Cindy Boer

58 | Chapter 1.2 64. Taipaleenmäki H. Regulation of bone metabolism by microRNAs. Curr Osteoporos Rep. 2018; 16(1): 1– 12. 65. Li D, Liu J, Guo B, et al. Osteoclast‐derived exosomal miR‐214‐3p inhibits osteoblastic bone forma- tion. Nat Commun. 2016; 7: 10872. 66. Wang X, Guo B, Li Q, et al. miR‐214 targets ATF4 to inhibit bone formation. Nat Med. 2013; 19(1546–170; 1): 93– 100. 67. Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009; 119(12): 3666– 77. 68. Seeliger C, Er B, van Griensven M. miRNAs related to skeletal diseases. Stem Cells Dev. 2016; 25: 1261– 8. 69. Kolhe R, Hunter M, Liu S, et al. Gender‐specific differential expression of exosomal miRNA in syno- vial fluid of patients with osteoarthritis. Sci Rep. 2017; 7(1): 2029. 70. Cong L, Zhu Y, Tu G. A bioinformatic analysis of microRNAs role in osteoarthritis. Osteoarthritis Cartilage. 2017; 25(8): 1362– 71. 71. Si HB, Zeng Y, Liu SY, et al. Intra‐articular injection of microRNA‐140 (miRNA‐140) alleviates osteo- arthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoar- thritis Cartilage. 2017; 25(10): 1698– 707. 72. Trachana V, Ntoumou E, Anastasopoulou L, Tsezou A. Studying microRNAs in osteoarthritis: critical overview of different analytical approaches. Mech Ageing Dev. 2018; 171: 15– 23. 73. Li X, Guo L, Liu Y, et al. MicroRNA‐21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7‐Smad1/5/8‐Runx2 pathway. Biochem Biophys Res Commun. 2017; 493(2): 928– 33. 74. Zhao Y, Wang Z, Wu G, et al. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA‐21‐loaded chitosan/hyaluronic acid nanoparticles via reverse trans- fection. Int J Nanomedicine. 2016; 11: 2091. 75. Yoshizuka M, Nakasa T, Kawanishi Y, et al. Inhibition of microRNA‐222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci. 2016; 21(6): 852– 8. 76. Li K‐C, Chang Y‐H, Yeh C‐L, Hu Y‐C. Healing of osteoporotic bone defects by baculovirus‐engineered bone marrow‐derived MSCs expressing MicroRNA sponges. Biomaterials. 2016; 74: 155– 66. 77. Zhang L, Tang Y, Zhu X, et al. Overexpression of MiR‐335‐5p promotes bone formation and regen- eration in mice. J Bone Miner Res. 2017; 32(12): 2466– 75. 78. Deng Y, Zhou H, Zou D, et al. The role of miR‐31‐modified adipose tissue‐derived stem cells in re- pairing rat critical‐sized calvarial defects. Biomaterials. 2013; 34(28): 6717– 28. 79. Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Phar- macol. 2018; 40: 59– 66. 80. Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol. 2016; 432: 83– 95. 81. Materozzi M, Merlotti D, Gennari L, Bianciardi S. The Potential role of miRNAs as new biomarkers for osteoporosis. Int J Endocrinol. 2018; 2018: 1– 10. 82. Gennari L, Bianciardi S, Merlotti D. MicroRNAs in bone diseases. Osteoporos Int. 2017; 28(4): 1191– 213. 83. Cantley MD, Zannettino ACW, Bartold PM, Fairlie DP, Haynes DR. Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone. 2017; 95: 162– 74. 84. Bradley EW, Carpio LR, van Wijnen AJ, McGee‐Lawrence ME, Westendorf JJ. Histone deacetylases in bone development and skeletal disorders. Physiol Rev. 2015; 95(4): 1359– 81. 85. Pike JW, Meyer MB, St John HC, Benkusky NA. Epigenetic histone modifications and master regu- lators as determinants of context dependent nuclear receptor activity in bone cells. Bone. 2015; 81: 757– 64. 86. LR, Westendorf JJ. Histone deacetylases in cartilage homeostasis and osteoarthritis. Curr Rheuma- tol Rep. 2016; 18(8): 52.

RkJQdWJsaXNoZXIy ODAyMDc0