Vincent de Leijster

193 References Burney, J.A., Davis, S.J., Lobell, D.B., 2010. Greenhouse gas mitigation by agricultural intensification. PNAS 107, 1–6. Burns, R.G., Nannipieri, P., Kandeler, E., Ruggiero, P., 2002. Enzymes in the Environment: Activity, Ecology, and Applications. Marcek Dekker. Busch, J., Engelmann, J., Cook-patton, S.C., Griscom, B.W., Kroeger, T., Possingham, H., Shyamsundar, P., 2020. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Chang. 9. Cacho, O.J., Lipper, L., Moss, J., 2013. Transaction costs of carbon offset projects : A comparative study. Ecol. Econ. 88, 232–243. Cairns, M.A., Brown, S., Helmer, E.H., Baumgardner, G.A., 1997. Root biomass allocation in the world’ s upland forests. Oecologia 111, 1–11. Caldas, A., Robbins, R.K., 2003. Modified Pollard transects for assessing tropical butterfly abundance and diversity 110, 211–219. Campanha, M.M., Santos, R.H.S., De Freitas, G.B., Martinez, H.E.P., Garcia, S.L.R., Finger, F.L., 2005. Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor. Syst. 63, 75–82. Cannavo, P., Sansoulet, J., Harmand, J., Siles, P., Dreyer, E., Vaast, P., 2011. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agric. Ecosyst. Environ. 140, 1–13. Caron, P., Biénabe, E., Hainzelin, E., 2014. Making transition towards ecological intensification of agriculture a reality: the gaps in and the role of scientific knowledge. Curr. Opin. Environ. Sustain. 8, 44–52. Cerda, R., Allinne, C., Gary, C., Tixier, P., Harvey, C.A., Krolczyk, L., Mathiot, C., Clément, E., Aubertot, J., Avelino, J., 2017. Effects of shade , altitude and management on multiple ecosystem services in coffee agroecosystems. Eur. J. Agron. 82, 308–319. Chang, E.-H., Chung, R.-S., Tsai, Y.-H., 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53, 132–140. Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M., Delitti, W., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vielledent, G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20, 3177–3190. Chehab, H., Tekaya, M., Ouhibi, M., Gouiaa, M., Zakhama, H., 2019. Effects of compost, olive mill wastewater and legume cover cropson soil characteristics , tree performance and oil quality of olive trees cv . Chemlali grown under organic farming system. Sci. Hortic. (Amsterdam). 253, 163–171. Cherlet, M., Ivits, E., Sommer, S., Tóth, G., Jones, A., Montanarella, L., Belward, A., 2013. Land Productivity Dynamics in Europe Towards a Valuation of Land Degradation in the EU. JRC, Ispara, Italy. Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T.C., Anshary, A., Buchori, D., Cicuzza, D., Darras, K., Putra, D.D., Erasmi, S., Pitopang, R., Schmidt, C., Schulze, C.H., Seidel, D., Steffan-Dewenter, I., Stenchly, K., Vidal, S., Weist, M., Wielgoss, A.C., Tscharntke, T., 2011. Combining high biodiversity with high yields in tropical agroforests. PNAS 108, 8311–6.

RkJQdWJsaXNoZXIy ODAyMDc0