Cindy Boer

Epigenomics in bone and cartilage disease | 55 1.2 References 1. Tronick E, Hunter RG. Waddington, dynamic systems, and epigenetics. Front Behav Neurosci. 2016; 10: 107. 2. Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018; 378: 1323– 34. 3. Greally JM. A user's guide to the ambiguous word “epigenetics.” Nat Rev Mol Cell Biol. 2018; 19(4): 207– 8. 4. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539): 317– 30. 5. van Dongen J, Nivard MG, Willemsen G, et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat Commun. 2016; 7: 11115. 6. Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Bio- phys Acta. 2014; 1839: 627– 43. 7. Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 2016; 32(4): 225– 37. 8. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016; 17(8): 487– 500. 9. Achour C, Aguilo F. Long non‐coding RNA and polycomb: an intricate partnership in cancer biology. Front Biosci. 2018; 23: 2106– 32. 10. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016; 73(13): 2491– 509. 11. Fleming TP, Watkins AJ, Velazquez MA, et al. Origins of lifetime health around the time of concep- tion: causes and consequences. Lancet. 2018; 391(10132): 1842– 52. 12. Baird J, Jacob C, Barker M, et al. Developmental origins of health and disease: a lifecourse ap- proach to the prevention of non‐communicable diseases. Healthcare. 2017; 5(1): 14. 13. Tobi EW, Slieker RC, Luijk R, et al. DNA methylation as a mediator of the association between pre- natal adversity and risk factors for metabolic disease in adulthood. Sci Adv. 2018; 4(1): eaao4364. 14. Tobi EW, Goeman JJ, Monajemi R, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014; 5: 5592. 15. Martínez‐Mesa J, Restrepo‐Méndez MC, González DA, et al. Life‐course evidence of birth weight effects on bone mass: systematic review and meta‐analysis. Osteoporos Int. 2013; 24(1): 7– 18. 16. von Websky K, Hasan AA, Reichetzeder C, Tsuprykov O, Hocher B. Impact of vitamin D on preg- nancy‐related disorders and on offspring outcome. J Steroid Biochem Mol Biol. 2018; 180(August 2017): 51– 64. 17. Mahon P, Harvey N, Crozier S, et al. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res. 2010; 25: 14– 9. 18. Garcia AH, Erler NS, Jaddoe VWV, et al. 25‐hydroxyvitamin D concentrations during fetal life and bone health in children aged 6 years: a population‐based prospective cohort study. Lancet Diabe- tes Endocrinol. 2017; 5(5): 367– 76. 19. Xue J, Schoenrock SA, Valdar W, Tarantino LM, Ideraabdullah FY. Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clin Epigenetics. 2016; 8: 107. 20. Curtis EM, Murray R, Titcombe P, et al. Perinatal DNA methylation at CDKN2A is associated with offspring bone mass: findings from the Southampton Women's Survey. J Bone Miner Res. 2017; 32: 2030– 40. 21. Harvey NC, Lillycrop KA, Garratt E, et al. Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif Tissue Int. 2012; 90(0171–967; 2): 120– 7. 22. Harvey NC, Sheppard A, Godfrey KM, et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res. 2014; 29(3): 600– 7.

RkJQdWJsaXNoZXIy ODAyMDc0