Addi van Bergen

Chapter 6 136 analyses per city that are not shown herein but are available from the authors, that the results could be generalised to urban areas with similar socioeconomic characteristics. To allow for future generalizations, factors at the meso and macro levels should be included, such as urbanicity, neighbourhood characteristics, welfare and social policies. In this study, we treated SE, education, income, labour market position and migration background as micro-level characteristics of individuals, while these factors also reflect the underlying social and economic structure. Another limitation of this study is that persons without a fixed address and those living in institutions were not included in the Public Health Monitor, which could have led to an underestimation of the RRs and PAFs. A final limitation is that most health indicators were self-reported. Self-reported measures are prone to social desirability bias and recall bias. There are no concrete indications for differences between social groups in the magnitude or direction of these biases, but it cannot be ruled out. CONCLUSIONS This study shows that the SEI-HS is a powerful tool for identifying high-risk/high- need population segments in which not only ill health is concentrated, as is the case with traditional social stratifiers, but also an extremely high prevalence of anxiety and depression symptoms and low personal control are present, in addition to an accumulation of multiple problems in different domains of life. The combination of SE with a low labour market position captured the largest part of the prevalence of anxiety and depression symptoms (67%) and low personal control (60%) in 19.5% of the population, as well as a substantial portion of other risk factors and negative health outcomes. Significant health gains are likely to be achieved by tailoring health care practice, public health interventions and social care to the needs and capacities of this socially excluded and low labour market group. More in-depth analysis of PHM data is recommended at the local level to sharpen the local profile of the socially excluded population segments per city. In general, more qualitative research, comparative studies and experiments are needed regarding the impact and interaction of meso- and macro-level factors on the triangle formed by SE, health and low agency. LIST OFABBREVIATIONS BMI: body mass index CI: confidence interval CVD: cardiovascular disease GP: general practitioner K10: 10-item Kessler psychological distress scale PAF: population attributable fraction PROGRESS: place of residence, race or ethnicity, occupation, gender, religion, education, socioeconomic status and social capital or resources RR: relative risk

RkJQdWJsaXNoZXIy ODAyMDc0