Daan Pieren
147 Regulatory KIR+RA+ CD8+ T cells accumulate with age 44. Cella, M. et al. Loss of DNAM-1 contributes to CD8+ T-cell exhaustion in chronic HIV-1 infection . Eur. J. Immunol. 40, 949-954, doi:10.1002/eji.200940234 (2010). 45. Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells . J. Immunol. 184, 3433-3441, doi:10.4049/jimmunol.0904028 (2010). 46. Dai, H. et al. Cutting edge: programmed death-1 defines CD8+CD122+ T cells as regulatory versus memory T cells . J. Immunol. 185, 803-807, doi:10.4049/jimmunol.1000661 (2010). 47. Gotch, F. et al. Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2 . Nature 326, 881-882, doi:10.1038/326881a0 (1987). 48. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells . J. Exp. Med. 186, 1407-1418, doi:10.1084/jem.186.9.1407 (1997). 49. Sallusto, F. et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions . Nature 401, 708-712, doi:10.1038/44385 (1999). 50. Larbi, A. et al. From “truly naive” to “exhausted senescent” T cells: when markers predict functionality . Cytometry A 85, 25-35, doi:10.1002/cyto.a.22351 (2014). 51. Machicote, A. et al. Human CD8(+)HLA-DR(+) Regulatory T Cells, Similarly to Classical CD4(+)Foxp3(+) Cells, Suppress Immune Responses via PD-1/PD-L1 Axis . Front. Immunol. 9, 2788, doi:10.3389/fimmu.2018.02788 (2018). 52. Rifa’i, M. et al. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis . J. Exp. Med. 200, 1123-1134, doi:10.1084/jem.20040395 (2004). 53. Lages, C. S. et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation . J. Immunol. 181, 1835-1848 (2008). 54. Sharma, S. et al. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals . J. Immunol. 177, 8348-8355 (2006). 55. Gregg, R. et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age . Clin. Exp. Immunol. 140, 540-546, doi:10.1111/j.1365-2249.2005.02798.x (2005). 56. Simone, R. et al. The frequency of regulatory CD3+CD8+CD28- CD25+ T lymphocytes in human peripheral blood increases with age . J. Leukoc. Biol. 84, 1454-1461, doi:10.1189/ jlb.0907627 (2008). 57. Drobek, A. et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells . EMBO J. 37, doi:10.15252/embj.201798518 (2018). 58. Gondek, D. C. et al. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism . J. Immunol. 174, 1783-1786, doi:10.4049/jimmunol.174.4.1783 (2005). 59. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death . Immunity 21, 589-601, doi:10.1016/j.immuni.2004.09.002 (2004). 60. Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals . Cell, doi:10.1016/j.cell.2020.05.015 (2020). 61. Hijano, D. R. et al. Clinical correlation of influenza and respiratory syncytial virus load measured by digital PCR . PLoS One 14, e0220908, doi:10.1371/journal.pone.0220908 (2019). 62. Brincks, E. L. et al. Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection . J. Immunol. 190, 3438-3446, doi:10.4049/ jimmunol.1203140 (2013). 63. Schorer, M. et al. TIGIT limits immune pathology during viral infections . Nat Commun 11, 1288, doi:10.1038/s41467-020-15025-1 (2020). 5
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0