Enrico Martin

133 Diagnostic accuracy of non-invasive tests 38. Well L, Salamon J, Kaul MG, et al. Differentiation of peripheral nerve sheath tumors in patients with neurofibromatosis type 1 using diffusion-weighted magnetic resonance imaging. Neuro Oncol . 2019;21:508–516. 39. Yu YH, Wu JT, Ye J, et al. Radiological findings of malignant peripheral nerve sheath tumor: Reports of six cases and review of literature. World J Surg Oncol .;14 . Epub ahead of print 2016. DOI: 10.1186/ s12957-016-0899-0. 40. Wasa J, Nishida Y, Tsukushi S, et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol . 2010;194:1568–1574. 41. Furniss D, Swan MC, Morritt DG, et al. A 10-year review of benign and malignant peripheral nerve sheath tumors in a single center: Clinical and radiographic features can help to differentiate benign from malignant lesions. Plast Reconstr Surg . 2008;121:529–533. 42. Razek AAKA, Ashmalla GA. Assessment of paraspinal neurogenic tumors with diffusion-weighted MR imaging. Eur Spine J . 2018;27:841–846. 43. Fayad LM, Wang X, Blakeley JO, et al. Characterization of peripheral nerve sheath tumors with 3T proton MR spectroscopy. Am J Neuroradiol . 2014;39:1035–1041. 44. Azizi AA, Slavc I, Theisen BE, et al. Monitoring of plexiform neurofibroma in children and adolescents with neurofibromatosis type 1 by [(18) F]FDG- PET imaging. Is it of value in asymptomatic patients? Pediatr Blood Cancer .;65 . Epub ahead of print January 2018. DOI: 10.1002/ pbc.26733. 45. Cook GJR, Lovat E, Siddique M, et al. Characterisation of malignant peripheral nerve sheath tumours in neurofibromatosis-1 using heterogeneity analysis of (18)F-FDG PET. Eur J Nucl Med Mol Imaging . 2017;44:1845–1852. 46. Lerman L, Zehou O, Ortonne N, et al. Interest of 18F-FDG PET/CT in neurofibromatosis type 1, 10-year experience from the national reference centre Henri-Mondor. Med Nucl . 2019;43:370–380. 47. Moharir M, London K, Howman-Giles R, et al. Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1. Eur J Nucl Med Mol Imaging . 2010;37:1309–1317. 48. Nose H, Otsuka H, Otomi Y, et al. Correlations between F-18 FDG PET/CT and pathological findings in soft tissue lesions. J Med Invest . 2013;60:184–190. 49. Salamon J, Derlin T, Bannas P, et al. Evaluation of intratumoural heterogeneity on (1)(8)F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging . 2013;40:685–692. 50. Tsai LL, Drubach L, Fahey F, et al. [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurof ibromas: correlation with malignant transformation. J Neurooncol . 2012;108:469–475. 51. Warbey VS, Ferner RE, Dunn JT, et al. [18F] FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging . 2009;36:751–757. 52. Salamon J, Veldhoen S, Apostolova I, et al. F-18-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol . 2014;24:405– 412. 53. Combemale P, Valeyrie-Allanore L, Giammarile F, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One .;9 . Epub ahead of print 2014. DOI: 10.1371/journal.pone.0085954. 6

RkJQdWJsaXNoZXIy ODAyMDc0