Franny Jongbloed

73 3 PROTECTION OF FASTING ON IRINOTECAN TOXICITY REFERENCES 1. Torre, L.A., et al. Global cancer statistics, 2012. CA Cancer J Clin 65, 87-108 (2015). 2. Adam, R. Colorectal cancer with synchronous liver metastases. Br J Surg 94, 129-131 (2007). 3. Cunningham, D., et al. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352, 1413-1418 (1998). 4. Saltz, L.B., et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343, 905-914 (2000). 5. Rothenberg, M.L. Efficacy and toxicity of irinotecan in patients with colorectal cancer. Semin Oncol 25, 39-46 (1998). 6. McCay, C.M., Crowell, M.F. & Maynard, L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155-171; discussion 172 (1989). 7. Huisman, S.A., Bijman-Lagcher, W., JN, I.J., Smits, R. & de Bruin, R.W. Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice. Cell Cycle, 1-7 (2015). 8. Lee, C., et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 4, 124ra127 (2012). 9. Raffaghello, L., et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proceedings of the National Academy of Sciences of the United States of America 105, 8215-8220 (2008). 10. Huisman, S.A., et al. Fasting protects against the side-effects of irinotecan treatment but does not abrogate anti-tumor activity in mice. Br J Pharmacol (2015). 11. Wang, B., et al. Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol 37, 1-6 (2016). 12. Lee, C., Raffaghello, L. & Longo, V.D. Starvation, detoxification, and multidrug resistance in cancer therapy. Drug Resist Updat 15, 114-122 (2012). 13. Sies, H., Berndt, C. & Jones, D.P. Oxidative Stress. Annu Rev Biochem 86, 715-748 (2017). 14. Aghajanian, A., Wittchen, E.S., Campbell, S.L. & Burridge, K. Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4, e8045 (2009). 15. Bell, M., Sopko, N.A., Matsui, H., Hannan, J.L. & Bivalacqua, T.J. RhoA/ROCK activation in major pelvic ganglion mediates caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury. Neural Regen Res 12, 572-573 (2017). 16. Manickam, N., Patel, M., Griendling, K.K., Gorin, Y. & Barnes, J.L. RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307, F159-171 (2014). 17. Krstic, J., Trivanovic, D., Mojsilovic, S. & Santibanez, J.F. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxid Med Cell Longev 2015, 654594 (2015).

RkJQdWJsaXNoZXIy MTk4NDMw