Noura Dawass

146 B IBLIOGRAPHY [101] A. Ben-Naim, Theoretical aspects of self-assembly of proteins: A Kirkwood- Buff theory approach, Journal of Chemical Physics 138 , 224906 (2013). [102] P. E. Smith, Cosolvent interactions with biomolecules: relating computer simulation data to experimental thermodynamic data, Journal of Physical Chemistry B 108 , 18716–18724 (2004). [103] S. Chiba, T. Furuta, and S. Shimizu, Kirkwood–buff integrals for aqueous urea solutions based upon the quantum chemical electrostatic potential and interaction energies, Journal of Physical Chemistry B 120 , 7714–7723 (2016). [104] M. Aburi and P. E. Smith, A combined simulation and Kirkwood–Buff approach to quantify cosolvent effects on the conformational preferences of peptides in solution, Journal of Physical Chemistry B 108 , 7382–7388 (2004). [105] N. Naleem, N. Bentenitis, and P. E. Smith, A Kirkwood–Buff derived force field for alkaline earth halide salts, Journal of Chemical Physics 148 , 222828 (2018). [106] S. Weerasinghe and P. E. Smith, A Kirkwood–Buff derived force field for sodium chloride in water, Journal of Chemical Physics 119 , 11342–11349 (2003). [107] M. Kang and P. E. Smith, A Kirkwood–Buff derived force field for amides, Journal of Computational Chemistry 27 , 1477–1485 (2006). [108] S. Weerasinghe and P. E. Smith, A Kirkwood–Buff derived force field for mix- tures of urea and water, Journal of Physical Chemistry B 107 , 3891–3898 (2003). [109] S. Weerasinghe and P. E. Smith, Kirkwood–Buff derived force field for mix- tures of acetone and water, Journal of Chemical Physics 118 , 10663–10670 (2003). [110] S. Weerasinghe and P. E. Smith, A Kirkwood–Buff derived force field for methanol and aqueous methanol solutions, Journal of Physical Chemistry B 109 , 15080–15086 (2005). [111] M. Mijakovi´c, K. D. Polok, B. Keži´c, F. Sokoli´c, A. Perera, and L. Zorani´c, A comparison of force fields for ethanol-water mixtures, Molecular Simula- tion 41 , 699–712 (2015).

RkJQdWJsaXNoZXIy ODAyMDc0