Dolph Houben

91 Outcomes of vascularized bone allotransplantation 4 References 1. Mankin, H.J., S. Doppelt, and W. Tomford, Clinical experience with allograft implantation. The first ten years. Clin Orthop, 1983. 174 : p. 69-86. 2. Moran, S.L., A.Y. Shin, and A.T. Bishop, The use of massive bone allograft with intramedullary free fibular flap for limb salvage in a pediatric and adolescent population. Plastic & Reconstructive Surgery, 2006. 118 (2): p. 413-9. 3. Li, J., Z. Wang, Z. Guo, et al., The use of massive allograft with intramedullary fibular graft for intercalary reconstruction after resection of tibial malignancy. Journal of Reconstructive Microsurgery, 2011. 27 (1): p. 37-46. 4. Berrey, B.H., Jr., C.F. Lord, M.C. Gebhardt, et al., Fractures of allografts. Frequency, treatment, and end- results. J Bone Joint Surg Am, 1990. 72 (6): p. 825-33. 5. Enneking, W.F. and E.R. Mindell, Observations on massive retrieved human allografts. J Bone Joint Surg Am, 1991. 73 (8): p. 1123-42. 6. Dick, H.M. and R.J. Strauch, Infection of massive bone allografts. Clinical Orthopaedics & Related Research, 1994. 306 : p. 46-53. 7. de Boer, H.H. and M.B. Wood, Bone changes in the vascularized fibular graft. Journal of Bone & Joint Surgery - British Volume, 1989. 71B (3): p. 374-8. 8. Moran, C.G. and M.B. Wood, Vascularized bone autografts. Orthopaedic Review, 1993. 22 (2): p. 187-97. 9. Weiland, A.J., T.W. Phillips, and M.A. Randolph, Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Plastic & Reconstructive Surgery, 1984. 74 (3): p. 368-79. 10. Arata, M., M. Wood, and W.r. Cooney, Revascularized segmental diaphyseal bone transfers in the canine. An analysis of viability. J Reconstr Microsurg, 1984. 1 (1): p. 11-9. 11. Larsen, M., M. Pelzer, P.F. Friedrich, et al., Living bone allotransplants survive by surgical angiogenesis alone: development of a novel method of composite tissue allotransplantation. Journal of Bone & Joint Surgery - American Volume, 2011. 93 (3): p. 261-73. 12. Giessler, G.A., M. Zobitz, P.F. Friedrich, et al., Host-derived neoangiogenesis with short-term immunosuppression allows incorporation and remodeling of vascularized diaphyseal allogeneic rabbit femur transplants. Journal of Orthopaedic Research, 2009. 27 (6): p. 763-70. 13. Pelzer, M., M. Larsen, Y.G. Chung, et al., Short-term immunosuppression and surgical neoangiogenesis with host vessels maintains long-term viability of vascularized bone allografts. Journal of Orthopaedic Research, 2007. 25 (3): p. 370-7. 14. Larsen, M., W.F. Willems, M. Pelzer, et al., Augmentation of surgical angiogenesis in vascularized bone allotransplants with host-derived a/v bundle implantation, fibroblast growth factor-2, and vascular endothelial growth factor administration. Journal of Orthopaedic Research, 2010. 28 (8): p. 1015-21. 15. Pelzer, M., M. Larsen, Y.-G. Chung, et al., Short-term immunosuppression and surgical neoangiogenesis with host vessels maintains long-term viability of vascularized bone allografts. Journal of Orthopaedic Research, 2007. 25 (3): p. 370-7. 16. Pelzer, M., M. Larsen, P.F. Friedrich, et al., Repopulation of vascularized bone allotransplants with recipient- derived cells: detection by laser capture microdissection and real-time PCR. Journal of Orthopaedic Research, 2009. 27 (11): p. 1514-20. 17. Kotsougiani, D., C.A. Hundepool, L.F. Bulstra, et al., Recipient-derived angiogenesis with short term immunosuppression increases bone remodeling in bone vascularized composite allotransplantation: A pilot study in a swine tibial defect model. J Orthop Res., 2017. 35 (6): p. 1242-1249. doi: 10.1002/jor.23378. Epub 2016 Aug 12.

RkJQdWJsaXNoZXIy ODAyMDc0