Sanne de Bruin

139 Metabolic changes in erythrocytes in vivo, during storage and after transfusion 40. Gevi, F., D’Alessandro, A., Rinalducci, S. & Zolla, L. Alterations of red blood cell metabolome during cold liquid storage of erythrocyte concentrates in CPD-SAGM. J. Proteomics 76 , 168–180 (2012). 41. D’Alessandro, A. et al. Metabolomics of AS-5 RBC supernatants following routine storage. Vox Sang. 108 , 131–140 (2015). 42. Bordbar, A. et al. Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion 56 , 852–862 (2016). 43. Chapman, R. G., Hennessey, M. A., Waltersdorph, A. M., Huennekens, F. M. & Gabrio, B. W. Erythrocyte metabolism. V. Levels of glycolytic enzymes and regulation of glycolysis. J. Clin. Invest. 41 , 1249–56 (1962). 44. Meryman, H. T., Hornblower, M. L. & Syring, R. L. Prolonged storage of red cells at 4 degrees C. Transfusion 26 , 500–5 45. Elucidated., D. T. mechanism removal of senescent Rbc. is still not completely et al. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage. Transfusion 48 , 1081–1089 (2008). 46. Cancelas, J. A. et al. Additive solution-7 reduces the red blood cell cold storage lesion. Transfusion 55 , 491–498 (2015). 47. D’Alessandro, A., Nemkov, T., Hansen, K. C., Szczepiorkowski, Z. M. & Dumont, L. J. Red blood cell storage in additive solution-7 preserves energy and redox metabolism: A metabolomics approach. Transfusion 55 , 2955–2966 (2015). 48. Burger, P. et al. An improved red blood cell additive solution maintains 2,3- diphosphoglycerate and adenosine triphosphate levels by an enhancing effect on phosphofructokinase activity during cold storage. Transfusion 50 , 2386–2392 (2010). 49. D’Alessandro, A., Gevi, F. & Zolla, L. Red blood cell metabolism under prolonged anaerobic storage. Mol. Biosyst. 9 , 1196–209 (2013). 50. D’Amici, G. M. et al. Red blood cell storage in SAGM and AS3: a comparison through the membrane two-dimensional electrophoresis proteome. Blood Transfus. 10 Suppl 2 , 46–54 (2012). 51. Reisz, J. A. et al. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood 128 , e32–e42 (2016). 52. D’Alessandro, A. et al. Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery. Transfusion 60 , 786–798 (2020). 53. D’Alessandro, A. et al. Routine storage of red blood cell (RBC) units in additive solution-3: a comprehensive investigation of the RBC metabolome. Transfusion 55 , 1155–68 (2015). 54. Özmen, I., Çiftçi, M., Küfreviogˇlu, Ö. I. & Akif Çürük, M. Investigation of glucose 6-phosphate dehydrogenase (G6PD) kinetics for normal and G6PD-deficient persons and the effects of some drugs. J. Enzyme Inhib. Med. Chem. 19 , 45–50 (2004). 55. Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R. & Turner, N. D. Glutathione Metabolism and Its Implications for Health. J. Nutr. 134 , 489–492 (2004). 56. Xiong, Y. et al. Inhibition of Glutathione Synthesis via Decreased Glucose Metabolism in Stored RBCs. Cell. Physiol. Biochem. 51 , 2172–2184 (2018). 57. Whillier, S., Raftos, J. E., Sparrow, R. L. & Kuchel, P. W. The effects of long-term storage of human red blood cells on the glutathione synthesis rate and steady-state concentration. Transfusion 51 , 1450–1459 (2011). 5

RkJQdWJsaXNoZXIy ODAyMDc0