Daan Pieren

182 Chapter 6 REFERENCES 1. Jiang, J. et al. Aging affects initiation and continuation of T cell proliferation . Mech. Ageing Dev. 128, 332-339, doi:10.1016/j.mad.2007.02.002 (2007). 2. Lages, C. S. et al. Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/ PD-L1 pathway . Aging Cell 9, 785-798, doi:10.1111/j.1474-9726.2010.00611.x (2010). 3. Long, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections . Nat. Med., doi:10.1038/s41591-020-0965-6 (2020). 4. Seow, J. et al. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection . medRxiv preprint, doi :https://doi.org/10.1101/2020.07.09.20148429 (2020). 5. Sancho, D. et al. CD69 is an immunoregulatory molecule induced following activation . Trends Immunol. 26, 136-140, doi:10.1016/j.it.2004.12.006 (2005). 6. Liao, W. et al. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy . Immunity 38, 13-25, doi:10.1016/j.immuni.2013.01.004 (2013). 7. Shiow, L. R. et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs . Nature 440, 540-544, doi:10.1038/ nature04606 (2006). 8. Lee, Y. T. et al. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes . J. Virol. 85, 4085-4094, doi:10.1128/JVI.02493-10 (2011). 9. Shinoda, K. et al. Type II membrane protein CD69 regulates the formation of resting T-helper memory . Proc. Natl. Acad. Sci. U. S. A. 109, 7409-7414, doi:10.1073/ pnas.1118539109 (2012). 10. Nelson, B. H. et al. Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T-cell proliferation . Nature 369, 333-336, doi:10.1038/369333a0 (1994). 11. Harty, J. T. et al. Shaping and reshaping CD8+ T-cell memory . Nat. Rev. Immunol. 8, 107- 119, doi:10.1038/nri2251 (2008). 12. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections . Nat. Med. 8, 379-385, doi:10.1038/nm0402-379 (2002). 13. Akbar, A. N. et al. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 11, 289-295, doi:10.1038/nri2959 (2011). 14. Henson, S. M. et al. Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade . Immunology 135, 355-363, doi:10.1111/j.1365- 2567.2011.03550.x (2012). 15. Plunkett, F. J. et al. The loss of telomerase activity in highly differentiated CD8+CD28- CD27- T cells is associated with decreased Akt (Ser473) phosphorylation . J. Immunol. 178, 7710-7719, doi:10.4049/jimmunol.178.12.7710 (2007). 16. Ng, T. P. et al. Markers of T-cell senescence and physical frailty: insights from Singapore Longitudinal Ageing Studies . NPJ Aging Mech Dis 1, 15005, doi:10.1038/npjamd.2015.5 (2015). 17. Lages, C. S. et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation . J. Immunol. 181, 1835-1848 (2008). 18. Sharma, S. et al. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals . J. Immunol. 177, 8348-8355 (2006). 19. Nishioka, T. et al. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice . J. Immunol. 176, 6586-6593, doi:10.4049/jimmunol.176.11.6586 (2006). 20. Hwang, K. A. et al. Aging and human CD4(+) regulatory T cells . Mech. Ageing Dev. 130, 509-517, doi:10.1016/j.mad.2009.06.003 (2009). 21. Gregg, R. et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age . Clin. Exp. Immunol. 140, 540-546, doi:10.1111/j.1365-2249.2005.02798.x (2005). 22. Gregg, S. Q. et al. Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease . DNA Repair (Amst) 10, 781-791, doi:10.1016/j.dnarep.2011.04.026 (2011).

RkJQdWJsaXNoZXIy ODAyMDc0