Sara van den Berg

107 4 CMV on influenza infection REFERENCES 1. Furman, D., et al., Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med, 2015. 7(281): p. 281ra43. 2. Goronzy, J.J., et al., Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol, 2001. 75(24): p. 12182-7. 3. Almanzar, G., et al., Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol, 2005. 79(6): p. 3675-83. 4. Chidrawar, S., et al., Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol, 2009. 155(3): p. 423-32. 5. Hadrup, S.R., et al., Longitudinal Studies of Clonally Expanded CD8 T-cells Reveal a Repertoire Shrinkage Predicting Mortality and an Increased Number of Dysfunctional Cytomegalovirus-Specific T-cells in the Very Elderly. The Journal of Immunology, 2006. 176(4): p. 2645-2653. 6. Nikolich-Zugich, J., The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol, 2018. 19(1): p. 10-19. 7. Looney, R.J.F., A, Campbell, D. Torres, A. Kolassa, J. Brower, C. McCann, R. Menegus, M. McCormick, K. Frampton, M. Hall, W, Abraham, G.N. , Role of Cytomegalovirus in the T-cell Changes Seen in Elderly Individuals. Clinical Immunology, 1999. 90(2): p. 213–219. 8. Koch, S., et al., Cytomegalovirus infection: a driving force in human T-cell immunosenescence. Ann N Y Acad Sci, 2007. 1114: p. 23-35. 9. Olsson, J.W., A. Johansson, B. Lofgren, S. Nilsson, B. Ferguson, F.G. , Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mechanisms of Ageing and Development, 2000. 121: p. 187–201. 10. Derhovanessian, E., A. Larbi, and G. Pawelec, Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr Opin Immunol, 2009. 21(4): p. 440-5. 11. Brodin, P., et al., Variation in the human immune system is largely driven by non-heritable influences. Cell, 2015. 160(1-2): p. 37-47. 12. Aiello, A.E., Y.L. Chiu, and D. Frasca, How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms? Geroscience, 2017. 39(3): p. 261-271. 13. Tu, W. and S. Rao, Mechanisms Underlying T-cell Immunosenescence: Aging and Cytomegalovirus Infection. Front Microbiol, 2016. 7: p. 2111. 14. McElhaney, J.E., et al., T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines. Front Immunol, 2016. 7: p. 41. 15. Reber, A.J.C., T. Kim, J.H. Cao, W. Biber, R. Shay, D.K. and Sambhara, S.*, Immunosenescence and Challenges of Vaccination against Influenza in the aging population. Aging and Disease, 2011. 16. Wald, A., et al., Impact of human cytomegalovirus (CMV) infection on immune response to pandemic 2009 H1N1 influenza vaccine in healthy adults. J Med Virol, 2013. 85(9): p. 1557-60. 17. Merani, S., et al., Influenza vaccine-mediated protection in older adults: Impact of influenza infection, cytomegalovirus serostatus and vaccine dosage. Exp Gerontol, 2018. 107: p. 116-125. 18. Frasca, D., et al., Cytomegalovirus (CMV) seropositivity decreases B cell responses to the influenza vaccine. Vaccine, 2015. 33(12): p. 1433-9. 19. den Elzen, W.P., et al., Cytomegalovirus infection and responsiveness to influenza vaccination in elderly residents of long-term care facilities. Vaccine, 2011. 29(29-30): p. 4869-74.

RkJQdWJsaXNoZXIy ODAyMDc0