Sara van den Berg

196 Chapter 7 42. Sen, P.K., Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 1968. 63(324): p. 1379-1389. 43. Wilcox, R., A Note on the Theil-Sen Regression Estimator When the Regressor Is Random and the Error Term Is Heteroscedastic. Biometrical Journal, 1998. 40(3): p. 261-268. 44. Liaw, A. and M. Wiener, Classification and regression by randomForest. R news, 2002. 2(3): p. 18-22. 45. Wang, H., et al., Cytomegalovirus Infection and Relative Risk of Cardiovascular Disease (Ischemic Heart Disease, Stroke, and Cardiovascular Death): A Meta‐Analysis of Prospective Studies Up to 2016. Journal of the American Heart Association, 2017. 6(7): p. e005025. 46. Hecker, M., et al., Continuous cytomegalovirus seroconversion in a large group of healthy blood donors. Vox Sang, 2004. 86(1): p. 41-4. 47. Hyde, T.B., D.S. Schmid, and M.J. Cannon, Cytomegalovirus seroconversion rates and risk factors: implications for congenital CMV. Rev Med Virol, 2010. 20(5): p. 311-26. 48. Cannon, M.J., T.B. Hyde, and D.S. Schmid, Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol, 2011. 21(4): p. 240-55. 49. Lustig, A., et al., Telomere Shortening, Inflammatory Cytokines, and Anti-Cytomegalovirus Antibody Follow Distinct Age-Associated Trajectories in Humans. Front Immunol, 2017. 8: p. 1027. 50. Amanna, I.J., N.E. Carlson, and M.K. Slifka, Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med, 2007. 357(19): p. 1903-15. 51. Wrammert, J. and R. Ahmed, Maintenance of serological memory. Biol Chem, 2008. 389(5): p. 537-9. 52. Siegrist, C.A. and R. Aspinall, B-cell responses to vaccination at the extremes of age. Nat Rev Immunol, 2009. 9(3): p. 185-94. 53. Reddehase, M.J., ‘Checks and balances’ in cytomegalovirus-host cohabitation. Med Microbiol Immunol, 2019. 208(3-4): p. 259-261. 54. Cicin-Sain, L., Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol, 2019. 208(3-4): p. 339-347. 55. Jackson, S.E., et al., Generation, maintenance and tissue distribution of T-cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol, 2019. 56. Vescovini, R., et al., Impact of Persistent Cytomegalovirus Infection on Dynamic Changes in Human Immune System Profile. PLoS One, 2016. 11(3): p. e0151965. 57. Hosie, L., et al., Cytomegalovirus-Specific T-cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8(+) T-Cell Repertoire in Older People. Front Immunol, 2017. 8: p. 1776. 58. Jackson, S.E., et al., Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus- specific CD8+ T-cells. J Virol, 2014. 88(18): p. 10894-908. 59. Abana, C.O., et al., Cytomegalovirus (CMV) Epitope-Specific CD4(+) T-cells Are Inflated in HIV(+) CMV(+) Subjects. J Immunol, 2017. 199(9): p. 3187-3201. 60. Lebedeva, A.M., et al., Cytomegalovirus Infection in Cardiovascular Diseases. Biochemistry (Mosc), 2018. 83(12): p. 1437-1447. 61. van de Berg, P.J., et al., Cytomegalovirus-induced effector T-cells cause endothelial cell damage. Clin Vaccine Immunol, 2012. 19(5): p. 772-9. 62. Pachnio, A., et al., Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T-cells Targeted to Vascular Endothelium. PLOS Pathogens, 2016. 12(9): p. e1005832.

RkJQdWJsaXNoZXIy ODAyMDc0