Mylène Jansen

208 Chapter 10 38. van Spil WE, DeGroot J, Lems WF, et al. Serum and urinary biochemical markers for knee and hip- osteoarthritis: A systematic review applying the consensus BIPED criteria. Osteoarthritis and Cartilage. 2010 May;18(5):605–12. 39. Besselink NJ, Vincken KL, Bartels LW, et al. Cartilage quality (dGEMRIC index) following knee joint distraction or high tibial osteotomy. Cartilage. 2018;11(1):19–31. 40. Jansen MP, Maschek S, Van Heerwaarden RJ, et al. Knee joint distraction is more efficient in rebuilding cartilage thickness in the more affected compartment than high tibial osteotomy in patients with knee osteoarthritis. Osteoarthritis and Cartilage. 2019 Apr;27(1):S330–1. 41. Wiegant K, van Roermund PM, van Heerwaarden RJ, et al. Total knee prosthesis after knee joint distraction treatment. Journal of Surgery and Surgical Research. 2015 Nov 5;1(3):066–71. 42. Jansen MP, van Egmond N, Kester EC, et al. Reduction of pin tract infections during external fixation using cadexomer iodine. Journal of Experimental Orthopaedics. 2020 Dec 7;7(1):88. 43. Baboolal TG, Mastbergen SC, Jones E, et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Annals of the Rheumatic Diseases. 2016;75(5):908–15. 44. Sanjurjo-Rodriguez C, Altaie A, Mastbergen S, et al. Gene Expression signatures of synovial fluid multipotent stromal cells in advanced knee osteoarthritis and following knee joint distraction. Frontiers in Bioengineering and Biotechnology. 2020 Oct 14;8:1178. 45. Watt FE, Hamid B, Garriga C, et al. The molecular profile of synovial fluid changes upon joint distraction and is associated with clinical response in knee osteoarthritis. Osteoarthritis and Cartilage. 2020 Jan;28(3):324–33. 46. Griffin TM, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis. Exercise and Sport Sciences Reviews. 2005;33(4):195–200. 47. Widmyer MR, Utturkar GM, Leddy HA, et al. High body mass index is associated with increased diurnal strains in the articular cartilage of the knee. Arthritis and Rheumatism. 2013;65(10):2615–22. 48. Coleman JL, Widmyer MR, Leddy HA, et al. Diurnal variations in articular cartilage thickness and strain in the human knee. Journal of Biomechanics. 2013;46(3):541–7. 49. Eckstein F, Tieschky M, Faber SC, et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology. 1998;207(1):243–8. 50. Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. Journal of Anatomy. 2006;208(4):491–512. 51. Eckstein F, Tieschky M, Faber S, et al. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anatomy and Embryology. 1999;200(4):419–24. 52. Sutter EG, Widmyer MR, Utturkar GM, et al. In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity. American Journal of Sports Medicine. 2015;43(2):370–6. 53. Liu F, Kozanek M, Hosseini A, et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait. Journal of Biomechanics. 2010;43(4):658–65. 54. Van De Velde SK, Bingham JT, Hosseini A, et al. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis and Rheumatism. 2009;60(12):3693–702. 55. Kurz B, Jin M, Patwari P, et al. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. Journal of Orthopaedic Research. 2001;19(6):1140–6. 56. Patwari P, Cheng DM, Cole AA, et al. Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomechanics and Modeling in Mechanobiology. 2007;6(1–2):83–9. 57. Patwari P, Cook MN, DiMicco MA, et al. Proteoglycan degradation after injurious compression of bovine

RkJQdWJsaXNoZXIy ODAyMDc0