Mylène Jansen
210 Chapter 10 high tibial osteotomy for unloading the medial knee compartment: An in vitro study. Knee Surgery, Sports Traumatology, Arthroscopy. 2017;25(12):3695–703. 77. Slynarski K, Walawski J, Smigielski R, et al. Feasibility of the atlas unicompartmental knee system load absorber in improving pain relief and function in patients needing unloading of the medial compartment of the knee: 1-year follow-up of a prospective, multicenter, single-arm pilot study (PHANTOM high flex trial). Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders. 2017 Sep 26;10. 78. Bikle DD, Halloran BP. The response of bone to unloading. Journal of Bone and Mineral Metabolism. 1999;17(4):233–44. 79. Marijnissen ACA, Vincken KL, Viergever MA, et al. Ankle images digital analysis (AIDA): Digital measurement of joint space width and subchondral sclerosis on standard radiographs. Osteoarthritis and Cartilage. 2001;9(3):264–72. 80. Pouders C, De Maeseneer M, Van Roy P, et al. Prevalence and MRI-anatomic correlation of bone cysts in osteoarthritic knees. American Journal of Roentgenology. 2008;190(1):17–21. 81. Tanamas SK, Wluka AE, Pelletier JP, et al. The association between subchondral bone cysts and tibial cartilage volume and risk of joint replacement in people with knee osteoarthritis: A longitudinal study. Arthritis Research and Therapy. 2010;12(2):R58. 82. van Dijk CN, Reilingh ML, Zengerink M, et al. The natural history of osteochondral lesions in the ankle. Instructional course lectures. 2010;59:375–86. 83. Hwang J, Bae WC, Shieu W, et al. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis and Rheumatism. 2008;58(12):3831–42. 84. Carrino JA, Blum J, Parellada JA, et al. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis and Cartilage. 2006;14(10):1081–5. 85. Hunter DJ, Gerstenfeld L, Bishop G, et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Research and Therapy. 2009;11(1). 86. Caldwell KL, Wang J. Cell-based articular cartilage repair: The link between development and regeneration. Osteoarthritis and Cartilage. 2015;23(3):351–62. 87. Funck-Brentano T, Cohen-Solal M. Crosstalk between cartilage and bone: When bone cytokines matter. Cytokine and Growth Factor Reviews. 2011;22(2):91–7. 88. Yuan XL, Meng HY, Wang YC, et al. Bone-cartilage interface crosstalk in osteoarthritis: Potential pathways and future therapeutic strategies. Osteoarthritis and Cartilage. 2014;22(8):1077–89. 89. Yazawa M, Kishi K, Nakajima H, et al. Expression of bone morphogenetic proteins during mandibular distraction osteogenesis in rabbits. Journal of Oral and Maxillofacial Surgery. 2003 May;61(5):587–92. 90. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012 Jan;8(3):133–43. 91. Song J, Ye B, Liu H, et al. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Proliferation. 2018 Aug;51(4). 92. Wiegant K, Intema F, Roermund PM, et al. Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis. Arthritis and Rheumatology. 2015 Feb 28;67(2):465–74. 93. McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nature Reviews Rheumatology. 2017;13(12):719–30. 94. Jones BA, Pei M. Synovium-derived stem cells: A tissue-specific stem cell for cartilage engineering and regeneration. Tissue Engineering – Part B: Reviews. 2012;18(4):301–11. 95. Jones EA, Crawford A, English A, et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: Detection and functional evaluation at the single-cell level. Arthritis and Rheumatism. 2008;58(6):1731–40.
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0