Dolph Houben

181 Summary and general discussion 9 References 1. Campbell, W.C., Transference of the fibula as an adjunct to a free bone graft. J ORthop Surg, 1919. 1 : p. 625-31. 2. Huntington, T.W., Use of a segment of fibula to supply a defect in the tibia. Ann Surg, 1905. 41 : p. 249-251. 3. Stone, J.S., Partial loss of the tibia replaced by transfer of the fibula. Ann Surg, 1907. 46 : p. 628-34. 4. Arata, M., M. Wood, and W.r. Cooney, Revascularized segmental diaphyseal bone transfers in the canine. An analysis of viability. J Reconstr Microsurg, 1984. 1 (1): p. 11-9. 5. Siegert, J.J. and M.B. Wood, Blood flow evaluation of vascularized bone transfers in a canine model. Journal of Orthopaedic Research, 1990. 8 (2): p. 291-6. 6. Mankin, H.J., S. Doppelt, and W. Tomford, Clinical experience with allograft implantation. The first ten years. Clin Orthop, 1983. 174 : p. 69-86. 7. de Boer, H.H. and M.B. Wood, Bone changes in the vascularized fibular graft. Journal of Bone & Joint Surgery - British Volume, 1989. 71B (3): p. 374-8. 8. Bishop, A.T., Vascularized bone grafting , in Green's operative hand surgery , D. Green, R. Hotchkiss, and W. Pederson, Editors. 1999, Churchill Livingstone: New York. 9. de Boer, H.H., M.B. Wood, and J. Hermans, Reconstruction of large skeletal defects by vascularized fibula transfer. Factors that influenced the outcome of union in 62 cases. International Orthopaedics, 1990. 14 (2): p. 121-8. 10. Han, C.S., M.B. Wood, A.T. Bishop, et al., Vascularized bone transfer. Journal of Bone & Joint Surgery - American Volume, 1992. 74 (10): p. 1441-9. 11. Houdek, M.T., E.R. Wagner, A.T. Bishop, et al., Complications and Long-Term Outcomes of Free Fibula Reconstruction following Resection of a Malignant Tumor in the Extremities. Plastic & Reconstructive Surgery, 2017. 139 (2): p. 510e-519e. 12. Capanna, R., D.A. Campanacci, N. Belot, et al., A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthopedic Clinics of North America, 2007. 38 (1): p. 51-60. 13. Larsen, M., M. Pelzer, P.F. Friedrich, et al., Living bone allotransplants survive by surgical angiogenesis alone: development of a novel method of composite tissue allotransplantation. Journal of Bone & Joint Surgery - American Volume, 2011. 93 (3): p. 261-73. 14. Pelzer, M., M. Larsen, P.F. Friedrich, et al., Repopulation of vascularized bone allotransplants with recipient- derived cells: detection by laser capture microdissection and real-time PCR. Journal of Orthopaedic Research, 2009. 27 (11): p. 1514-20. 15. Pelzer, M., M. Larsen, Y.-G. Chung, et al., Short-term immunosuppression and surgical neoangiogenesis with host vessels maintains long-term viability of vascularized bone allografts. Journal of Orthopaedic Research, 2007. 25 (3): p. 370-7. 16. Giessler, G.A., M. Zobitz, P.F. Friedrich, et al., Host-derived neoangiogenesis with short-term immunosuppression allows incorporation and remodeling of vascularized diaphyseal allogeneic rabbit femur transplants. Journal of Orthopaedic Research, 2009. 27 (6): p. 763-70. 17. Giessler, G.A., M. Zobitz, P.F. Friedrich, et al., Transplantation of a vascularized rabbit femoral diaphyseal segment: mechanical and histologic properties of a new living bone transplantation model. Microsurgery, 2008. 28 (4): p. 291-9. 18. Chung, Y.-G., A.T. Bishop, G.A. Giessler, et al., Surgical angiogenesis: a new approach to maintain osseous viability in xenotransplantation. Xenotransplantation, 2010. 17 (1): p. 38-47.

RkJQdWJsaXNoZXIy ODAyMDc0