Sara van den Berg
159 6 T-cell dynamics in CMV REFERENCES 1. McGeoch, D.J., F.J. Rixon, and A.J. Davison, Topics in herpesvirus genomics and evolution. Virus Res, 2006. 117(1): p. 90-104. 2. Wertheimer, A.M., et al., Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T-cell subsets in humans. J Immunol, 2014. 192(5): p. 2143-55. 3. van der Heiden, M., et al., Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep, 2016. 6: p. 26892. 4. Jackson, S.E., et al., Latent Cytomegalovirus (CMV) Infection Does Not Detrimentally Alter T-cell Responses in the Healthy Old, But Increased Latent CMV Carriage Is Related to Expanded CMV- Specific T-cells. Front Immunol, 2017. 8: p. 733. 5. Derhovanessian, E., et al., Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol, 2011. 92(Pt 12): p. 2746-56. 6. Solana, R., et al., CMV and Immunosenescence: from basics to clinics. Immun Ageing, 2012. 9(1): p. 23. 7. Wills, M., et al., Report from the second cytomegalovirus and immunosenescence workshop. Immun Ageing, 2011. 8(1): p. 10. 8. Dupont, L. and M.B. Reeves, Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol, 2016. 26(2): p. 75-89. 9. van Boven, M., et al., Infectious reactivation of cytomegalovirus explaining age- and sex-specific patterns of seroprevalence. PLoS Comput Biol, 2017. 13(9): p. e1005719. 10. Stowe, R.P., et al., Chronic herpesvirus reactivation occurs in aging. Exp Gerontol, 2007. 42(6): p. 563-70. 11. Sylwester, A.W., et al., Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T-cells dominate the memory compartments of exposed subjects. J Exp Med, 2005. 202(5): p. 673-85. 12. van de Berg, P.J., et al., A fingerprint left by cytomegalovirus infection in the human T-cell compartment. J Clin Virol, 2008. 41(3): p. 213-7. 13. Cicin-Sain, L., Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol, 2019. 208(3-4): p. 339-347. 14. Klenerman, P., The (gradual) rise of memory inflation. Immunol Rev, 2018. 283(1): p. 99-112. 15. Welten, S.P.M., N.S. Baumann, and A. Oxenius, Fuel and brake of memory T-cell inflation. Med Microbiol Immunol, 2019. 208(3-4): p. 329-338. 16. Karrer, U., et al., Memory inflation: continuous accumulation of antiviral CD8+ T-cells over time. J Immunol, 2003. 170(4): p. 2022-9. 17. Holtappels, R., et al., Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T-cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol, 2000. 74(24): p. 11495-503. 18. Vescovini, R., et al., Impact of Persistent Cytomegalovirus Infection on Dynamic Changes in Human Immune System Profile. PLoS One, 2016. 11(3): p. e0151965. 19. Hosie, L., et al., Cytomegalovirus-Specific T-cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8(+) T-Cell Repertoire in Older People. Front Immunol, 2017. 8: p. 1776. 20. Klenerman, P. and A. Oxenius, T-cell responses to cytomegalovirus. Nat Rev Immunol, 2016.
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0