Suzanne de Bruijn
311 General discussion and perspectives 73. Zhou, R.M., Wang, X.Q., Yao, J., Shen, Y., Chen, S.N., Yang, H. et al. Identification and characterization of proliferative retinopathy-related long noncoding RNAs. Biochemical and Biophysical Research Communications 465 , 324-330 (2015). 74. de Kok, Y.J., Vossenaar, E.R., Cremers, C.W., Dahl, N., Laporte, J., Hu, L.J. et al. Identification of a hot spot for microdeletions in patients with X-linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 gene POU3F4. Human Molecular Genetics 5 , 1229-1235 (1996). 75. Naranjo, S., Voesenek, K., de la Calle-Mustienes, E., Robert-Moreno, A., Kokotas, H., Grigoriadou, M. et al. Multiple enhancers located in a 1-Mb region upstream of POU3F4 promote expression during inner ear development and may be required for hearing. Human Genetics 128 , 411-419 (2010). 76. Cummings, B.B., Marshall, J.L., Tukiainen, T., Lek, M., Donkervoort, S., Foley, A.R. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Science Translational Medicine 9 , eaal5209 (2017). 77. Kremer, L.S., Bader, D.M., Mertes, C., Kopajtich, R., Pichler, G., Iuso, A. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nature Communications 8 , 15824 (2017). 78. Frésard, L., Smail, C., Ferraro, N.M., Teran, N.A., Li, X., Smith, K.S. et al. Identification of rare- disease genes using blood transcriptome sequencing and large control cohorts. Nature Medicine 25 , 911-919 (2019). 79. Gonorazky, H.D., Naumenko, S., Ramani, A.K., Nelakuditi, V., Mashouri, P., Wang, P. et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease. American Journal of Human Genetics 104 , 466-483 (2019). 80. Yépez, V.A., Gusic, M., Kopajtich, R., Mertes, C., Smith, N.H., Alston, C.L. et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. medRxiv , 21254633 (2021). 81. Sangermano, R., Garanto, A., Khan, M., Runhart, E.H., Bauwens, M., Bax, N.M. et al. Deep- intronic ABCA4 variants explainmissing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genetics in Medicine 21 , 1751-1760 (2019). 82. Bauwens, M., Garanto, A., Sangermano, R., Naessens, S., Weisschuh, N., De Zaeytijd, J. et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genetics in Medicine 21 , 1761-1771 (2019). 83. Albert, S., Garanto, A., Sangermano, R., Khan, M., Bax, N.M., Hoyng, C.B. et al. Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying Stargardt disease. American Journal of Human Genetics 102 , 517-527 (2018). 84. Vona, B., Mazaheri, N., Lin, S.J., Dunbar, L.A., Maroofian, R., Azaiez, H. et al. A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Human Genetics , 915–931 (2021). 85. Kopajtich, R., Smirnov, D., Stenton, S.L., Loipfinger, S., Meng, C., Scheller, I.F. et al. Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders. medRxiv , 21253187 (2021).
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0