Joris van Dongen

196 Chapter 8 REFERENCES 1. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283-289. 2. KimWJ, Gittes GK, Longaker MT. Signal transduction in wound pharmacology. Arch Pharm Res. 1998;21(5):487-495. 3. Clark RA. Fibrin and wound healing. Annals of the New York Academy of Sciences. 2001;936:355-367. 4. Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. American journal of surgery. 1993;165(6):728-737. 5. Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage- Mediated Inflammation in Normal and Diabetic Wound Healing. Journal of immunology (Baltimore, Md : 1950). 2017;199(1):17-24. 6. Chen L, Wang J, Li S, et al. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. International wound journal. 2019;16(2):360-369. 7. Eckes B, Zigrino P, Kessler D, et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix biology : journal of the International Society for Matrix Biology. 2000;19(4):325-332. 8. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314- 321. 9. Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311-1323. 10. Liu F, Mih JD, Shea BS, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190(4):693-706. 11. Bi H, Li H, Zhang C, et al. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem cell research & therapy. 2019;10(1):302. 12. van Dongen JA, Getova V, Brouwer LA, et al. Adipose tissue-derived extracellular matrix hydrogels as a release platform for secreted paracrine factors. Journal of tissue engineering and regenerative medicine. 2019;13(6):973-985. 13. Bowles AC, Wise RM, Gerstein BY, et al. Immunomodulatory Effects of Adipose Stromal Vascular Fraction Cells Promote Alternative Activation Macrophages to Repair Tissue Damage. Stem cells (Dayton, Ohio). 2017;35(10):2198-2207. 14. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue- derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641-648. 15. van Dongen JA, Tuin AJ, Spiekman M, Jansma J, van der Lei B, Harmsen MC. Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review. Journal of tissue engineering and regenerative medicine. 2018;12(1):e261-e274. 16. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater. 2014;13(6):645- 652. 17. Wang J, Liao Y, Xia J, et al. Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem cell research & therapy. 2019;10(1):42. 18. Domergue S, Bony C, Maumus M, et al. Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars. PloS one. 2016;11(5):e0156161.

RkJQdWJsaXNoZXIy ODAyMDc0