Anne van Dalen
A review on the current applications of artificial intelligence in the operating room I 233 8 interpretation. Expet Rev Med Dev. 2017;14(3):197-212. 48. Gu Y, Liang Z, Hagihira S. Use of multiple EEG features and artificial neural network tomonitor the depth of anesthesia. Sensors. 2019;19(11):2499. doi:10.3390/ s19112499 49. Wijnberge M, Schenk J, Terwindt LE, et al. The use of a machine-learning algorithm that predicts hypotension during surgery in combination with personalized treatment guidance: study protocol for a randomized clinical trial. Trials. 2019;20(1):582. doi:10.1186/s13063-019- 3637-4 50. Chen X, Tian J, Li G, Li G . Initiation of a new infection control system for the COVID-19 outbreak. Lancet Infect Dis. 2020; 20(4):397-398. doi:10.1016/ S1473-3099(20)30110-9 51. McCall B. COVID-19 and artificial intelligence: Protecting health- care workers and curbing the spread. The Lancet DigitHealth. 2020;2(4):e166-e167. 52. Challen R, Denny J, Pitt M, Gompels L, Edwards T, TsanevaAtanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231- 237. 53. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018; 286(3):800- 809. doi:10.1148/radiol.2017171920 54. Pearl J. Causality: Models, Reasoning and Inference. New York City, NY: Springer; 2000. 55. Goldenberg MG, Jung J, Grantcharov TP. Using data to enhance performanceand improvequalityandsafety in surgery. JAMA Surg. 2017;152(10):972- 973. 56. Khalid S, Goldenberg M, GrantcharovT, TaatiB,RudziczF.Evaluation of deep learning models for identifying surgicalactionsandmeasuringperformance. JAMA Netw Open. 2020;3(3):e201664. doi:10.1001/jamanetworkopen.2020. 1664 57. Bishop CM. Pattern Recognition andMachine Learning. New York City, NY: Springer; 2006. 58. Mitchell TM. Does machine learning really work? AI Mag. 1997;18(3):11. 59. Fürnkranz J, GambergerD, Lavrac N. ˇ Foundations of Rule Learning. New YorkCity, NY: Springer Science &Business Media; 2012. 60. Cruz JA,WishartDS.Applications of machine learning in cancer prediction and prognosis. Canc Inf. 2006;2: 117693510600200030. 61. Miller RA, Pople HE Jr, Myers JD. Internist-I, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307(8):468-476. 62. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920- 1930. doi:10.1161/circulationaha.115. 001593 63. Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7): 1527- 1554. 64. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA: MIT press; 2016. 65. Ballard DH, Brown CM. Computer Vision. Upper Saddle River, NJ: Prentice-Hall; 1982.
Made with FlippingBook
RkJQdWJsaXNoZXIy ODAyMDc0