, Phenotype Matters: The Case for Careful Characterization of Relevant Traits. Am J Psychiatry, 2008. 165(9): p. 1096-8. 14. Cai, N., et al., Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat Genet, 2020. 52(4): p. 437-447. 15. Hunter, D.J. and S. Bierma-Zeinstra, Osteoarthritis. Lancet, 2019. 393(10182): p. 1745-1759. 16. Kerkhof, H.J., et al., Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: the TREAT-OA consortium. Osteoarthritis Cartilage, 2011. 19(3): p. 254- 64. 17. Manchia, M., et al., The Impact of Phenotypic and Genetic Heterogeneity on Results of Genome Wide Association Studies of Complex Diseases, in PLoS One. 2013. 18. Bierma-Zeinstra, S.M. and M. van Middelkoop, Osteoarthritis: In search of phenotypes. Nat Rev Rheumatol, 2017. 13(12): p. 705-706. 19. MacRae, C.A. and R.S. Vasan, Next Generation GWAS: Time to Focus on Phenotype? Circ Cardio- vasc Genet, 2011. 4(4): p. 334-6. 20. Styrkarsdottir, U., et al., GWAS of bone size yields twelve loci that also affect height, BMD, osteoar- thritis or fractures. Nat Commun, 2019. 10(1): p. 2054. 21. den Hollander, W., et al., Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann Rheum Dis, 2017. 76(12): p. 2046-2053. 22. Castano-Betancourt, M.C., et al., Novel Genetic Variants for Cartilage Thickness and Hip Osteoar- thritis. PLoS Genet, 2016. 12(10): p. e1006260.

RkJQdWJsaXNoZXIy ODAyMDc0