Sanne de Bruin

138 Chapter 5 21. Bernstein, R. E. Alterations in metabolic energetics and cation transport during aging of red cells. J. Clin. Invest. 38 , 1572–1586 (1959). 22. Cohen, N. S., Ekholm, J. E., Luthra, M. G. & Hanahan, D. J. Biochemical characterization of density- separated human erythrocytes. BBA - Biomembr. 419 , 229–242 (1976). 23. Jimeno, P., Garcia-Perez, A. I., Luque, J. & Pinilla, M. Changes in glycolytic enzyme activities in aging erythrocytes fractionated by counter-current distribution in aqueous polymer two-phase systems. Biochem. J. 279 ( Pt 1 , 237–43 (1991). 24. Powell, R. D. & Degowin, R. L. Relationship between activity of pyruvate kinase and age of the normal human erythrocyte. Nature 205 , 507 (1965). 25. Rosa, J. & Schapira, F. Lactic Dehydrogenase Isoenzymes and Ageing of Erythrocytes. Nature 204 , 883 (1964). 26. Schmidt, W., Böning, D. & Braumann, K. M. Red cell age effects on metabolism and oxygen affinity in humans. Respir. Physiol. 68 , 215–225 (1987). 27. Low, F. M., Hampton, M. B. & Winterbourn, C. C. Peroxiredoxin 2 and Peroxide Metabolism in the Erythrocyte. Antioxid. Redox Signal. 10 , 1621–1630 (2008). 28. Ouwerkerk, R., Damen, P., de Haan, K., Staal, G. E. J. & Rijksen, G. Hexose monophosphate shunt activity in erythrocytes related to cell age. Eur. J. Haematol. 43 , 441–447 (1989). 29. Imanishi, H., Nakai, T., Abe, T. &Takino, T. Glutathione metabolism in red cell aging. Mech. Ageing Dev. 32 , 57–62 (1985). 30. Imanishi, H., Nakai, T., Abe, T. & Takino, T. Glutathione-linked enzyme activities in red cell aging. Clin. Chim. Acta. 159 , 73–6 (1986). 31. Turner, B. M., Fisher, R. A. & Harris, H. The age related loss of activity of four enzymes in the human erythrocyte. Clin. Chim. Acta. 50 , 85–95 (1974). 32. Piccinini, G., Minetti, G., Balduini, C. & Brovelli, A. Oxidation state of glutathione and membrane proteins in human red cells of different age. Mech.Ageing Dev. 78 , 15–26 (1995). 33. Rettig, M. P. et al. Evaluation of biochemical changes during in vivo erythrocyte senescence in the dog. Blood 93 , 376–84 (1999). 34. D’Alessandro, A., Blasi, B., D’Amici, G., Marrocco, C. & Zolla, L. Red blood cell subpopulations in freshly drawn blood: Application of proteomics and metabolomics to a decades-long biological issue. Blood Transfus. 11 , 75–87 (2013). 35. Lagerberg, J. W., Korsten, H., Van Der Meer, P. F. & De Korte, D. Prevention of red cell storage lesion: a comparison of five different additive solutions. Blood Transfus. 1–7 (2017). doi:10.2450/2017.0371-16 36. Roback, J. D. et al. Metabolomics of ADSOL (AS-1) red blood cell storage. Transfus. Med. Rev. 28 , 41–55 (2014). 37. Dumont, L. J., D ’alessandro, A., Szczepiorkowski, Z. M. & Yoshida, T. CO 2 -dependent metabolic modulation in red blood cells stored under anaerobic conditions. Transfusion 56 , (2015). 38. D’Alessandro, A. et al. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells. Transfusion 58 , 1992–2002 (2018). 39. D’Alessandro, A., D’Amici, G. M., Vaglio, S. & Zolla, L. Time-course investigation of sagm-stored leukocyte-filtered red bood cell concentrates: From metabolism to proteomics. Haematologica 97 , 107–115 (2012).

RkJQdWJsaXNoZXIy ODAyMDc0