Jos Jansen

104 Chapter 4 36. Louagie E, Taylor NA, Flamez D, Roebroek AJ, Bright NA, Meulemans S, et al. Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(34):12319-24. 37. Jansen EJ, van Bakel NH, Olde Loohuis NF, Hafmans TG, Arentsen T, Coenen AJ, et al. Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+- dependent exocytosis. The Journal of biological chemistry. 2012;287(33):27537-46. 38. Schoonderwoert VT, Jansen EJ, Martens GJ. The fate of newly synthesized V-ATPase accessory subunit Ac45 in the secretory pathway. European journal of biochemistry / FEBS. 2002;269(7):1844-53. 39. Feng H, Cheng T, Pavlos NJ, Yip KH, Carrello A, Seeber R, et al. Cytoplasmic terminus of vacuolar type proton pump accessory subunit Ac45 is required for proper interaction with V(0) domain subunits and efficient osteoclastic bone resorption. The Journal of biological chemistry. 2008;283(19):13194-204. 40. Ryan M, Graham LA, Stevens TH. Voa1p functions in V-ATPase assembly in the yeast endoplasmic reticulum. Molecular biology of the cell. 2008;19(12):5131-42. 41. Jansen EJ, Hafmans TG, Martens GJ. V-ATPase-mediated granular acidification is regulated by the V-ATPase accessory subunit Ac45 in POMC-producing cells. Molecular biology of the cell. 2010;21(19):3330-9. 42. Jansen EJ, Scheenen WJ, Hafmans TG, Martens GJ. Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway. Biochimica et biophysica acta. 2008;1783(12):2301-10. 43. Yang DQ, Feng S, Chen W, Zhao H, Paulson C, Li YP. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012;27(8):1695-707. 44. Malkus P, Graham LA, Stevens TH, Schekman R. Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Molecular biology of the cell. 2004;15(11):5075-91. 45. Fei W, Alfaro G, Muthusamy BP, Klaassen Z, Graham TR, Yang H, et al. Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae. Eukaryotic cell. 2008;7(2):401-14. 46. Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. The Journal of cell biology. 2008;180(3):473-82. 47. Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ, Israelian N, et al. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta neuropathologica. 2013;125(3):439-57. 48. Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, et al. A protein complex network of Drosophila melanogaster. Cell. 2011;147(3):690-703. 49. Okumura T. Role of lipid droplet proteins in liver steatosis. Journal of physiology and biochemistry. 2011;67(4):629-36. 50. Goh VJ, Silver DL. The lipid droplet as a potential therapeutic target in NAFLD. Seminars in liver disease. 2013;33(4):312-20. 51. Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. Journal of proteome research. 2007;6(8):3256-65. 52. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature. 2008;453(7195):657-61. 53. Thiam AR, Farese RV, Jr., Walther TC. The biophysics and cell biology of lipid droplets. Nature

RkJQdWJsaXNoZXIy ODAyMDc0