Cindy Boer

Epigenomics in bone and cartilage disease | 57 1.2 43. Steinberg J, Ritchie GRS, Roumeliotis TI, et al. Integrative epigenomics, transcriptomics and pro- teomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Sci Rep. 2017;7(April): 8935. 44. Bonin CA, Lewallen EA, Baheti S, et al. Identification of differentially methylated regions in new genes associated with knee osteoarthritis. Gene. 2016; 576(1): 312– 8. 45. den Hollander W, Ramos YFM, Bos SD, et al. Knee and hip articular cartilage have distinct epig- enomic landscapes: implications for future cartilage regeneration approaches. Ann Rheum Dis. 2014; 73(12): 2208– 12. 46. Jeffries MA, Donica M, Baker LW, et al. Genome‐wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol. 2014; 66(10): 2804– 15. 47. Moazedi‐Fuerst FC, Hofner M, Gruber G, et al. Epigenetic differences in human cartilage between mild and severe OA. J Orthop Res. 2014; 32(12): 1636– 45. 48. Aref‐Eshghi E, Zhang Y, Liu M, et al. Genome‐wide DNA methylation study of hip and knee cartilage reveals embryonic organ and skeletal system morphogenesis as major pathways involved in osteo- arthritis. BMC Musculoskelet Disord. 2015; 16(1): 287. 49. Rushton MD, Reynard LN, Barter MJ, et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol (Hoboken, NJ). 2014; 66(9): 2450– 60. 50. Fernández‐Tajes J, Soto‐Hermida A, Vázquez‐Mosquera ME, et al. Genome‐wide DNA methyla- tion analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis. 2014; 73(4): 668– 77. 51. Bomer N, den Hollander W, Suchiman H, et al. Neo‐cartilage engineered from primary chondro- cytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. Osteoarthritis Cartilage. 2016; 24(8): 1423– 30. 52. Rushton MD, Young DA, Loughlin J, Reynard LN. Differential DNA methylation and expression of inflammatory and zinc transporter genes defines subgroups of osteoarthritic hip patients. Ann Rheum Dis. 2015; 74(9): 1778– 82. 53. van Meurs JBJ. Osteoarthritis year in review 2016: genetics, genomics and epigenetics. Osteoar- thritis Cartilage. 2017; 25(2): 181– 9. 54. Chen BH, Marioni RE, Colicino E, et al. DNA methylation‐based measures of biological age: meta‐ analysis predicting time to death. Aging (Albany NY). 2016; 8(9): 1844– 65. 55. Horvath S, Raj K. DNA methylation‐based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018; 19(6): 371– 84. 56. Vidal‐Bralo L, Lopez‐Golan Y, Mera‐Varela A, et al. Specific premature epigenetic aging of cartilage in osteoarthritis. Aging (Albany NY). 2016; 8(9). 57. Delgado‐Calle J, Fernández AF, Sainz J, et al. Genome‐wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013; 65(1): 197– 205. 58. del Real A, Pérez‐Campo FM, Fernández AF, et al. Differential analysis of genome‐wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epi- genetics. 2017; 12(2): 113– 22. 59. Reppe S, Lien TG, Hsu Y‐H, et al. Distinct DNA methylation profiles in bone and blood of osteopo- rotic and healthy postmenopausal women. Epigenetics. 2017; 12: 674– 87. 60. Morris JA, Tsai P‐C, Joehanes R, et al. Epigenome‐wide association of DNA methylation in whole blood with bone mineral density. J Bone Miner Res. 2017; 32(8): 1644– 50. 61. Cheishvili D, Parashar S, Mahmood N, et al. Identification of an epigenetic signature of osteoporo- sis in blood DNA of postmenopausal women. J Bone Miner Res. 2018; 33(11): 1980– 9. 62. Yang Y, Fang S. Small non‐coding RNAs‐based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol. 2017; 456: 16– 35. 63. Sera SR, zur Nieden NI. microRNA regulation of skeletal development. Curr Osteoporos Rep. 2017; 15(4): 353– 66.

RkJQdWJsaXNoZXIy ODAyMDc0