Sara van den Berg

160 Chapter 6 21. Wallace, D.L., et al., Human cytomegalovirus-specific CD8(+) T-cell expansions contain long-lived cells that retain functional capacity in both young and elderly subjects. Immunology, 2011. 132(1): p. 27-38. 22. Westera, L., et al., Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell, 2015. 14(2): p. 219-27. 23. Macaulay, R., A.N. Akbar, and S.M. Henson, The role of the T-cell in age-related inflammation. Age (Dordr), 2013. 35(3): p. 563-72. 24. Snyder, C.M., et al., Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T-cells. Immunity, 2008. 29(4): p. 650-9. 25. Busch, R., et al., Measurement of cell proliferation by heavy water labeling. Nat Protoc, 2007. 2(12): p. 3045-57. 26. Patterson, B.W., G. Zhao, and S. Klein, Improved accuracy and precision of gas chromatography/ mass spectrometry measurements for metabolic tracers. Metabolism, 1998. 47(6): p. 706-12. 27. Ahmed, R., et al., Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments. PLoS Comput Biol, 2015. 11(10): p. e1004355. 28. Asquith, B., et al., Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol, 2002. 23(12): p. 596-601. 29. Westera, L., et al., Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans. Blood, 2013. 122(13): p. 2205-12. 30. Looney, R.J., et al., Role of cytomegalovirus in the T-cell changes seen in elderly individuals. Clin Immunol, 1999. 90(2): p. 213-9. 31. Di Benedetto, S., et al., Impact of age, sex and CMV infection on peripheral T-cell phenotypes: results from the Berlin BASE-II Study. Biogerontology, 2015. 32. Ruiz-Mateos, E., et al., High levels of CD57+CD28- T-cells, low T-cell proliferation and preferential expansion of terminally differentiated CD4+ T-cells in HIV-elite controllers. Curr HIV Res, 2010. 8(6): p. 471-81. 33. Strioga, M., V. Pasukoniene, and D. Characiejus, CD8+ CD28- and CD8+ CD57+ T-cells and their role in health and disease. Immunology, 2011. 134(1): p. 17-32. 34. Ahmed, R., et al., Human Stem Cell-like Memory T-cells Are Maintained in a State of Dynamic Flux. Cell Rep, 2016. 17(11): p. 2811-2818. 35. van den Berg, S.P.H., et al., The hallmarks of CMV-specific CD8 T-cell differentiation. Med Microbiol Immunol, 2019. 208(3-4): p. 365-373. 36. Pera, A., et al., CD28(null) pro-atherogenic CD4 T-cells explain the link between CMV infection and an increased risk of cardiovascular death. Theranostics, 2018. 8(16): p. 4509-4519. 37. Juno, J.A., et al., Cytotoxic CD4 T-cells-Friend or Foe during Viral Infection? Front Immunol, 2017. 8: p. 19. 38. Phetsouphanh, C., S. Pillai, and J.J. Zaunders, Editorial: Cytotoxic CD4+ T-cells in Viral Infections. Front Immunol, 2017. 8: p. 1729. 39. Akondy, R.S., et al., Origin and differentiation of human memory CD8 T-cells after vaccination. Nature, 2017. 552(7685): p. 362-367. 40. Derhovanessian, E., A. Larbi, and G. Pawelec, Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr Opin Immunol, 2009. 21(4): p. 440-5. 41. Pawelec, G.A., A. Caruso, C. Grubeck-Loebenstein, B. Solana, R. Wikby, A. , Human immunosenescence: is it infectious? Immunological Reviews, 2005. 205: p. 257–268.

RkJQdWJsaXNoZXIy ODAyMDc0