Anne-Marie Koop

96 44. Lauva IK, Brody E, Tiger E, Kent RL, Copper G 4th, Marino TA. Control of myocardial tissue components and cardiocyte organelles in pressure-overload hypertrophy of the cat right ventricle. Am J Anat United States; 1986;177:71–80. 45. Olivetti G, Ricci R, Lagrasta C, Maniga E, Sonnenblick EH, Anversa P. Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res Department of Pathology, University of Parma, 43100 Parma; 1988; 63 :648–657. 46. Sack MN, Disch DL, Rockman HA, Kelly DP. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci U S A D.P. Kelly, Center for Cardiovascular Research, Box 8086, Washington Univ. Sch. of Medicine, St. Louis, MO 63110, United States; 1997;94:6438–6443. 47. Sheikh AM, Barrett C, Villamizar N, Alzate O, Valente AM, Herlong JR, Craig D, Lodge A, Lawson J, Milano C, Jaggers J. Right ventricular hypertrophy with early dysfunction: A proteomics study in a neonatal model. J Thorac Cardiovasc Surg A.M. Sheikh, Department of Pediatric Cardiac Surgery, the Neuroproteomics Center, Durham, NC, United States; 2009;137:1146–1153. 48. Mccommis KS, Douglas DL, Krenz M, Baines CP. Cardiac-speci fi c Hexokinase 2 Overexpression Attenuates Hypertrophy by Increasing Pentose Phosphate Pathway Flux. 2013;2:1–14. 49. Wu R,Wyatt E, Chawla K, Tran M, Ghanefar M, Laakso M, Epting CL, Ardehali H. Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production. 2012;633–646. 50. Calmettes G, John SA, Weiss JN, Ribalet B. Hexokinase – mitochondrial interactions regulate glucose metabolism differentially in adult and neonatal cardiac myocytes. 2013;425–436. 51. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt / PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. 2001;1406–1418. 52. Fritz HL, Smoak IW, Branch S. Hexokinase I expression and activity in embryonic mouse heart during early and late organogenesis. 1999;14:359–365. 53. John JC St., Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP. The Expression of Mitochondrial DNA Transcription Factors during Early Cardiomyocyte In Vitro Differentiation from Human Embryonic Stem Cells. Cloning Stem Cells 2005;7:141–153. 54. Reddy S, Zhao M, Hu D-Q, Fajardo G, Katznelson E, Punn R, Spin JM, Chan FP, Bernstein D. Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol Heart Circ Phys iol 2013;304:H1314-27. 55. Reddy S, Zhao M, Hu D-Q, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, Wu JC, Bernstein D. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomic s 2012;44:562–575. 56. Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B, Gao Y, Dumur CI, Fawcett P, Voelkel NF, Natarajan R. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Bi ol 2011;45:1239–1247.

RkJQdWJsaXNoZXIy ODAyMDc0