Tamara van Donge

Chapter 2 36 19. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. The New England journal of medicine. Feb 12 2004;350(7):672-683. 20. Artunc-Ulkumen B, Guvenc Y, Goker A, Gozukara C. Relationship of neutrophil gelatinase-associated lipocalin (NGAL) and procalcitonin levels with the presence and severity of the preeclampsia. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. Nov 2015;28(16):1895-1900. 21. Risch M, Purde MT, Baumann M, et al. High first-trimester maternal blood cystatin C levels despite normal serum creatinine predict pre-eclampsia in singleton pregnancies. Scandinavian journal of clinical and laboratory investigation. Dec 2017;77(8):634-643. 22. Kumer K, Premru-Srsen T, Fabjan-Vodusek V, Tul N, Fabjan T, Osredkar J. Peripheral arterial tonometry and angiogenic biomarkers in preeclampsia. Hypertension in pregnancy. Nov 2018;37(4):197-203. 23. Huppertz B. An updated view on the origin and use of angiogenic biomarkers for preeclampsia. Expert review of molecular diagnostics. Nov 9 2018:1-9. 24. Etwel F, Hutson JR, Madadi P, Gareri J, Koren G. Fetal and perinatal exposure to drugs and chemicals: novel biomarkers of risk. Annual review of pharmacology and toxicology. 2014;54:295-315. 25. Group KBS. Triple antiretroviral compared with zidovudine and single-dose nevirapine prophylaxis during pregnancy and breastfeeding for prevention of mother-to-child transmission of HIV-1 (Kesho Bora study): a randomised controlled trial. The Lancet infectious diseases. 2011;11(3):171- 180. 26. Zhang Z, Imperial MZ, Patilea-Vrana GI, Wedagedera J, Gaohua L, Unadkat JD. Development of a novel maternal-fetal physiologically based pharmacokinetic model I: insights into factors that determine fetal drug exposure through simulations and sensitivity analyses. Drug Metabolism and Disposition. 2017:dmd. 117.075192. 27. Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacology & therapeutics. 2008;118(2):250-267. 28. Saint-Faust M, Boubred F, Simeoni U. Renal development and neonatal adaptation. American journal of perinatology. 2014;31(09):773-780. 29. Zhang Z, Unadkat JD. Development of a novel maternal-fetal physiologically based pharmacokinetic model II: verification of the model for passive placental permeability drugs. Drug Metabolism and Disposition. 2017;45(8):939-946. 30. Schalkwijk S, Buaben AO, Freriksen JJ, et al. Prediction of fetal darunavir exposure by integrating human ex-vivo placental transfer and physiologically based pharmacokinetic modeling. Clinical pharmacokinetics. 2018;57(6):705-716. 31. Abduljalil K, Johnson TN, Rostami-Hodjegan A. Fetal physiologically-based pharmacokinetic models: systems information on fetal biometry and gross composition. Clinical pharmacokinetics. 2018;57(9):1149-1171. 32. Dallmann A, van den Anker J, Pfister M, Koch G. Characterization of Maternal and Neonatal Pharmacokinetic Behavior of Ceftazidime. The Journal of Clinical Pharmacology. 2018. 33. Stout SA, Espel EV, Sandman CA, Glynn LM, Davis EP. Fetal programming of children’s obesity risk. Psychoneuroendocrinology. 2015;53:29-39. 34. Koren G, Hutson J, Gareri J. Novel methods for the detection of drug and alcohol exposure during pregnancy: implications for maternal and child health. Clinical Pharmacology & Therapeutics. 2008;83(4):631-634.

RkJQdWJsaXNoZXIy ODAyMDc0