Sara van den Berg

108 Chapter 4 20. van den Berg, S.P.H., et al., Negative Effect of Age, but Not of Latent Cytomegalovirus Infection on the Antibody Response to a Novel Influenza Vaccine Strain in Healthy Adults. Front Immunol, 2018. 9: p. 82. 21. van den Berg, S.P.H., et al., Effect of latent cytomegalovirus infection on the antibody response to influenza vaccination: a systematic review and meta-analysis. Med Microbiol Immunol, 2019. 208(3-4): p. 305-321. 22. Wilkinson, T.M., et al., Preexisting influenza-specific CD4+ T-cells correlate with disease protection against influenza challenge in humans. Nat Med, 2012. 18(2): p. 274-80. 23. Sridhar, S., et al., Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med, 2013. 19(10): p. 1305-12. 24. Wang, Z., et al., Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8(+) T-cells. Nat Commun, 2015. 6: p. 6833. 25. Grant, E.J., et al., Human influenza viruses and CD8(+) T-cell responses. Curr Opin Virol, 2016. 16: p. 132-142. 26. Kreijtz, J.H., R.A. Fouchier, and G.F. Rimmelzwaan, Immune responses to influenza virus infection. Virus Res, 2011. 162(1-2): p. 19-30. 27. Koutsakos, M., et al., Human CD8(+) T-cell cross-reactivity across influenza A, B and C viruses. Nat Immunol, 2019. 20(5): p. 613-625. 28. Wang, Z., et al., Clonally diverse CD38(+)HLA-DR(+)CD8(+) T-cells persist during fatal H7N9 disease. Nat Commun, 2018. 9(1): p. 824. 29. Jansen, J.M., et al., Influenza virus-specific CD4+ and CD8+ T-cell-mediated immunity induced by infection and vaccination. J Clin Virol, 2019. 119: p. 44-52. 30. Khan, N., et al., Cytomegalovirus Seropositivity Drives the CD8 T-cell Repertoire Toward Greater Clonality in Healthy Elderly Individuals. The Journal of Immunology, 2002. 169(4): p. 1984-1992. 31. Khan, N., et al., Herpesvirus-specific CD8 T-cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol, 2004. 173(12): p. 7481-9. 32. van de Berg, P.J., et al., A fingerprint left by cytomegalovirus infection in the human T-cell compartment. J Clin Virol, 2008. 41(3): p. 213-7. 33. Pawelec, G.A., A. Caruso, C. Grubeck-Loebenstein, B. Solana, R. Wikby, A. , Human immunosenescence: is it infectious? Immunological Reviews, 2005. 205: p. 257–268. 34. Franceschi, C. and J. Campisi, Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci, 2014. 69 Suppl 1: p. S4-9. 35. Jenkins, C., et al., Immunomodulatory properties of a viral homolog of human interleukin-10 expressed by human cytomegalovirus during the latent phase of infection. J Virol, 2008. 82(7): p. 3736-50. 36. Pawelec, G., D. Goldeck, and E. Derhovanessian, Inflammation, ageing and chronic disease. Curr Opin Immunol, 2014. 29: p. 23-8. 37. Trzonkowski, P., et al., Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine, 2003. 21(25-26): p. 3826-3836. 38. Prosch, S.S., K. Stein, J. Liebenthal, C. Stamminger, T. Volk, H. Kurger, D.V. , Stimulation of the Human Cytomegalovirus IE Enhancer/Promotor in HL-60 Cells by TNFa Is mediated via Induction of NF-kb. Virology, 1995. 208: p. 197-206. 39. McElhaney, J.E., et al., The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine, 2012. 30(12): p. 2060-7.

RkJQdWJsaXNoZXIy ODAyMDc0