Cindy Boer
Epigenomics in bone and cartilage disease | 59 1.2 87. Zhang Y‐X, Sun H‐L, Liang H, Li K, Fan Q‐M, Zhao Q‐H. Dynamic and distinct histone modifications of osteogenic genes during osteogenic differentiation. J Biochem. 2015; 158(6): 445– 57. 88. Batlle‐López A, Cortiguera MG, Rosa‐Garrido M, et al. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus. Oncogene. 2015; 34: 246– 56. 89. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999; 22(1): 85– 9. 90. Lee H‐L, Yu B, Deng P, Wang C‐Y, Hong C. Transforming growth factor‐β‐induced KDM4B promotes chondrogenic differentiation of human mesenchymal stem cells. Stem Cells. 2016; 34(3): 711– 9. 91. Dvir‐Ginzberg M, Gagarina V, Lee E‐J, Hall DJ. Regulation of cartilage‐specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008; 283(52): 36300– 10. 92. Tsuda M, Takahashi S, Takahashi Y, Asahara H. Transcriptional co‐activators CREB‐binding protein and p300 regulate chondrocyte‐specific gene expression via association with Sox9. J Biol Chem. 2003; 278(29): 27224– 9. 93. Furumatsu T, Tsuda M, Yoshida K, et al. Sox9 and p300 cooperatively regulate chromatin‐mediated transcription. J Biol Chem. 2005; 280(42): 35203– 8. 94. Dai J, Yu D, Wang Y, et al. Kdm6b regulates cartilage development and homeostasis through ana- bolic metabolism. Ann Rheum Dis. 2017; 76(7): 1295– 303. 95. Otero M, Peng H, Hachem K El, et al. ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9‐CBP/p300‐driven histone acetyltransferase activity. Connect Tissue Res. 2017; 58(1): 15– 26. 96. Wondimu EB, Culley KL, Quinn J, et al. Elf3 contributes to cartilage degradation in vivo in a surgical model of post‐traumatic osteoarthritis. Sci Rep. 2018; 8(1): 6438. 97. Khan NM, Haqqi TM. Epigenetics in osteoarthritis: potential of HDAC inhibitors as therapeutics. Pharmacol Res. 2018; 128: 73– 9. 98. Evangelou E, Valdes AM, Castano‐Betancourt MC, et al. The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome‐wide statistical significance in males. Ann Rheum Dis. 2013; 72(7): 1264– 5. 99. Monteagudo S, Cornelis FMF, Aznar‐Lopez C, et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat Commun. 2017; 8: 15889. 100. Niu N, Shao R, Yan G, Zou W. Bromodomain and extra‐terminal (BET) protein inhibitors suppress chondrocyte differentiation and restrain bone growth. J Biol Chem. 2016; 291(52): 26647– 57. 101. Jiang Y, Zhu L, Zhang T, et al. BRD4 has dual effects on the HMGB1 and NF‐κB signalling pathways and is a potential therapeutic target for osteoarthritis. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(12): 3001– 15. 102. Baud'huin M, Lamoureux F, Jacques C, et al. Inhibition of BET proteins and epigenetic signaling as a potential treatment for osteoporosis. Bone. 2017; 94: 10– 21. 103. Park‐Min K‐H, Lim E, Lee MJ, et al. Inhibition of osteoclastogenesis and inflammatory bone resorp- tion by targeting BET proteins and epigenetic regulation. Nat Commun. 2014; 5: 5418. 104. Dimitrova E, Turberfield AH, Klose RJ. Histone demethylases in chromatin biology and beyond. EMBO Rep. 2015; 16(12): 1620– 39. 105. Wood K, Tellier M, Murphy S. DOT1L and H3K79 methylation in transcription and genomic stability. Biomolecules. 2018; 8(1). 106. Jones B, Su H, Bhat A, et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 2008; 4(9): e1000190. 107. Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Circ Physiol. 2015; 309(9): H1375– 89. 108. Burchfield JS, Li Q, Wang HY, Wang R‐F. JMJD3 as an epigenetic regulator in development and dis- ease. Int J Biochem Cell Biol. 2015; 67: 148– 57.
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0