Suzanne de Bruijn

309 General discussion and perspectives 44. Carss, K.J., Arno, G., Erwood, M., Stephens, J., Sanchis-Juan, A., Hull, S. et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. American Journal of Human Genetics 100 , 75-90 (2017). 45. Van Schil, K., Naessens, S., Van de Sompele, S., Carron, M., Aslanidis, A., Van Cauwenbergh, C. et al. Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genetics in Medicine 20 , 202-213 (2018). 46. Shearer, A.E., Kolbe, D.L., Azaiez, H., Sloan, C.M., Frees, K.L., Weaver, A.E. et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Medicine 6 , 37 (2014). 47. Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J.F., Darbandi, S.F., Knowles, D., Li, Y.I. et al. Predicting splicing from primary sequence with deep learning. Cell 176 , 535-548 (2019). 48. Riepe, T.V., Khan, M., Roosing, S., Cremers, F.P.M. & 't Hoen, P.A.C. Benchmarking deep learning splice prediction tools using functional splice assays. Human Mutation In press (2021). 49. Telenti, A., Lippert, C., Chang, P.-C. & DePristo, M. Deep learning of genomic variation and regulatory network data. Human Molecular Genetics 27 , r63-r71 (2018). 50. Cai, L., Wu, Y. & Gao, J. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network. BMC Bioinformatics 20 , 665 (2019). 51. Weininger, O., Warnecke, A., Lesinski-Schiedat, A., Lenarz, T. & Stolle, S. Computational analysis based on audioprofiles: A new possibility for patient stratification in office-based otology. Audiology Research 9 , 27-32 (2019). 52. Salah, M., de Varebeke, S.J., Fransen, E., Topsakal, V., Van Camp, G. & Van Rompaey, V. Predictive sensitivity and concordance of machine-learning tools for diagnosing DFNA9 in alLarge series of p.Pro51Ser variant carriers in the COCH-gene. Otology & Neurotology , 671- 677 (2021). 53. Renaux, A., Papadimitriou, S., Versbraegen, N., Nachtegael, C., Boutry, S., Nowé, A. et al. ORVAL: a novel platform for the prediction and exploration of disease-causing oligogenic variant combinations. Nucleic Acids Research 47 , w93-w98 (2019). 54. Papadimitriou, S., Gazzo, A., Versbraegen, N., Nachtegael, C., Aerts, J., Moreau, Y. et al. Predicting disease-causing variant combinations. Proceedings of the National Academy of Sciences 116 , 11878 (2019). 55. Kaplanis, J., Samocha, K.E., Wiel, L., Zhang, Z., Arvai, K.J., Eberhardt, R.Y. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586 , 757- 762 (2020). 56. Fransen, E., Bonneux, S., Corneveaux, J.J., Schrauwen, I., Di Berardino, F., White, C.H. et al. Genome-wide association analysis demonstrates the highly polygenic character of age- related hearing impairment. European Journal of Human Genetics 23 , 110-115 (2015). 57. Wells, H.R.R., Freidin, M.B., Zainul Abidin, F.N., Payton, A., Dawes, P., Munro, K.J. et al. GWAS identifies 44 independent associated genomic loci for self-reported adult hearing difficulty in UK biobank. American Journal of Human Genetics 105 , 788-802 (2019).

RkJQdWJsaXNoZXIy ODAyMDc0