Anne-Marie Koop

178 Physiol - Endocrinol Metab 2001;281:E704–E712. 50. Kim TT, Dyck JRB. The Role of CD36 in the Regulation of Myocardial Lipid Metabolism. BBA - Mol Cell Biol Lipids Elsevier B.V.; 2016; 51. Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, Yu X, Sun B, Chen L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol BioMed Central; 2019;18:1–13. 52. Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y. Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem 2008;317:43–50. 53. Murdoch CE, Zhang M, Cave AC, Shah AM. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res 2006;71:208–215. 54. Münzel T, Gori T, Keaney JF, Maack C, Daiber A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 2015;36: 2555–2564. 55. Natali A, Nesti L, Fabiani I, Calogero E, Bello V Di. Impact of empagliflozin on subclinical left ventricular dysfunctions and on the mechanisms involved in myocardial disease progression in type 2 diabetes: Rationale and design of the EMPA-HEART trial. Cardiovasc Diabetol BioMed Central; 2017;16:1–12. 56. Yang Z, Laubach VE, French BA, Kron IL. Acute Hyperglycaemia enhances oxidative stress and exacerbates myocardial infarction by activating NADPH oxidase during reperfusion. J Thorac Cardiovasc Surg 2010;137:723–729. 57. Byrne,* JA, Grieve DJ, Bendall JK, Li J-M, Gove C, Lambeth JD, Cave AC, Shah AM. Contrasting Roles of NADPH Oxidase Isoforms in Pressure-Overload Versus Angiotensin II–Induced Cardiac Hypertrophy. Circ Res 2003;93:802–805. 58. Kobara M, Furumori-Yukiya A, Kitamura M, Matsumura M, Ohigashi M, Toba H, Nakata T. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload. J Card Fail Elsevier Inc; 2015;21:656–666. 59. Rutschow S, Unger T, Anker S, Westermann D, Linderer A, Schultheiss H-P, Jager S, Pauschinger M, Tschope C, Riad A. Contributions of Inflammation and Cardiac Matrix Metalloproteinase Activity to Cardiac Failure in Diabetic Cardiomyopathy: The Role of Angiotensin Type 1 Receptor Antagonism. Diabetes 2007;56:641–646. 60. Du W, Schouten EM, Silljé HHW, A.Voors A, Boer RA de, Kolk CWA van de, Piek A, Mueller C, Mebazaa A. Plasma levels of heart failure biomarkers are primarily a reflection of extracardiac production. Theranostic s 2018;8:4155–4169. 61. Rumsey WL, Abbott B, Bertelsen D, Mallamaci M, Hagan K, Nelson D, Erecinska M. Adaptation to hypoxia alters energy metabolism in rat heart. Am J Physiol - Hear Circ Physiol W.L. Rumsey, Zeneca Pharmaceuticals, Wilmington, DE 19850-5437, United States; 1999;276:H71–H80. 62. Nouette-Gaulain K, Malgat M, Rocher C, Savineau J-P, Marthan R, Mazat J-P, Sztark F. Time course of differential mitochondrial energy metabolism adaptation to chronic hypoxia in right and left ventricles. Cardiovasc Res F. Sztark, Laboratoire d’Anesthésiologie, E.A. Physiologie Mitochondriale, Universite Bordeaux 2, 33076 Bordordeaux, France; 2005;66:132–140.

RkJQdWJsaXNoZXIy ODAyMDc0