Tamara van Donge

Physiological changes during pregnancy and neonatal life 35 2 References 1. Moore TJ, Weiss SR, Kaplan S, Blaisdell CJ. Reported adverse drug events in infants and children under 2 years of age. Pediatrics. 2002;110(5):e53-e53. 2. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. New England Journal of Medicine. 2003;349(12):1157-1167. 3. Allegaert K, Anker JN. Adverse drug reactions in neonates and infants: a population‐tailored approach is needed. British journal of clinical pharmacology. 2015;80(4):788-795. 4. Mitchell AA, Gilboa SM, Werler MM, et al. Medication use during pregnancy, with particular focus on prescription drugs: 1976-2008. American journal of obstetrics and gynecology. 2011;205(1):51. e51-51. e58. 5. Bornhauser C, Quack KL, Seifert B, Simões-Wüst AP. Diet, medication use and drug intake during pregnancy: data from the consecutive Swiss Health Surveys of 2007 and 2012. Swiss Med Wkly. 2017;147:w14572. 6. Dallmann A, Pfister M, van den Anker J, Eissing T. Physiologically Based Pharmacokinetic Modeling in Pregnancy: A Systematic Review of Published Models. Clinical Pharmacology & Therapeutics. 2018. 7. Pariente G, Leibson T, Carls A, Adams-Webber T, Ito S, Koren G. Pregnancy-associated changes in pharmacokinetics: a systematic review. PLoS Medicine. 2016;13(11):e1002160. 8. Loebstein R, Lalkin A, Koren G. Pharmacokinetic changes during pregnancy and their clinical relevance. Clinical pharmacokinetics. 1997;33(5):328-343. 9. Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. Journal of pharmacokinetics and pharmacodynamics. 2016;43(5):481-504. 10. Colbers A, Greupink R, Litjens C, Burger D, Russel FG. Physiologically based modelling of darunavir/ ritonavir pharmacokinetics during pregnancy. Clinical pharmacokinetics. 2016;55(3):381-396. 11. Ke AB, Greupink R, Abduljalil K. Drug dosing in pregnant women: challenges and opportunities in using physiologically based pharmacokinetic modeling and simulations. CPT: pharmacometrics & systems pharmacology. 2018;7(2):103-110. 12. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1(2):182-188. 13. Widmer M, Cuesta C, Khan KS, et al. Accuracy of angiogenic biomarkers at ⩽ 20 weeks’ gestation in predicting the risk of pre-eclampsia: A WHO multicentre study. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2015;5(4):330-338. 14. Steegers EA, Von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. The Lancet. 2010;376(9741):631- 644. 15. Karumanchi SA. Angiogenic Factors in Preeclampsia: From Diagnosis to Therapy. Hypertension. Jun 2016;67(6):1072-1079. 16. Evers KS, Atkinson A, Barro C, et al. Neurofilament as Neuronal Injury Blood Marker in Preeclampsia. Hypertension. 2018:HYPERTENSIONAHA. 117.10314. 17. Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Seminars in nephrology. Jan 2011;31(1):33-46. 18. Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature medicine. Jun 2006;12(6):642-649.

RkJQdWJsaXNoZXIy ODAyMDc0