Sara van den Berg
38 Chapter 2 REFERENCES 1. Siegrist, C.A. and R. Aspinall, B-cell responses to vaccination at the extremes of age. Nat Rev Immunol, 2009. 9(3): p. 185-94. 2. Tu, W. and S. Rao, Mechanisms Underlying T-cell Immunosenescence: Aging and Cytomegalovirus Infection. Front Microbiol, 2016. 7: p. 2111. 3. Fulop, T., A. Larbi, and G. Pawelec, Human T-cell aging and the impact of persistent viral infections. Front Immunol, 2013. 4: p. 271. 4. McElhaney, J.E., et al., T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines. Front Immunol, 2016. 7: p. 41. 5. Loubet, P., et al., Factors associated with poor outcomes among adults hospitalized for influenza in France: A three-year prospective multicenter study. J Clin Virol, 2016. 79: p. 68-73. 6. van Essen, G.A., et al., Influenza vaccination in 2000: recommendations and vaccine use in 50 developed and rapidly developing countries. Vaccine, 2003. 21(16): p. 1780-5. 7. Goodwin, K., C. Viboud, and L. Simonsen, Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine, 2006. 24(8): p. 1159-69. 8. Pera, A., et al., Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas, 2015. 9. Jefferson, T., et al., Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev, 2010(2): p. CD004876. 10. Arens, R., et al., 5(th) International Workshop on CMV and Immunosenescence - A shadow of cytomegalovirus infection on immunological memory. Eur J Immunol, 2015. 45(4): p. 954-7. 11. Pawelec, G. and E. Derhovanessian, Role of CMV in immune senescence. Virus Res, 2011. 157(2): p. 175-9. 12. Cannon, M.J., D.S. Schmid, and T.B. Hyde, Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol, 2010. 20(4): p. 202-13. 13. Stowe, R.P., et al., Chronic herpesvirus reactivation occurs in aging. Exp Gerontol, 2007. 42(6): p. 563-70. 14. Korndewal, M.J., et al., Cytomegalovirus infection in the Netherlands: seroprevalence, risk factors, and implications. J Clin Virol, 2015. 63: p. 53-8. 15. Cannon, M.J., T.B. Hyde, and D.S. Schmid, Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol, 2011. 21(4): p. 240-55. 16. Bhattacharyya, M.K. and A.J. Lustig, Telomere dynamics in genome stability. Trends Biochem Sci, 2006. 31(2): p. 114-22. 17. Lustig, A., et al., Telomere Shortening, Inflammatory Cytokines, and Anti-Cytomegalovirus Antibody Follow Distinct Age-Associated Trajectories in Humans. Front Immunol, 2017. 8: p. 1027. 18. Wikby, A., et al., Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol, 2002. 37(2-3): p. 445-53. 19. Hadrup, S.R., et al., Longitudinal studies of clonally expanded CD8 T-cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T-cells in the very elderly. J Immunol, 2006. 176(4): p. 2645-53. 20. Appay, V. and S.L. Rowland-Jones, Lessons from the study of T-cell differentiation in persistent human virus infection. Semin Immunol, 2004. 16(3): p. 205-12.
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0