Jos Jansen
52 Chapter 2 References 1. Freeze, H.H., Chong, J.X., Bamshad, M.J., and Ng, B.G. (2014). Solving glycosylation isorders: fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 94, 161–175. 2. Ng, B.G., Buckingham, K.J., Raymond, K., Kircher, M., Turner, E.H., He, M., Smith, J.D., Eroshkin, A., Szybowska, M., Losfeld, M.E., et al.; University of Washington Center for Mendelian Genomics (2013). Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am. J. Hum. Genet. 92, 632–636. 3. Guillard, M., Morava, E., de Ruijter, J., Roscioli, T., Penzien, J., van den Heuvel, L., Willemsen, M.A., de Brouwer, A., Bodamer, O.A., Wevers, R.A., et al. (2011). B4GALT1-congenital disorders of glycosylation presents as a non-neurologic glycosylation disorder with hepatointestinal involvement. J pediatr. 159, 1041–1043 e1042. 4. Tan, J., Dunn, J., Jaeken, J., and Schachter, H. (1996). Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am. J. Hum. Genet. 59, 810–817. 5. Miller, V.J., and Ungar, D. (2012). Re’COG’nition at the Golgi. Traffic 13, 891–897. 6. Foulquier, F., Amyere, M., Jaeken, J., Zeevaert, R., Schollen, E., Race, V., Bammens, R., Morelle, W., Rosnoblet, C., Legrand, D., et al. (2012). TMEM165 deficiency causes a congenital disorder of glycosylation. Am. J. Hum. Genet. 91, 15–26. 7. Demaegd, D., Foulquier, F., Colinet, A.S., Gremillon, L., Legrand, D., Mariot, P., Peiter, E., Van Schaftingen, E., Matthijs, G., and Morsomme, P. (2013). Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proc. Natl. Acad. Sci. USA 110, 6859–6864. 8. Kornak, U., Reynders, E., Dimopoulou, A., van Reeuwijk, J., Fischer, B., Rajab, A., Budde, B., Nürnberg, P., Foulquier, F., Lefeber, D., et al.; ARCL Debré-type Study Group (2008). Impaired glycosylation and cutis laxa caused by mutations in the vesicular H + -ATPase subunit ATP6V0A2. Nat. Genet. 40, 32–34. 9. Forgac, M. (2007). Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929. 10. Hucthagowder, V., Morava, E., Kornak, U., Lefeber, D.J., Fischer, B., Dimopoulou, A., Aldinger, A., Choi, J., Davis, E.C., Abuelo, D.N., et al. (2009). Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. Hum. Mol. Genet. 18, 2149–2165. 11. Marshansky, V., Rubinstein, J.L., and Grüber, G. (2014). Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim. Biophys. Acta 1837, 857–879. 12. Wopereis, S., Grünewald, S., Huijben, K.M., Morava, E., Mollicone, R., van Engelen, B.G., Lefeber, D.J., and Wevers, R.A. (2007). Transferrin and apolipoprotein C-III isofocusing are complementary in the diagnosis of N- and O-glycan biosynthesis defects. Clin. Chem. 53, 180–187. 13. Wopereis, S., Grünewald, S., Morava, E., Penzien, J.M., Briones, P., García-Silva, M.T., Demacker, P.N., Huijben, K.M., and Wevers, R.A. (2003). Apolipoprotein C-III isofocusingn in the diagnosis of genetic defects in O-glycan biosynthesis. Clin. Chem. 49, 1839–1845. 14. van Scherpenzeel, M., Steenbergen, G., Morava, E., Wevers, R.A., and Lefeber, D.J. (2015). High- resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl. Res. 166, 639–649. 15. Stránecký, V., Hoischen, A., Hartmannová, H., Zaki, M.S., Chaudhary, A., Zudaire, E., Nosková, L., Baresová, V., Pristoupilová, A., Hodanová, K., et al. (2013). Mutations in ANTXR1 cause GAPO syndrome. Am. J. Hum. Genet. 92, 792–799.
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0