Joeky Senders
123 Automating clinical chart review 19. Patel TA, Puppala M, Ogunti RO, et al. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods. Cancer. 2017;123(1):114- 121. doi:10.1002/cncr.30245 20. Pershad Y, Govindan S, Hara AK, et al. Using Naïve Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer. Diagnostics. 2017;7(3):50. doi:10.3390/diagnostics7030050 21. Schroeck FR, Patterson OV, Alba PR, et al. Development of a Natural Language Processing Engine to Generate Bladder Cancer Pathology Data for Health Services Research. Urology. 2017;110:84-91. doi:10.1016/j.urology.2017.07.056 22. Yim W, Denman T, Kwan SW, Yetisgen M. Tumor information extraction in radiology reports for hepatocellular carcinoma patients. AMIA Jt Summits Transl Sci Proc. 2016;2016:455-464. 23. Lacson R, Harris K, Brawarsky P, et al. Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry. J Digit Imaging. 2015;28(5):567-575. doi:10.1007/s10278-014-9762-4 24. Nguyen AN, Moore J, O’Dwyer J, Philpot S. Assessing the Utility of Automatic Cancer Registry Notifications Data Extraction from Free-Text Pathology Reports. AMIA Annu Symp Proc. 2015;2015:953-962. 25. Wieneke AE, Bowles EJA, Cronkite D, et al. Validation of natural language processing to extract breast cancer pathology procedures and results. J Pathol Inform. 2015;6. doi:10.4103/2153-3539.159215 26. Martinez D, Pitson G, MacKinlay A, Cavedon L. Cross-hospital portability of information extraction of cancer staging information. Artificial Intelligence inMedicine. 2014;62(1):11-21. doi:10.1016/j.artmed.2014.06.002 27. Coden A, Savova G, Sominsky I, et al. Automatically extracting cancer disease characteristics from pathology reports into a Disease Knowledge Representation Model. Journal of Biomedical Informatics. 2009;42(5):937-949. doi:10.1016/j.jbi.2008.12.005 28. Leroy G, Gu Y, Pettygrove S, Galindo MK, Arora A, Kurzius-Spencer M. Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application. Journal of Medical Internet Research. 2018;20(11):e10497. doi:10.2196/10497 29. Jackson RG, Patel R, Jayatilleke N, et al. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS- CODE) project. BMJ Open. 2017;7(1):e012012. doi:10.1136/bmjopen-2016-012012 30. Topaz M, Lai K, Dowding D, et al. Automated identification of wound information in clinical notes of patients with heart diseases: Developing and validating a natural language processing application. International Journal of Nursing Studies. 2016;64:25-31. doi:10.1016/j.ijnurstu.2016.09.013 31. Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 2011;306(8):848-855. doi:10.1001/ jama.2011.1204 32. Tinoco A, Evans RS, Staes CJ, Lloyd JF, Rothschild JM, Haug PJ. Comparison of computerized surveillance and manual chart review for adverse events. J Am Med Inform Assoc. 2011;18(4):491-497. doi:10.1136/ amiajnl-2011-000187 33. Pruitt P, Naidech A, Van Ornam J, Borczuk P, Thompson W. A natural language processing algorithm to extract characteristics of subdural hematoma from head CT reports. Emerg Radiol. January 2019. doi:10.1007/s10140-019-01673-4 34. Zech J, Pain M, Titano J, et al. Natural Language–based Machine Learning Models for the Annotation of Clinical Radiology Reports. Radiology. 2018;287(2):570-580. doi:10.1148/radiol.2018171093 35. Patterson OV, Freiberg MS, Skanderson M, J. Fodeh S, Brandt CA, DuVall SL. Unlocking echocardiogram measurements for heart disease research through natural language processing. BMC Cardiovasc Disord. 2017;17. doi:10.1186/s12872-017-0580-8
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0