Wing Sheung Chan

156 Bibliography [123] A. L. Read, Presentation of search results: the CL s technique , J. Phys. G 28 (2002) 2693, doi : 10.1088/0954-3899/28/10/313 (cit. on p. 105) . [124] W. Verkerke and D. Kirkby, The RooFit toolkit for data modeling , 2003, arXiv: physics/0306116 [physics.data-an] (cit. on p. 106) . [125] L. Moneta et al., The RooStats Project , PoS ACAT2010 (2010), ed. by T. Speer et al. 057, doi : 10.22323/1.093.0057 , arXiv: 1009.1003 [physics.data-an] (cit. on p. 106) . [126] M. Baak et al., HistFitter software framework for statistical data analysis , Eur. Phys. J. C 75 (2015) 153, doi : 10.1140/epjc/s10052-015-3327-7 , arXiv: 1410.1280 [hep-ex] (cit. on p. 106) . [127] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood- based tests of new physics , Eur. Phys. J. C 71 (2011) 1554, doi : 10.1140/epjc/ s10052-011-1554-0 , arXiv: 1007.1727 [physics.data-an] (cit. on p. 108) . [128] ATLAS Collaboration, Jet energy scale and resolution measured in proton-proton collisions at √ s = 13 TeV with the ATLAS detector (2020), arXiv: 2007.02645 [hep-ex] (cit. on p. 108) . [129] ATLAS Collaboration, Luminosity determination in pp collisions at √ s = 13 TeV using the ATLAS detector at the LHC , ATLAS-CONF-2019-021, 2019, url : https: //cds.cern.ch/record/2677054 (cit. on p. 110) . [130] LHC TOP Physics Working Group, NNLO+NNLL top-quark-pair cross sections , 2015, url : https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO# Top_quark_pair_cross_sections_at (visited on 06/23/2020) (cit. on p. 110) . [131] LHC TOP Physics Working Group, NLO single-top channel cross sections , 2017, url : https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec # Predictions_at_7_8_13_and_14_TeV (visited on 06/23/2020) (cit. on p. 110) . [132] ATLAS Collaboration, Search for lepton-flavour-violating decays of the Higgs and Z bosons with the ATLAS detector , Eur. Phys. J. C 77 (2017) 70, doi : 10.1140/ epjc/s10052-017-4624-0 , arXiv: 1604.07730 [hep-ex] (cit. on pp. 115, 118) . [133] A. Elagin, P. Murat, A. Pranko, and A. Safonov, A New Mass Reconstruction Technique for Resonances Decaying to di-tau , Nucl. Instrum. Meth. A 654 (2011) 481, doi : 10.1016/j.nima.2011.07.009 , arXiv: 1012.4686 [hep-ex] (cit. on p. 118) . [134] ATLAS Collaboration, Modelling Z → τ τ processes in ATLAS with τ -embedded Z → µµ data , JINST 10 (2015) P09018, doi : 10.1088/1748-0221/10/09/P09018 , arXiv: 1506.05623 [hep-ex] (cit. on p. 118) . [135] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators , Neural Networks 2 (1989) 359, issn : 0893-6080, doi : 10.1016/0893-6080(89)90020-8 (cit. on p. 125) . [136] M. D. Richard and R. P. Lippmann, Neural network classifiers estimate Bayesian a posteriori probabilities , Neural computation 3 (1991) 461, doi : 10.1162/neco. 1991.3.4.461 (cit. on p. 126) .

RkJQdWJsaXNoZXIy ODAyMDc0