Anne van Dalen

A review on the current applications of artificial intelligence in the operating room I 231 8 18. Chen JH, Asch SM. Machine learning and prediction in medicine - Beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507-2509. doi:10.1056/ NEJMp1702071 19. Desai AN. Artificial intelligence: Promise, pitfalls, and perspective. J Am MedAssoc. 2020;323, 2448. doi:10.1001/ jama.2020.8737 20. Matheny ME, Whicher D, Thadaney Israni S. Artificial intelligence in health care: A report from the national academy of medicine. J Am Med Assoc. 2020;323(6): 509-510. doi:10.1001/ jama.2019.21579 21. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2): 73-81. doi:10.1080/13645706.2019.1575 882 22. Bodenstedt S, Wagner M, Mündermann L, et al. Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data. Int J Comput Assist Radiol Surg. 2019; 14(6):1089-1095. doi:10.1007/s11548- 019-01966-6 23. Cho Y, Lee A, Park J, Ko B, Kim N. Enhancement of gesture recognition for contactless interface using a personalized classifier in the operating room. Comput Methods Progr Biomed. 2018;161:39-44. doi:10.1016/j.cmpb.2018.04.003 24. Devi SP, Rao KS, Sangeetha SS. Prediction of surgery times and scheduling of operation theaters in optholmology department. J Med Syst. 2012;36(2):415- 430. doi:10.1007/ s10916-010-9486-z 25. Hashimoto DA, Rosman G, Witkowski ER, et al. Computer vision analysis of intraoperative video: Automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019;270(3):414-421. doi:10.1097/ sla. 0000000000003460 26. JermynM,DesrochesJ,MercierJ, et al. Neural networks improve brain cancer detection with Raman spectroscopy in the presence of operating room light artifacts. J Biomed Optic. 2016;21(9):094002. doi:10.1117/1.Jbo.21.9.094002 27. Kassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg. 2016;11(4):553-568. doi:10.1007/s11548- 015-1305-z 28. Zhao B, Waterman RS, Urman RD, Gabriel RA. A machine learning approach to predicting case duration for robotassisted surgery. J Med Syst. 2019;43(2):32. doi:10.1007/ s10916-018- 1151-y 29. Liu H, Baena FRY. Automatic markerless registration and tracking of the bone for computer-assisted orthopaedic surgery. IEEE Access. 2020;8:42010-42020. doi:10.1109/ ACCESS.2020.2977072 30. Cortes C, Vapnik V. Support- vector networks. Mach Learn. 1995;20(3):273-297. 31. Adi A, Hadash K, Kerem O, et al. Definition of Workflow Patterns Using Complex Event Processing. Armonk, NY: Google Patents; 2006. 32. Weede O, Monnich H, Müller B, W¨ ornH. An intelligent and ¨ autonomous endoscopic guidance system for minimally invasive surgery. Paper presented at: 2011

RkJQdWJsaXNoZXIy ODAyMDc0